Citation: Shunyi Li. Hopf bifurcation, stability switches and chaos in a prey-predator system with three stage structure and two time delays[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 6934-6961. doi: 10.3934/mbe.2019348
[1] | Longxing Qi, Shoujing Tian, Jing-an Cui, Tianping Wang . Multiple infection leads to backward bifurcation for a schistosomiasis model. Mathematical Biosciences and Engineering, 2019, 16(2): 701-712. doi: 10.3934/mbe.2019033 |
[2] | Yingke Li, Zhidong Teng, Shigui Ruan, Mingtao Li, Xiaomei Feng . A mathematical model for the seasonal transmission of schistosomiasis in the lake and marshland regions of China. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1279-1299. doi: 10.3934/mbe.2017066 |
[3] | Chunhua Shan, Hongjun Gao, Huaiping Zhu . Dynamics of a delay Schistosomiasis model in snail infections. Mathematical Biosciences and Engineering, 2011, 8(4): 1099-1115. doi: 10.3934/mbe.2011.8.1099 |
[4] | Conrad Ratchford, Jin Wang . Multi-scale modeling of cholera dynamics in a spatially heterogeneous environment. Mathematical Biosciences and Engineering, 2020, 17(2): 948-974. doi: 10.3934/mbe.2020051 |
[5] | Kazeem Oare Okosun, Robert Smith? . Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences and Engineering, 2017, 14(2): 377-405. doi: 10.3934/mbe.2017024 |
[6] | Wahyudin Nur, Trisilowati, Agus Suryanto, Wuryansari Muharini Kusumawinahyu . Schistosomiasis model with treatment, habitat modification and biological control. Mathematical Biosciences and Engineering, 2022, 19(12): 13799-13828. doi: 10.3934/mbe.2022643 |
[7] | Maghnia Hamou Maamar, Matthias Ehrhardt, Louiza Tabharit . A nonstandard finite difference scheme for a time-fractional model of Zika virus transmission. Mathematical Biosciences and Engineering, 2024, 21(1): 924-962. doi: 10.3934/mbe.2024039 |
[8] | Long-xing Qi, Yanwu Tang, Shou-jing Tian . Parameter estimation of modeling schistosomiasis transmission for four provinces in China. Mathematical Biosciences and Engineering, 2019, 16(2): 1005-1020. doi: 10.3934/mbe.2019047 |
[9] | Yuyi Xue, Yanni Xiao . Analysis of a multiscale HIV-1 model coupling within-host viral dynamics and between-host transmission dynamics. Mathematical Biosciences and Engineering, 2020, 17(6): 6720-6736. doi: 10.3934/mbe.2020350 |
[10] | Xinli Hu, Wenjie Qin, Marco Tosato . Complexity dynamics and simulations in a discrete switching ecosystem induced by an intermittent threshold control strategy. Mathematical Biosciences and Engineering, 2020, 17(3): 2164-2178. doi: 10.3934/mbe.2020115 |
[1] | W. Aiello and H. Freedman, A time-delay model of single-species growth with stage structure, Math. Biosci., 101 (1990), 139–153. |
[2] | W. Aiello, H. Freedman and J. Wu, Analysis of a model representing stage-structured populations growth with stage-dependent time delay, SIAM J. Appl. Math., 3 (1992), 855–869. |
[3] | W. Wang and L. Chen, A predator-prey system with stage-structure for predator, Comp. Math. Appl., 33 (1997), 83–91. |
[4] | S. Liu, L. Chen and R. Agarwal, Recent progress on stage-structured population dynamics, Math. Comput. Model., 36 (2002), 1319–1360. |
[5] | S. Gao, Models for single species with three life history stages and cannibalism, J. Biomath., 20 (2005), 385–391. |
[6] | S. Yang and B. Shi, Periodic solution for a three-stage-structured predator-prey system with time delay, J. Math. Anal. Appl., 341 (2008), 287–294. |
[7] | H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer Science+Business Media, LLC, 201l. |
[8] | E. Beretta and D. Breda, Discrete or distributed delay? Effects on stability of population growth, Math. Biosci. Eng., 13 (2016), 19–41. |
[9] | Z. Shen and J. Wei, Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect, Math. Biosci. Eng., 15 (2018), 693–715. |
[10] | S. Li and Z. Xiong, Bifurcation analysis of a predator-prey system with sex-structure and sexual favoritism, Adv. Differ. Equ., 219 (2013), 1–24. |
[11] | Z. Ma and S. Wang, A delay-induced predator Cprey model with Holling type functional response and habitat complexity, Nonl. Dyna., 93 (2018), 1519–1544. |
[12] | S. Kundu and S. Maitra Dynamical behaviour of a delayed three species predator Cprey model with cooperation among the prey species, Nonl. Dyna., 92 (2018), 627–643. |
[13] | L. Li and J. Shen, Bifurcations and Dynamics of a Predator CPrey Model with Double Allee Effects and Time Delays, Int. J. Bifurc. Chaos, 28 (2018), 1–14. (No. 1850135) |
[14] | T. Caraballo, R. Colucci and L. Guerrini, On a predator prey model with nonlinear harvesting and distributed delay, Comm. on Pure Appl. Anal., 17 (2018), 2703–2727. |
[15] | X. Xu, Y. Wang and Y. Wang, Local bifurcation of a Ronsenzwing-MacArthur predator prey model with two prey-taxis, Math. Biosci. Eng., 16 (2019), 1786-1797. |
[16] | S. Li, Y. Xue and W. Liu, Hopf bifurcation and global periodic solutions for a three-stage-structured prey-predator system with delays, Int. J. Info. Syst. Scie., 8 (2012), 142–156. |
[17] | S. Li and X. Xue, Hopf bifurcation in a three-stage-structured prey-predator system with predator density dependent, Comm. Comp. Info. Scie., 288 (2012), 740–747. |
[18] | S. Li and W. Liu, Global hopf bifurcation in a delayed three-stage-structured prey-predator system, Proceedings-5th Int. Conf. Info. Comp. Scie., (2012), 206–209. |
[19] | J. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Am. Math. Soc., 350 (1998), 4799–4838. |
[20] | Z. Wang, A very simple criterion for characterizing the crossing direction of time-delay systems with delay-dependent parameters, Int. J. Bifu. Chaos, 22 (2012), 1–7. |
[21] | J. Hale, Theory of Functional Differential Equations, Springer, New York, 1977. |
[22] | D. Breda, S. Maset and R. Vermiglio, TRACE-DDE: a tool for robust analysis and characteristic equations for delay differential equations, Lect. Notes Cont. Info. Scie., 388 (2009), 145–155. |
[23] | D. Breda, S. Maset and R. Vermiglio, Pseudospectral differencing methods for characteristic roots of delay differential equations, SIAM J. Sci. Comput., 27 (2005), 482–495. |
[24] | D. Breda, S. Maset and R. Vermiglio, An adaptive algorithm for efficient computation of level curves of surfaces, Numer. Algorithms, 52 (2009), 605–628. |
[25] | Y. Zhao, X. Yu and L. Wang, Bifurcation and control in an inertial two-neuron system with time delays, Int. J. Bifurc. Chaos, 22 (2012), 1–15. |
[26] | S. Li, W. Liu and X. Xue, Hopf bifurcation, chaos and impulsive control in a sex-structured prey-predator system with time delay, J. Biomath., 30 (2015), 443–452. |
1. | Chunxiao Ding, Yun Sun, Yuanguo Zhu, A schistosomiasis compartment model with incubation and its optimal control, 2017, 40, 01704214, 5079, 10.1002/mma.4372 | |
2. | Chunxiao Ding, Nana Tao, Yun Sun, Yuanguo Zhu, The effect of time delays on transmission dynamics of schistosomiasis, 2016, 91, 09600779, 360, 10.1016/j.chaos.2016.06.017 | |
3. | Chunxiao Ding, Wenjian Liu, Yun Sun, Yuanguo Zhu, A delayed Schistosomiasis transmission model and its dynamics, 2019, 118, 09600779, 18, 10.1016/j.chaos.2018.11.005 | |
4. | Tailei Zhang, Xiao-Qiang Zhao, Mathematical Modeling for Schistosomiasis with Seasonal Influence: A Case Study in Hubei, China, 2020, 19, 1536-0040, 1438, 10.1137/19M1280259 | |
5. | M. A. Aziz-Alaoui, Jean M.-S. Lubuma, Berge Tsanou, Prevalence-based modeling approach of schistosomiasis: global stability analysis and integrated control assessment, 2021, 40, 2238-3603, 10.1007/s40314-021-01414-9 | |
6. | François M. Castonguay, Susanne H. Sokolow, Giulio A. De Leo, James N. Sanchirico, Cost-effectiveness of combining drug and environmental treatments for environmentally transmitted diseases, 2020, 287, 0962-8452, 20200966, 10.1098/rspb.2020.0966 | |
7. | Chunxiao Ding, Yun Sun, Yuanguo Zhu, A NN-Based Hybrid Intelligent Algorithm for a Discrete Nonlinear Uncertain Optimal Control Problem, 2017, 45, 1370-4621, 457, 10.1007/s11063-016-9536-8 | |
8. | Xi-Chao Duan, I Hyo Jung, Xue-Zhi Li, Maia Martcheva, Dynamics and optimal control of an age-structured SIRVS epidemic model, 2020, 43, 01704214, 4239, 10.1002/mma.6190 | |
9. | Zhipeng Qiu, Xuerui Wei, Chunhua Shan, Huaiping Zhu, Monotone dynamics and global behaviors of a West Nile virus model with mosquito demographics, 2020, 80, 0303-6812, 809, 10.1007/s00285-019-01442-4 | |
10. | Tao Feng, Zhipeng Qiu, Yi Song, Global analysis of a vector-host epidemic model in stochastic environments, 2019, 356, 00160032, 2885, 10.1016/j.jfranklin.2019.01.033 | |
11. | Yujiang Liu, Shujing Gao, Zhenzhen Liao, Di Chen, Dynamical behavior of a stage-structured Huanglongbing model with time delays and optimal control, 2022, 156, 09600779, 111830, 10.1016/j.chaos.2022.111830 | |
12. | S. KADALEKA, S. ABELMAN, P. M. MWAMTOBE, J. M. TCHUENCHE, OPTIMAL CONTROL ANALYSIS OF A HUMAN–BOVINE SCHISTOSOMIASIS MODEL, 2021, 29, 0218-3390, 1, 10.1142/S0218339021500017 | |
13. | Linghui Yu, Zhipeng Qiu, Ting Guo, Modeling the effect of activation of CD4 T cells on HIV dynamics, 2022, 27, 1531-3492, 4491, 10.3934/dcdsb.2021238 | |
14. | Chinwendu E. Madubueze, Z. Chazuka, I. O. Onwubuya, F. Fatmawati, C. W. Chukwu, On the mathematical modeling of schistosomiasis transmission dynamics with heterogeneous intermediate host, 2022, 8, 2297-4687, 10.3389/fams.2022.1020161 | |
15. | Lei Shi, Longxing Qi, Dynamic analysis and optimal control of a class of SISP respiratory diseases, 2022, 16, 1751-3758, 64, 10.1080/17513758.2022.2027529 | |
16. | Wei Wang, Robert Bergquist, Charles H. King, Kun Yang, Joanne P. Webster, Elimination of schistosomiasis in China: Current status and future prospects, 2021, 15, 1935-2735, e0009578, 10.1371/journal.pntd.0009578 | |
17. | Liming Cai, Peixia Yue, Mini Ghosh, Xuezhi Li, Assessing the impact of agrochemicals on schistosomiasis transmission: A mathematical study, 2021, 14, 1793-5245, 10.1142/S1793524521500492 | |
18. | Solomon Kadaleka, Shirley Abelman, Jean M. Tchuenche, A Human-Bovine Schistosomiasis Mathematical Model with Treatment and Mollusciciding, 2021, 69, 0001-5342, 511, 10.1007/s10441-021-09416-0 | |
19. | Tailei Zhang, Xiao-Qiang Zhao, A multi-host schistosomiasis model with seasonality and time-dependent delays, 2023, 28, 1531-3492, 2927, 10.3934/dcdsb.2022198 | |
20. | Xinjie Hao, Lin Hu, Linfei Nie, Stability and Global Hopf Bifurcation Analysis of a Schistosomiasis Transmission Model with Multi-Delays, 2025, 35, 0218-1274, 10.1142/S0218127425500397 | |
21. | Lele Fan, Zhipeng Qiu, Qi Deng, Ting Guo, Libin Rong, Modeling SARS-CoV-2 Infection Dynamics: Insights into Viral Clearance and Immune Synergy, 2025, 87, 0092-8240, 10.1007/s11538-025-01442-0 | |
22. | Yan Zhao, Qi Deng, Zhipeng Qiu, Ting Guo, Shigui Ruan, Modeling the Interaction of Cytotoxic T-Lymphocytes and Oncolytic Viruses in a Tumor Microenvironment, 2025, 85, 0036-1399, 983, 10.1137/23M1613608 | |
23. | Chang-Yuan Cheng, Feng-Bin Wang, A nonlocal reaction-diffusion system modeling the Schistosomiasis transmission with multiple hosts and periodic delays, 2025, 91, 0303-6812, 10.1007/s00285-025-02238-5 |