Research article Special Issues

Ramp secret image sharing

  • Received: 09 January 2019 Accepted: 25 April 2019 Published: 20 May 2019
  • Secret image sharing (SIS) belongs to but differs from secret sharing. In general, conventional (k, n) threshold SIS has the shortcoming of pall-or-nothingq. In this article, first we introduce ramp SIS definition. Then we propose a (k1,k2,n) ramp SIS based on the Chinese remainder theorem (CRT). In the proposed scheme, on the one hand, when we collect any k1 or more and less than k2 shadows, the secret image will be disclosed in a progressive way. On the other hand, when we collect any k2 or more shadows, the secret image will be disclosed losslessly. Furthermore, the disclosing method is only modular arithmetic, which can be used in some real-time applications. We give theoretical analyses and experiments to show the effectiveness of the proposed scheme.

    Citation: Xuehu Yan, Longlong Li, Lintao Liu, Yuliang Lu, Xianhua Song. Ramp secret image sharing[J]. Mathematical Biosciences and Engineering, 2019, 16(5): 4433-4455. doi: 10.3934/mbe.2019221

    Related Papers:

    [1] Longxing Qi, Shoujing Tian, Jing-an Cui, Tianping Wang . Multiple infection leads to backward bifurcation for a schistosomiasis model. Mathematical Biosciences and Engineering, 2019, 16(2): 701-712. doi: 10.3934/mbe.2019033
    [2] Yingke Li, Zhidong Teng, Shigui Ruan, Mingtao Li, Xiaomei Feng . A mathematical model for the seasonal transmission of schistosomiasis in the lake and marshland regions of China. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1279-1299. doi: 10.3934/mbe.2017066
    [3] Chunhua Shan, Hongjun Gao, Huaiping Zhu . Dynamics of a delay Schistosomiasis model in snail infections. Mathematical Biosciences and Engineering, 2011, 8(4): 1099-1115. doi: 10.3934/mbe.2011.8.1099
    [4] Conrad Ratchford, Jin Wang . Multi-scale modeling of cholera dynamics in a spatially heterogeneous environment. Mathematical Biosciences and Engineering, 2020, 17(2): 948-974. doi: 10.3934/mbe.2020051
    [5] Kazeem Oare Okosun, Robert Smith? . Optimal control analysis of malaria-schistosomiasis co-infection dynamics. Mathematical Biosciences and Engineering, 2017, 14(2): 377-405. doi: 10.3934/mbe.2017024
    [6] Wahyudin Nur, Trisilowati, Agus Suryanto, Wuryansari Muharini Kusumawinahyu . Schistosomiasis model with treatment, habitat modification and biological control. Mathematical Biosciences and Engineering, 2022, 19(12): 13799-13828. doi: 10.3934/mbe.2022643
    [7] Maghnia Hamou Maamar, Matthias Ehrhardt, Louiza Tabharit . A nonstandard finite difference scheme for a time-fractional model of Zika virus transmission. Mathematical Biosciences and Engineering, 2024, 21(1): 924-962. doi: 10.3934/mbe.2024039
    [8] Long-xing Qi, Yanwu Tang, Shou-jing Tian . Parameter estimation of modeling schistosomiasis transmission for four provinces in China. Mathematical Biosciences and Engineering, 2019, 16(2): 1005-1020. doi: 10.3934/mbe.2019047
    [9] Yuyi Xue, Yanni Xiao . Analysis of a multiscale HIV-1 model coupling within-host viral dynamics and between-host transmission dynamics. Mathematical Biosciences and Engineering, 2020, 17(6): 6720-6736. doi: 10.3934/mbe.2020350
    [10] Xinli Hu, Wenjie Qin, Marco Tosato . Complexity dynamics and simulations in a discrete switching ecosystem induced by an intermittent threshold control strategy. Mathematical Biosciences and Engineering, 2020, 17(3): 2164-2178. doi: 10.3934/mbe.2020115
  • Secret image sharing (SIS) belongs to but differs from secret sharing. In general, conventional (k, n) threshold SIS has the shortcoming of pall-or-nothingq. In this article, first we introduce ramp SIS definition. Then we propose a (k1,k2,n) ramp SIS based on the Chinese remainder theorem (CRT). In the proposed scheme, on the one hand, when we collect any k1 or more and less than k2 shadows, the secret image will be disclosed in a progressive way. On the other hand, when we collect any k2 or more shadows, the secret image will be disclosed losslessly. Furthermore, the disclosing method is only modular arithmetic, which can be used in some real-time applications. We give theoretical analyses and experiments to show the effectiveness of the proposed scheme.




    [1] Z. Qian, H. Xu, X. Luo, et al., New framework of reversible data hiding in encrypted jpeg bitstreams, IEEE Trans. Circuit Syst. Video Tech., 29 (2019), 351–362.
    [2] Y. Zhang, C. Qin, W. Zhang, et al., On the fault-tolerant performance for a class of robust image steganography, Signal Process., 146 (2018), 99–111,
    [3] A. Belazi and A. A. A. El-Latif, A simple yet efficient s-box method based on chaotic sine map, Optik-Int. J. Light Electron Opt., 130 (2017), 1438–1444.
    [4] Y. Cheng, Z. Fu and B. Yu, Improved visual secret sharing scheme for qr code applications, IEEE Trans. Inf. Forensics Security., 13 (2018), 2393–2403.
    [5] C. Kim, D. Shin, L. Leng, et al., Separable reversible data hiding in encrypted halftone image, Displays, 55 (2018), 71–79.
    [6] Y. Ma, X. Luo, X. Li, et al., Selection of rich model steganalysis features based on decision rough set α -positive region reduction, IEEE Trans. Circuit Syst. Video Tech., 29 (2019), 336–350.
    [7] G. Wang, F. Liu and W. Q. Yan, Basic visual cryptography using braille, Int. J. Digital Crime Forensics (IJDCF), 8 (2016), 85–93.
    [8] X. Yan, S. Wang, X. Niu, et al., Generalized random grids-based threshold visual cryptography with meaningful shares, Signal Process., 109 (2015), 317–333.
    [9] A. Shamir, How to share a secret, Commun. ACM, 22 (1979), 612–613.
    [10] M. Naor and A. Shamir, Visual cryptography, in Advances in Cryptology-EUROCRYPT'94 Lecture Notes in Computer Science, Workshop on the Theory and Application of Cryptographic Techniques, (A DeSantis), Springer, 1995, 1–12.
    [11] L. Liu, Y. Lu, X. Yan, et al., A progressive threshold secret image sharing with meaningful shares for gray-scale image, in Mobile Ad-Hoc and Sensor Networks (MSN), 2016 12th International Conference on, IEEE, 2016, 380–385.
    [12] W. Ding, K. Liu, X. Yan, et al., Polynomial-based secret image sharing scheme with fully lossless recovery, Int. J. Digital Crime Forensics (IJDCF), 10 (2018), 120–136.
    [13] L. Bao, S. Yi and Y. Zhou, Combination of sharing matrix and image encryption for lossless (k,n) -secret image sharing, IEEE Trans. Image Process., 26 (2017), 5618–5631.
    [14] W. Ding, K. Liu, X. Yan, et al., A general (k,n) threshold secret image sharing construction based on matrix theory, Data Science: Third International Conference of Pioneering Computer Scientists, Engineers and Educators, ICPCSEE 2017, Proceedings, Part I, (2017), 331–340.
    [15] P. Li, Z. Liu and C. N. Yang, A construction method of (t,k,n)-essential secret image sharing scheme, Signal Process. Image Commun., 65 (2018), 210–220.
    [16] Y. Liu and C. Yang, Scalable secret image sharing scheme with essential shadows, Signal Process. Image Commun., 58 (2017), 49–55.
    [17] Y. Liu, C. Yang, Y. Wang, et al., Cheating identifiable secret sharing scheme using symmetric bivariate polynomial, Inf. Sci., 453 (2018), 21–29.
    [18] X. Wu, C. N. Yang, Y. T. Zhuang, et al., Improving recovered image quality in secret image sharing by simple modular arithmetic, Signal Process. Image Commun., 66 (2018), 42–49.
    [19] H. Chao and T. Fan, Generating random grid-based visual secret sharing with multi-level encoding, Signal Process. Image Commun., 57 (2017), 60–67.
    [20] T. Guo and L. Zhou, Constructing visual cryptography scheme by hypergraph decomposition, Procedia Comput. Sci., 131 (2018), 336–343,
    [21] Y. Ren, F. Liu, T. Guo, et al., Cheating prevention visual cryptography scheme using latin square, IET Inf. Secur., 11 (2017), 211–219.
    [22] M. Sasaki and Y. Watanabe, Visual secret sharing schemes encrypting multiple images, IEEE Trans. Inf. Forensics Security, 13 (2018), 356–365.
    [23] Z. Wang, G. R. Arce and G. Di Crescenzo, Halftone visual cryptography via error diffusion, IEEE Trans. Inf. Forensics Security, 4 (2009), 383–396.
    [24] J. Weir and W. Yan, A comprehensive study of visual cryptography, in Transactions on DHMS V, LNCS 6010, Springer-Verlag, Springer, Berlin, Heidelberg, 2010, 70–105.
    [25] Z. X. Fu and B. Yu, Visual cryptography and random grids schemes, in Digital-Forensics and Watermarking, Springer, Auckland, New Zealand, 2014, 109–122.
    [26] F. Liu and C. Wu, Embedded extended visual cryptography schemes, IEEE Trans. Inf. Forensics Security, 6 (2011), 307–322.
    [27] X. Wu and W. Sun, Visual secret sharing for general access structures by random grids, IET Inf. Secur., 6 (2012), 299–309.
    [28] X. Yan, X. Liu and C. N. Yang, An enhanced threshold visual secret sharing based on random grids, J. Real-Time Image Proc., 14 (2018), 61–73.
    [29] X. Yan and Y. Lu, Progressive visual secret sharing for general access structure with multiple decryptions, Multimed. Tools Appl., 77 (2018), 2653–2672.
    [30] X. Yan, Y. Lu and L. Liu, General meaningful shadow construction in secret image sharing, IEEE Access, 6 (2018), 45246–45255.
    [31] X. Yan, S. Wang and X. Niu, Threshold construction from specific cases in visual cryptography without the pixel expansion, Signal Process., 105 (2014), 389–398.
    [32] C. N. Yang, C. C. Wu, et al., A discussion on the relationship between probabilistic visual cryptography and random grid, Inf. Sci., 278 (2014), 141–173.
    [33] Y. C. Hou, Z. Y. Quan, C. F. Tsai, et al., Block-based progressive visual secret sharing, Inf. Sci., 233 (2013), 290–304.
    [34] X. Yan and Y. Lu, Generalized general access structure in secret image sharing, J. Vis. Commun. Image Represent., 58 (2019), 89–101,
    [35] S. K. Chen, Friendly progressive visual secret sharing using generalized random grids, Optical Engineer., 48 (2009), 117001–117001–7.
    [36] W. P. Fang, Friendly progressive visual secret sharing, Pattern Recognit., 41 (2008), 1410–1414.
    [37] C. P. Huang, C. H. Hsieh and P. S. Huang, Progressive sharing for a secret image, J. Syst. Softw., 83 (2010), 517–527.
    [38] C.H.Lin, Y.S.Leeand T.H.Chen, Friendly progressive random-grid-basedvisualsecretsharing with adaptive contrast, J. Vis. Commun. Image Represent., 33 (2015), 31–41,
    [39] G. R. Blakley and C. Meadows, Security of ramp schemes, Proc. Crypto, 196 (1984), 242–268.
    [40] Q. Chen, D. Pei, C. Tang, et al., A note on ramp secret sharing schemes from error-correcting codes, Math. Com. Model., 57 (2013), 2695–2702.
    [41] X. Gong, P. Hu, K. W. Shum, et al., A zigzag-decodable ramp secret sharing scheme, IEEETrans. Inf. Forensics Security., 13 (2018), 1906–1916.
    [42] X. Jia, D. Wang, D. Nie, et al., A new threshold changeable secret sharing scheme based on thechinese remainder theorem, Inf. Sci., 473 (2019), 13–30,
    [43] X. Yan, Y. Lu, L. Liu, et al., Chinese remainder theorem-based secret image sharing for (k, n)threshold, Cloud Computing and Security: Third International Conference, ICCCS 2017,RevisedSelected Papers, Part II, (2017), 433–440,
    [44] C. Asmuth and J. Bloom, A modular approach to key safeguarding, IEEE Trans. Inf. Theory, 29(1983), 208–210.
    [45] X. Yan, Y. Lu and L. Liu, A general progressive secret image sharing construction method, SignalProcess., Image Commun., 71 (2019), 66–75,
    [46] C. Asmuth and J. Bloom, A modular approach to key safeguarding, IEEE Trans. Inf. Theory, 30(1983), 208–210.
    [47] Z. Wang, A. C. Bovik, H. R. Sheikh, et al., Image quality assessment: from error visibility tostructural similarity, IEEE Trans. Image Process., 13 (2004), 600–612.
    [48] Z. Wang and A. C. Bovik, A universal image quality index, IEEE Signal Process. Lett., 9 (2002),81–84.
    [49] X. Yan, Y. Lu, H. Huang, et al., Clarity corresponding to contrast in visual cryptography, Social Computing: Second International Conference of Young Computer Scientists, Engineersand Educators, ICYCSEE 2016, Proceedings, Part I, (2016), 249–257.
    [50] J. Huang, C. Wang and Y. Wang, A snr method of evaluating image quality based on the hvsmodel, J. HEBEI Uni. Sci. Tech., 23 (2002), 80–85.
    [51] X. Yan, Y. Lu, L. Liu, et al., Random grids-based threshold visual secret sharing with improved visual quality, Digital Forensics and Watermarking: 15th International Workshop, IWDW 2016, Revised Selected Papers, (2016), 209–222.
    [52] X. Zhou, Y. Lu, X. Yan, et al., Lossless and efficient polynomial-based secret image sharing with reduced shadow size, Symmetry, 10 (2018), 249.
    [53] R. Z. Wang and C. H. Su, Secret image sharing with smaller shadow images, Pattern Recognit. Lett., 27 (2006), 551–555.
  • This article has been cited by:

    1. Chunxiao Ding, Yun Sun, Yuanguo Zhu, A schistosomiasis compartment model with incubation and its optimal control, 2017, 40, 01704214, 5079, 10.1002/mma.4372
    2. Chunxiao Ding, Nana Tao, Yun Sun, Yuanguo Zhu, The effect of time delays on transmission dynamics of schistosomiasis, 2016, 91, 09600779, 360, 10.1016/j.chaos.2016.06.017
    3. Chunxiao Ding, Wenjian Liu, Yun Sun, Yuanguo Zhu, A delayed Schistosomiasis transmission model and its dynamics, 2019, 118, 09600779, 18, 10.1016/j.chaos.2018.11.005
    4. Tailei Zhang, Xiao-Qiang Zhao, Mathematical Modeling for Schistosomiasis with Seasonal Influence: A Case Study in Hubei, China, 2020, 19, 1536-0040, 1438, 10.1137/19M1280259
    5. M. A. Aziz-Alaoui, Jean M.-S. Lubuma, Berge Tsanou, Prevalence-based modeling approach of schistosomiasis: global stability analysis and integrated control assessment, 2021, 40, 2238-3603, 10.1007/s40314-021-01414-9
    6. François M. Castonguay, Susanne H. Sokolow, Giulio A. De Leo, James N. Sanchirico, Cost-effectiveness of combining drug and environmental treatments for environmentally transmitted diseases, 2020, 287, 0962-8452, 20200966, 10.1098/rspb.2020.0966
    7. Chunxiao Ding, Yun Sun, Yuanguo Zhu, A NN-Based Hybrid Intelligent Algorithm for a Discrete Nonlinear Uncertain Optimal Control Problem, 2017, 45, 1370-4621, 457, 10.1007/s11063-016-9536-8
    8. Xi-Chao Duan, I Hyo Jung, Xue-Zhi Li, Maia Martcheva, Dynamics and optimal control of an age-structured SIRVS epidemic model, 2020, 43, 01704214, 4239, 10.1002/mma.6190
    9. Zhipeng Qiu, Xuerui Wei, Chunhua Shan, Huaiping Zhu, Monotone dynamics and global behaviors of a West Nile virus model with mosquito demographics, 2020, 80, 0303-6812, 809, 10.1007/s00285-019-01442-4
    10. Tao Feng, Zhipeng Qiu, Yi Song, Global analysis of a vector-host epidemic model in stochastic environments, 2019, 356, 00160032, 2885, 10.1016/j.jfranklin.2019.01.033
    11. Yujiang Liu, Shujing Gao, Zhenzhen Liao, Di Chen, Dynamical behavior of a stage-structured Huanglongbing model with time delays and optimal control, 2022, 156, 09600779, 111830, 10.1016/j.chaos.2022.111830
    12. S. KADALEKA, S. ABELMAN, P. M. MWAMTOBE, J. M. TCHUENCHE, OPTIMAL CONTROL ANALYSIS OF A HUMAN–BOVINE SCHISTOSOMIASIS MODEL, 2021, 29, 0218-3390, 1, 10.1142/S0218339021500017
    13. Linghui Yu, Zhipeng Qiu, Ting Guo, Modeling the effect of activation of CD4+ T cells on HIV dynamics, 2022, 27, 1531-3492, 4491, 10.3934/dcdsb.2021238
    14. Chinwendu E. Madubueze, Z. Chazuka, I. O. Onwubuya, F. Fatmawati, C. W. Chukwu, On the mathematical modeling of schistosomiasis transmission dynamics with heterogeneous intermediate host, 2022, 8, 2297-4687, 10.3389/fams.2022.1020161
    15. Lei Shi, Longxing Qi, Dynamic analysis and optimal control of a class of SISP respiratory diseases, 2022, 16, 1751-3758, 64, 10.1080/17513758.2022.2027529
    16. Wei Wang, Robert Bergquist, Charles H. King, Kun Yang, Joanne P. Webster, Elimination of schistosomiasis in China: Current status and future prospects, 2021, 15, 1935-2735, e0009578, 10.1371/journal.pntd.0009578
    17. Liming Cai, Peixia Yue, Mini Ghosh, Xuezhi Li, Assessing the impact of agrochemicals on schistosomiasis transmission: A mathematical study, 2021, 14, 1793-5245, 10.1142/S1793524521500492
    18. Solomon Kadaleka, Shirley Abelman, Jean M. Tchuenche, A Human-Bovine Schistosomiasis Mathematical Model with Treatment and Mollusciciding, 2021, 69, 0001-5342, 511, 10.1007/s10441-021-09416-0
    19. Tailei Zhang, Xiao-Qiang Zhao, A multi-host schistosomiasis model with seasonality and time-dependent delays, 2023, 28, 1531-3492, 2927, 10.3934/dcdsb.2022198
    20. Xinjie Hao, Lin Hu, Linfei Nie, Stability and Global Hopf Bifurcation Analysis of a Schistosomiasis Transmission Model with Multi-Delays, 2025, 35, 0218-1274, 10.1142/S0218127425500397
    21. Lele Fan, Zhipeng Qiu, Qi Deng, Ting Guo, Libin Rong, Modeling SARS-CoV-2 Infection Dynamics: Insights into Viral Clearance and Immune Synergy, 2025, 87, 0092-8240, 10.1007/s11538-025-01442-0
    22. Yan Zhao, Qi Deng, Zhipeng Qiu, Ting Guo, Shigui Ruan, Modeling the Interaction of Cytotoxic T-Lymphocytes and Oncolytic Viruses in a Tumor Microenvironment, 2025, 85, 0036-1399, 983, 10.1137/23M1613608
    23. Chang-Yuan Cheng, Feng-Bin Wang, A nonlocal reaction-diffusion system modeling the Schistosomiasis transmission with multiple hosts and periodic delays, 2025, 91, 0303-6812, 10.1007/s00285-025-02238-5
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4761) PDF downloads(504) Cited by(1)

Article outline

Figures and Tables

Figures(7)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog