Research article

Hopf bifurcation, stability switches and chaos in a prey-predator system with three stage structure and two time delays

  • Received: 10 March 2019 Accepted: 24 July 2019 Published: 30 July 2019
  • A three stage-structured prey-predator model with digestion delay and density dependent delay for the predator is investigated. The stability of the equilibrium point and the Hopf bifurcation of the system by choosing time delay as a bifurcation parameter in five cases are considered, and the conditions for the positive equilibrium occurring local Hopf bifurcation are given in each case. Numerical results show that delayed system considered has not only periodic oscillation, stability switches but also chaotic oscillation, even unbounded oscillation. Finally, delays induced Hopf bifurcation, stability switches, complicated dynamic behaviors of the system are discussed in detail.

    Citation: Shunyi Li. Hopf bifurcation, stability switches and chaos in a prey-predator system with three stage structure and two time delays[J]. Mathematical Biosciences and Engineering, 2019, 16(6): 6934-6961. doi: 10.3934/mbe.2019348

    Related Papers:

    [1] Longxing Qi, Shoujing Tian, Jing-an Cui, Tianping Wang . Multiple infection leads to backward bifurcation for a schistosomiasis model. Mathematical Biosciences and Engineering, 2019, 16(2): 701-712. doi: 10.3934/mbe.2019033
    [2] Yingke Li, Zhidong Teng, Shigui Ruan, Mingtao Li, Xiaomei Feng . A mathematical model for the seasonal transmission of schistosomiasis in the lake and marshland regions of China. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1279-1299. doi: 10.3934/mbe.2017066
    [3] Chunhua Shan, Hongjun Gao, Huaiping Zhu . Dynamics of a delay Schistosomiasis model in snail infections. Mathematical Biosciences and Engineering, 2011, 8(4): 1099-1115. doi: 10.3934/mbe.2011.8.1099
    [4] Conrad Ratchford, Jin Wang . Multi-scale modeling of cholera dynamics in a spatially heterogeneous environment. Mathematical Biosciences and Engineering, 2020, 17(2): 948-974. doi: 10.3934/mbe.2020051
    [5] Kazeem Oare Okosun, Robert Smith? . Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences and Engineering, 2017, 14(2): 377-405. doi: 10.3934/mbe.2017024
    [6] Wahyudin Nur, Trisilowati, Agus Suryanto, Wuryansari Muharini Kusumawinahyu . Schistosomiasis model with treatment, habitat modification and biological control. Mathematical Biosciences and Engineering, 2022, 19(12): 13799-13828. doi: 10.3934/mbe.2022643
    [7] Maghnia Hamou Maamar, Matthias Ehrhardt, Louiza Tabharit . A nonstandard finite difference scheme for a time-fractional model of Zika virus transmission. Mathematical Biosciences and Engineering, 2024, 21(1): 924-962. doi: 10.3934/mbe.2024039
    [8] Long-xing Qi, Yanwu Tang, Shou-jing Tian . Parameter estimation of modeling schistosomiasis transmission for four provinces in China. Mathematical Biosciences and Engineering, 2019, 16(2): 1005-1020. doi: 10.3934/mbe.2019047
    [9] Yuyi Xue, Yanni Xiao . Analysis of a multiscale HIV-1 model coupling within-host viral dynamics and between-host transmission dynamics. Mathematical Biosciences and Engineering, 2020, 17(6): 6720-6736. doi: 10.3934/mbe.2020350
    [10] Xinli Hu, Wenjie Qin, Marco Tosato . Complexity dynamics and simulations in a discrete switching ecosystem induced by an intermittent threshold control strategy. Mathematical Biosciences and Engineering, 2020, 17(3): 2164-2178. doi: 10.3934/mbe.2020115
  • A three stage-structured prey-predator model with digestion delay and density dependent delay for the predator is investigated. The stability of the equilibrium point and the Hopf bifurcation of the system by choosing time delay as a bifurcation parameter in five cases are considered, and the conditions for the positive equilibrium occurring local Hopf bifurcation are given in each case. Numerical results show that delayed system considered has not only periodic oscillation, stability switches but also chaotic oscillation, even unbounded oscillation. Finally, delays induced Hopf bifurcation, stability switches, complicated dynamic behaviors of the system are discussed in detail.




    [1] W. Aiello and H. Freedman, A time-delay model of single-species growth with stage structure, Math. Biosci., 101 (1990), 139–153.
    [2] W. Aiello, H. Freedman and J. Wu, Analysis of a model representing stage-structured populations growth with stage-dependent time delay, SIAM J. Appl. Math., 3 (1992), 855–869.
    [3] W. Wang and L. Chen, A predator-prey system with stage-structure for predator, Comp. Math. Appl., 33 (1997), 83–91.
    [4] S. Liu, L. Chen and R. Agarwal, Recent progress on stage-structured population dynamics, Math. Comput. Model., 36 (2002), 1319–1360.
    [5] S. Gao, Models for single species with three life history stages and cannibalism, J. Biomath., 20 (2005), 385–391.
    [6] S. Yang and B. Shi, Periodic solution for a three-stage-structured predator-prey system with time delay, J. Math. Anal. Appl., 341 (2008), 287–294.
    [7] H. Smith, An Introduction to Delay Differential Equations with Applications to the Life Sciences, Springer Science+Business Media, LLC, 201l.
    [8] E. Beretta and D. Breda, Discrete or distributed delay? Effects on stability of population growth, Math. Biosci. Eng., 13 (2016), 19–41.
    [9] Z. Shen and J. Wei, Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect, Math. Biosci. Eng., 15 (2018), 693–715.
    [10] S. Li and Z. Xiong, Bifurcation analysis of a predator-prey system with sex-structure and sexual favoritism, Adv. Differ. Equ., 219 (2013), 1–24.
    [11] Z. Ma and S. Wang, A delay-induced predator Cprey model with Holling type functional response and habitat complexity, Nonl. Dyna., 93 (2018), 1519–1544.
    [12] S. Kundu and S. Maitra Dynamical behaviour of a delayed three species predator Cprey model with cooperation among the prey species, Nonl. Dyna., 92 (2018), 627–643.
    [13] L. Li and J. Shen, Bifurcations and Dynamics of a Predator CPrey Model with Double Allee Effects and Time Delays, Int. J. Bifurc. Chaos, 28 (2018), 1–14. (No. 1850135)
    [14] T. Caraballo, R. Colucci and L. Guerrini, On a predator prey model with nonlinear harvesting and distributed delay, Comm. on Pure Appl. Anal., 17 (2018), 2703–2727.
    [15] X. Xu, Y. Wang and Y. Wang, Local bifurcation of a Ronsenzwing-MacArthur predator prey model with two prey-taxis, Math. Biosci. Eng., 16 (2019), 1786-1797.
    [16] S. Li, Y. Xue and W. Liu, Hopf bifurcation and global periodic solutions for a three-stage-structured prey-predator system with delays, Int. J. Info. Syst. Scie., 8 (2012), 142–156.
    [17] S. Li and X. Xue, Hopf bifurcation in a three-stage-structured prey-predator system with predator density dependent, Comm. Comp. Info. Scie., 288 (2012), 740–747.
    [18] S. Li and W. Liu, Global hopf bifurcation in a delayed three-stage-structured prey-predator system, Proceedings-5th Int. Conf. Info. Comp. Scie., (2012), 206–209.
    [19] J. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Am. Math. Soc., 350 (1998), 4799–4838.
    [20] Z. Wang, A very simple criterion for characterizing the crossing direction of time-delay systems with delay-dependent parameters, Int. J. Bifu. Chaos, 22 (2012), 1–7.
    [21] J. Hale, Theory of Functional Differential Equations, Springer, New York, 1977.
    [22] D. Breda, S. Maset and R. Vermiglio, TRACE-DDE: a tool for robust analysis and characteristic equations for delay differential equations, Lect. Notes Cont. Info. Scie., 388 (2009), 145–155.
    [23] D. Breda, S. Maset and R. Vermiglio, Pseudospectral differencing methods for characteristic roots of delay differential equations, SIAM J. Sci. Comput., 27 (2005), 482–495.
    [24] D. Breda, S. Maset and R. Vermiglio, An adaptive algorithm for efficient computation of level curves of surfaces, Numer. Algorithms, 52 (2009), 605–628.
    [25] Y. Zhao, X. Yu and L. Wang, Bifurcation and control in an inertial two-neuron system with time delays, Int. J. Bifurc. Chaos, 22 (2012), 1–15.
    [26] S. Li, W. Liu and X. Xue, Hopf bifurcation, chaos and impulsive control in a sex-structured prey-predator system with time delay, J. Biomath., 30 (2015), 443–452.
  • This article has been cited by:

    1. Chunxiao Ding, Yun Sun, Yuanguo Zhu, A schistosomiasis compartment model with incubation and its optimal control, 2017, 40, 01704214, 5079, 10.1002/mma.4372
    2. Chunxiao Ding, Nana Tao, Yun Sun, Yuanguo Zhu, The effect of time delays on transmission dynamics of schistosomiasis, 2016, 91, 09600779, 360, 10.1016/j.chaos.2016.06.017
    3. Chunxiao Ding, Wenjian Liu, Yun Sun, Yuanguo Zhu, A delayed Schistosomiasis transmission model and its dynamics, 2019, 118, 09600779, 18, 10.1016/j.chaos.2018.11.005
    4. Tailei Zhang, Xiao-Qiang Zhao, Mathematical Modeling for Schistosomiasis with Seasonal Influence: A Case Study in Hubei, China, 2020, 19, 1536-0040, 1438, 10.1137/19M1280259
    5. M. A. Aziz-Alaoui, Jean M.-S. Lubuma, Berge Tsanou, Prevalence-based modeling approach of schistosomiasis: global stability analysis and integrated control assessment, 2021, 40, 2238-3603, 10.1007/s40314-021-01414-9
    6. François M. Castonguay, Susanne H. Sokolow, Giulio A. De Leo, James N. Sanchirico, Cost-effectiveness of combining drug and environmental treatments for environmentally transmitted diseases, 2020, 287, 0962-8452, 20200966, 10.1098/rspb.2020.0966
    7. Chunxiao Ding, Yun Sun, Yuanguo Zhu, A NN-Based Hybrid Intelligent Algorithm for a Discrete Nonlinear Uncertain Optimal Control Problem, 2017, 45, 1370-4621, 457, 10.1007/s11063-016-9536-8
    8. Xi-Chao Duan, I Hyo Jung, Xue-Zhi Li, Maia Martcheva, Dynamics and optimal control of an age-structured SIRVS epidemic model, 2020, 43, 01704214, 4239, 10.1002/mma.6190
    9. Zhipeng Qiu, Xuerui Wei, Chunhua Shan, Huaiping Zhu, Monotone dynamics and global behaviors of a West Nile virus model with mosquito demographics, 2020, 80, 0303-6812, 809, 10.1007/s00285-019-01442-4
    10. Tao Feng, Zhipeng Qiu, Yi Song, Global analysis of a vector-host epidemic model in stochastic environments, 2019, 356, 00160032, 2885, 10.1016/j.jfranklin.2019.01.033
    11. Yujiang Liu, Shujing Gao, Zhenzhen Liao, Di Chen, Dynamical behavior of a stage-structured Huanglongbing model with time delays and optimal control, 2022, 156, 09600779, 111830, 10.1016/j.chaos.2022.111830
    12. S. KADALEKA, S. ABELMAN, P. M. MWAMTOBE, J. M. TCHUENCHE, OPTIMAL CONTROL ANALYSIS OF A HUMAN–BOVINE SCHISTOSOMIASIS MODEL, 2021, 29, 0218-3390, 1, 10.1142/S0218339021500017
    13. Linghui Yu, Zhipeng Qiu, Ting Guo, Modeling the effect of activation of CD4+ T cells on HIV dynamics, 2022, 27, 1531-3492, 4491, 10.3934/dcdsb.2021238
    14. Chinwendu E. Madubueze, Z. Chazuka, I. O. Onwubuya, F. Fatmawati, C. W. Chukwu, On the mathematical modeling of schistosomiasis transmission dynamics with heterogeneous intermediate host, 2022, 8, 2297-4687, 10.3389/fams.2022.1020161
    15. Lei Shi, Longxing Qi, Dynamic analysis and optimal control of a class of SISP respiratory diseases, 2022, 16, 1751-3758, 64, 10.1080/17513758.2022.2027529
    16. Wei Wang, Robert Bergquist, Charles H. King, Kun Yang, Joanne P. Webster, Elimination of schistosomiasis in China: Current status and future prospects, 2021, 15, 1935-2735, e0009578, 10.1371/journal.pntd.0009578
    17. Liming Cai, Peixia Yue, Mini Ghosh, Xuezhi Li, Assessing the impact of agrochemicals on schistosomiasis transmission: A mathematical study, 2021, 14, 1793-5245, 10.1142/S1793524521500492
    18. Solomon Kadaleka, Shirley Abelman, Jean M. Tchuenche, A Human-Bovine Schistosomiasis Mathematical Model with Treatment and Mollusciciding, 2021, 69, 0001-5342, 511, 10.1007/s10441-021-09416-0
    19. Tailei Zhang, Xiao-Qiang Zhao, A multi-host schistosomiasis model with seasonality and time-dependent delays, 2023, 28, 1531-3492, 2927, 10.3934/dcdsb.2022198
    20. Xinjie Hao, Lin Hu, Linfei Nie, Stability and Global Hopf Bifurcation Analysis of a Schistosomiasis Transmission Model with Multi-Delays, 2025, 35, 0218-1274, 10.1142/S0218127425500397
    21. Lele Fan, Zhipeng Qiu, Qi Deng, Ting Guo, Libin Rong, Modeling SARS-CoV-2 Infection Dynamics: Insights into Viral Clearance and Immune Synergy, 2025, 87, 0092-8240, 10.1007/s11538-025-01442-0
    22. Yan Zhao, Qi Deng, Zhipeng Qiu, Ting Guo, Shigui Ruan, Modeling the Interaction of Cytotoxic T-Lymphocytes and Oncolytic Viruses in a Tumor Microenvironment, 2025, 85, 0036-1399, 983, 10.1137/23M1613608
    23. Chang-Yuan Cheng, Feng-Bin Wang, A nonlocal reaction-diffusion system modeling the Schistosomiasis transmission with multiple hosts and periodic delays, 2025, 91, 0303-6812, 10.1007/s00285-025-02238-5
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4985) PDF downloads(499) Cited by(8)

Article outline

Figures and Tables

Figures(19)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog