Research article

Some empirical studies for the applications of fractional $ G $-Brownian motion in finance

  • Received: 01 October 2024 Revised: 12 December 2024 Accepted: 06 January 2025 Published: 09 January 2025
  • JEL Codes: G15, G10

  • Since the fractional $ G $-Brownian motion (fGBm) generalizes the concepts of the standard Brownian motion, fractional Brownian motion, and $ G $-Brownian motion, while it can exhibit long-range dependence or antipersistence and feature the volatility uncertainty simultaneously, it can be a better alternative stochastic process in the financial applications. Thus, in this paper, some empirical studies for the financial applications of the fGBm were carried out, where the recent high-frequency data for some selected assets in the financial market are from the Oxford-Man Institute of Quantitative Finance Realized Library. There are two main empirical findings. One was that the H-$ G $-normal distributions associated with the fGBm are more suitable in describing the dynamics of daily returns and increments of log-volatility for these assets than the usual distributions, since they not only characterize the properties of skewness, excess kurtosis, and long-range dependence $ \left(\frac{1}{2} < H < 1\right) $ or antipersistence $ \left(0 < H < \frac{1}{2}\right) $, but also feature the volatility uncertainty. The other one was that the daily return and log-volatility both behave essentially as fGBm with different $ \underline{\sigma}^2 $ and $ \overline{\sigma}^2 $, but Hurst parameters $ H < \frac{1}{2} $, at any reasonable time scale. Then a generalized stochastic model for the dynamics of the assets called rough fractional stochastic volatility model driven by fGBm (RFSV-fGBm) was developed. Finally, some parameter estimates and numerical experiments for the RFSV-fGBm model were investigated and carried out.

    Citation: Changhong Guo, Shaomei Fang, Yong He, Yong Zhang. Some empirical studies for the applications of fractional $ G $-Brownian motion in finance[J]. Quantitative Finance and Economics, 2025, 9(1): 1-39. doi: 10.3934/QFE.2025001

    Related Papers:

  • Since the fractional $ G $-Brownian motion (fGBm) generalizes the concepts of the standard Brownian motion, fractional Brownian motion, and $ G $-Brownian motion, while it can exhibit long-range dependence or antipersistence and feature the volatility uncertainty simultaneously, it can be a better alternative stochastic process in the financial applications. Thus, in this paper, some empirical studies for the financial applications of the fGBm were carried out, where the recent high-frequency data for some selected assets in the financial market are from the Oxford-Man Institute of Quantitative Finance Realized Library. There are two main empirical findings. One was that the H-$ G $-normal distributions associated with the fGBm are more suitable in describing the dynamics of daily returns and increments of log-volatility for these assets than the usual distributions, since they not only characterize the properties of skewness, excess kurtosis, and long-range dependence $ \left(\frac{1}{2} < H < 1\right) $ or antipersistence $ \left(0 < H < \frac{1}{2}\right) $, but also feature the volatility uncertainty. The other one was that the daily return and log-volatility both behave essentially as fGBm with different $ \underline{\sigma}^2 $ and $ \overline{\sigma}^2 $, but Hurst parameters $ H < \frac{1}{2} $, at any reasonable time scale. Then a generalized stochastic model for the dynamics of the assets called rough fractional stochastic volatility model driven by fGBm (RFSV-fGBm) was developed. Finally, some parameter estimates and numerical experiments for the RFSV-fGBm model were investigated and carried out.



    加载中


    [1] Avellaneda M, Levy A, Parás A (1995) Pricing and hedging derivative securities in markets with uncertain volatilities. Appl Math Financ 2: 73–88. https://doi.org/10.1080/13504869500000005 doi: 10.1080/13504869500000005
    [2] Bakshi G, Cao C, Chen Z (1997) Empirical performance of alternative option pricing models. J Financ 52: 2003–2049. https://doi.org/10.1111/j.1540-6261.1997.tb02749.x doi: 10.1111/j.1540-6261.1997.tb02749.x
    [3] Biagini F, Hu Y, Øksendal B, et al. (2008) Stochastic calculus for fractional Brownian motion and applications. London: Springer-Verlag.
    [4] Bj$\ddot{ o }$rk T, Hult H (2005) A note on Wick products and the fractional Black-Scholes model. Financ Stoch 9: 197–209. https://doi.org/10.1007/s00780-004-0144-5 doi: 10.1007/s00780-004-0144-5
    [5] Bowman AW, Azzalini A (1997) Applied smoothing techniques for data analysis. New York: Oxford University Press Inc.
    [6] Brouste A, Iacus SM (2013) Parameter estimation for the discretely observed fractional Ornstein–Uhlenbeck process and the Yuima R package. Comput Stat 28: 1529–1547. https://doi.org/10.1007/s00180-012-0365-6 doi: 10.1007/s00180-012-0365-6
    [7] Chen Z, Epstein L (2002) Ambiguity, risk, and asset returns in continuous time. Econometrica 70: 1403–1443. https://doi.org/10.1111/1468-0262.00337 doi: 10.1111/1468-0262.00337
    [8] Cheridito P, Kawaguchi H, Maejima M (2003) Fractional Ornstein–Uhlenbeck processes. Electron J Probab 8: 1–14. https://doi.org/10.1214/EJP.v8-125 doi: 10.1214/EJP.v8-125
    [9] Coquet F, Hu Y, Mémin J, et al. (2002) Filtration-consistent nonlinear expectations and related $g$-expectations. Probab Theory Relat Fields 123: 1–27. https://doi.org/10.1007/s004400100172 doi: 10.1007/s004400100172
    [10] Denis L, Hu M, Peng S (2011) Function spaces and capacity related to a sublinear expectation: application to $G$-Brownian motion paths. Potential Anal 34: 139–161. https://doi.org/10.1007/s11118-010-9185-x doi: 10.1007/s11118-010-9185-x
    [11] Denis L, Martini C (2006) A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Ann Appl Probab 16: 827–852. https://doi.org/10.1214/105051606000000169 doi: 10.1214/105051606000000169
    [12] Denk R, Kupper M, Nendel M (2020) A semigroup approach to nonlinear Lévy processes. Stochastic Process Appl 130: 1616–1642. https://doi.org/10.1016/j.spa.2019.05.009 doi: 10.1016/j.spa.2019.05.009
    [13] Elliott RJ, Hoek JV (2003) A general fractional white noise theory and applications to finance. Math Financ 13: 301–330. https://doi.org/10.1111/1467-9965.00018 doi: 10.1111/1467-9965.00018
    [14] Epstein LG, Ji S (2013) Ambiguous volatility and asset pricing in continuous time. Rev Financ Stud 26: 1740–1786. https://doi.org/10.1093/rfs/hht018 doi: 10.1093/rfs/hht018
    [15] Fadina T, Neufeld A, Schmidt T (2019) Affine processes under parameter uncertainty. Probab Uncertain Quant Risk 4: 1–34. https://doi.org/10.1186/s41546-019-0039-1 doi: 10.1186/s41546-019-0039-1
    [16] Fallahgoul HA, Focardi SM, Fabozzi FJ (2017) Fractional calculus and fractional processes with applications to financial economics. Theory and application. London: Elsevier.
    [17] Fama E (1965) The behavior of stock market prices. J Bus 38: 34–105. https://doi.org/10.1086/294743 doi: 10.1086/294743
    [18] Fu H, Liu H, Zheng X (2019) A preconditioned fast finite volume method for distributed-order diffusion equation and applications. East Asian J Appl Math 9: 28–44. https://doi.org/10.4208/eajam.160418.190518 doi: 10.4208/eajam.160418.190518
    [19] Gatheral J, Jaisson T, Rosenbaum M (2018) Volatility is rough. Quant Financ 18: 933–949. https://doi.org/10.1080/14697688.2017.1393551 doi: 10.1080/14697688.2017.1393551
    [20] Guo C, Fang S, He Y (2023a) A generalized stochastic process: fractional $G$-Brownian motion. Methodol Comput Appl Probab 25: 22. https://doi.org/10.1007/s11009-023-10010-9 doi: 10.1007/s11009-023-10010-9
    [21] Guo C, Fang S, He Y (2023b) Derivation and application of some fractional Black-Scholes equations driven by fractional $G$-Brownian motion. Comput Econ 61: 1681–1705. https://doi.org/10.1007/s10614-022-10263-5 doi: 10.1007/s10614-022-10263-5
    [22] Heston SL (1993) A closed-form solution for options with stochastic volatility with applications to band and currency options. Rev Financ Stud 6: 327–343. https://doi.org/10.1093/rfs/6.2.327 doi: 10.1093/rfs/6.2.327
    [23] Hu M, Peng S (2021) G-Lévy processes under sublinear expectations. Probab Uncertainty Quant Risk 6: 1–22. https://doi.org/10.3934/puqr.2021001 doi: 10.3934/puqr.2021001
    [24] Hu Y, Øksendal B (2003) Fractional white noise calculus and applications to finance. Infin Dimens Anal Quantum Probab Relat Top 6: 1–32. https://doi.org/10.1142/S0219025703001110 doi: 10.1142/S0219025703001110
    [25] Jacod J, Protter P (2004) Probability essentials. Berlin: Springer-Verlag.
    [26] Jin H, Peng S (2021) Optimal unbiased estimation for maximal distribution. Probab Uncertain Quant Risk 6: 189–198. https://doi.org/10.3934/puqr.2021009 doi: 10.3934/puqr.2021009
    [27] Klebaner FC (2012) Introduction to stochastic calculus with applications. London: Imperial College Press.
    [28] Kolmogorov AN (1940) Wienersche Spiralen und einige andere interessante Kurven im Hilbertschen Raum. C.R. (doklady) Acad Sci URSS (N.S.) 26: 115–118. https://api.semanticscholar.org/CorpusID:202489454
    [29] K$\overset{..}{\text{u}}$hn F (2019) Viscosity solutions to Hamilton-Jacobi-Bellman equations associated with sublinear Lévy(-type) processes. ALEA Lat Am J Probab Math Stat 16: 531–559. https://doi.org/10.30757/ALEA.v16-20 doi: 10.30757/ALEA.v16-20
    [30] Krak T, De Bock J, Siebes A (2017) Imprecise continuous-time Markov chains. Internat J Approx Reason 88: 452–528. https://doi.org/10.1016/j.ijar.2017.06.012 doi: 10.1016/j.ijar.2017.06.012
    [31] Lo AW (1991) Long-term memory in stock market prices. Econometrica 59: 1279–1313. https://doi.org/10.2307/2938368 doi: 10.2307/2938368
    [32] Lo AW, MacKinlay AC (1988) Stock market prices do not follow random walks: Evidence from a simple specification test. Rev Financ Stud 1: 41–66. https://doi.org/10.1093/rfs/1.1.41 doi: 10.1093/rfs/1.1.41
    [33] Lyons TJ (1995) Uncertain volatility and the risk-free synthesis of derivatives. Appl Math Financ 2: 117–133. https://doi.org/10.1080/13504869500000007 doi: 10.1080/13504869500000007
    [34] Madsen K, Nielsen HB, Tingleff O (2004) Methods for non-linear least squares problems, Informatics an Mathematical Modeling. Copenhagen: Technical University of Denmark.
    [35] Mandelbrot BB (1972) Statistical methodology for nonperiodic cycles: from the covariance to R/S analysis. Ann Econ Soc Meas 1: 259–290. http://www.nber.org/chapters/c9433
    [36] Mandelbrot BB, Van Ness JW (1968) Fractional Brownian motions, fractional noises and applications. SIAM Rev 10: 422–437. https://doi.org/10.1137/1010093 doi: 10.1137/1010093
    [37] Meerschaert MM, Sikorskii A (2012) Stochastic models for fractional calculus. Berlin: De Gruyter.
    [38] Muhle-Karbe J, Nutz M (2018) A risk-neutral equilibrium leading to uncertain volatility pricing. Financ Stoch 22: 281–295. https://doi.org/10.1007/s00780-018-0356-8 doi: 10.1007/s00780-018-0356-8
    [39] Neufeld A, Nutz M (2017) Nonlinear Lévy processes and their characteristics. Trans Amer Math Soc 369: 69–95. https://doi.org/10.1090/TRAN/6656 doi: 10.1090/TRAN/6656
    [40] Nolan JP (2020) Univariate stable distributions. Models for heavy tailed data. Cham: Springer-Verlag.
    [41] Peng S (2005) Nonlinear expectations and nonlinear Markov chains. Chin Ann Math 26B: 159–184. https://doi.org/10.1142/S0252959905000154 doi: 10.1142/S0252959905000154
    [42] Peng S (2007a) $G$-expectation, $G$-Brownian motion and related stochastic calculus of Itô's type, In: Benth FE, Di Nunno G, Lindstrøm T, et al. Stochastic Analysis and Applications. Berlin: Springer-Verlag, 541–567. https://doi.org/10.1007/978-3-540-70847-6_25
    [43] Peng S (2007b) $G$-Brownian motion and dynamic risk measure under volatility uncertainty. preprint, https://doi.org/10.48550/arXiv.0711.2834
    [44] Peng S (2008) Multi-dimensional $G$-Brownian motion and related stochastic calculus under $G$-expectation. Stochastic Process Appl 118: 2223–2253. https://doi.org/10.1016/j.spa.2007.10.015 doi: 10.1016/j.spa.2007.10.015
    [45] Peng S (2017) Theory, methods and meaning of nonlinear expectation theory. Sci Sin Math 47: 1223–1254. https://doi.org/10.1360/N012016-00209 doi: 10.1360/N012016-00209
    [46] Peng S (2019) Nonlinear expectations and stochastic calculus under uncertainty. Berlin: Springer-Verlag.
    [47] Peng S, Yang S, Yao J (2023) Improving Value-at-Risk prediction under model uncertainty. J Financ Econ 21: 228–259. https://doi.org/10.1093/jjfinec/nbaa022 doi: 10.1093/jjfinec/nbaa022
    [48] Peng S (2023) $G$-Gaussian processes under sublinear expectations and $q$-Brownian motion in quantum mechanics. Numerical Algebra, Control and Optimization 13: 583–603. https://doi.org/10.3934/naco.2022034 doi: 10.3934/naco.2022034
    [49] Privault N (2013) Stochastic finance. An introduction with market examples. Boca Raton: CRC Press.
    [50] Rogers LCG (1997) Arbitrage with fractional Brownian motion. Math Financ 7: 95–105. https://doi.org/10.1111/1467-9965.00025 doi: 10.1111/1467-9965.00025
    [51] Sottinen T (2001) Fractional Brownian motion, random walks and binary market models. Financ Stoch 5: 343–355. https://doi.org/10.1007/PL00013536 doi: 10.1007/PL00013536
    [52] Soumana-Hima A (2017) Stochastic differential equations under $G$-expectation and applications. Rennes: Université Rennes.
    [53] Sun W, Yuan Y (2005) Optimization theory and methods: nonlinear programming. New York: Springer-Verlag.
    [54] Vorbrink J (2014) Financial markets with volatility uncertainty. J Math Econ 53: 64–78. https://doi.org/10.1016/j.jmateco.2014.05.008 doi: 10.1016/j.jmateco.2014.05.008
    [55] Wang X, He X, Bao Y, et al. (2018) Parameter estimates of Heston stochastic volatility model with MLE and consistent EKF algorithm. Sci Sin 61: 042202. https://doi.org/10.1007/s11432-017-9215-8 doi: 10.1007/s11432-017-9215-8
    [56] Wiersema UF (2008) Brownian motion calculus. Chichester: John Wiley & Sons.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1859) PDF downloads(198) Cited by(2)

Article outline

Figures and Tables

Figures(12)  /  Tables(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog