
Mathematical Biosciences and Engineering, 2019, 16(4): 29732989. doi: 10.3934/mbe.2019147
Research article Special Issues
Export file:
Format
 RIS(for EndNote,Reference Manager,ProCite)
 BibTex
 Text
Content
 Citation Only
 Citation and Abstract
Bifurcation analysis of a pairwise epidemic model on adaptive networks
1 School of Applied Mathematics, Shanxi University of Finance and Economics, Taiyuan 030006, Shanxi, China
2 School of Mathematical Sciences, Shanxi University, Taiyuan 030006, Shanxi, China
3 Complex Systems Research Center, Shanxi University, Taiyuan 030006, Shanxi, China
Received: , Accepted: , Published:
Special Issues: Transmission dynamics in infectious diseases
References
1. F. Brauer and C. CastilloChavez, Mathematical models in population biology and epidemiology, New York: Springer, 2001.
2. R. PastorSatorras and A. Vespignani, Epidemic dynamics and endemic states in complex networks, Physic. Rev. E, 63 (2001), 649–667.
3. R. PastorSatorras and A. Vespignani, Epidemic dynamics in finite size scalefree networks, Physic. Rev. E, 65 (2002), 035108.
4. M. Boguñá and R. PastorSatorras, Epidemic spreading in correlated complex networks, Physic. Rev. E, 66 (2002), 047104.
5. P. V. Mieghem, J. Omic and R. Kooij, Virus spread in networks, IEEE ACM T. Network, 17 (2009), 1–14.
6. L. X. Yang, M. Draief and X. F. Yang, Heterogeneous virus propagation in networks: a theoretical study, Math. Method Appl. Sci , 40 (2017), 1396–1413.
7. L. X. Yang, X. F. Yang and Y. Wu, The impact of patch forwarding on the prevalence of computer virus: A theoretical assessment approach, Appl. Math. Model, 43 (2017), 110–125.
8. L. X. Yang, X. F. Yang and Y. Y. Tang, A BiVirus Competing Spreading Model with Generic Infection Rates, IEEE Transact. Netw. Sci. Eng., 5 (2018), 2–13.
9. X. Zhang, G. Q. Sun, Y. X. Zhu, et al., Epidemic dynamics on semidirected complex networks, Math. Biosci., 246 (2013), 242–251.
10. J. Y. Yang, Y. M. Chen and F. Xu, Efect of infection age on an SIS epidemic model on complex networks, J. Math. Biol., 73 (2016), 1227–1249.
11. X. L. Peng, Z. Q. Zhang, J. Y. Yang, et al., An SIS epidemic model with vaccination in a dynamical contact network of mobile individuals with heterogeneous spatial constraints, Commun. Nonlinear Sci., 73 (2019), 52–73.
12. G. Q. Sun, C. H. Wang, L. L. Chang, et al., Efects of feedback regulation on vegetation patterns in semiarid environments, Appl. Math. Model., 61 (2018), 200–215.
13. G. Q. Sun, M. Jusup, Z. Jin, et al., Pattern transitions in spatial epidemics: Mechanisms and emergent properties, Phys. Life Rev., 19 (2016), 43–73.
14. M. J. Keeling, D. A. Rand and A. J. Morris, Correlation models for childhood epidemics, P. Roy. Soc. BBiol. Sci., 264 (1385), 1149–1156.
15. M. J. Keeling, The efects of local spatial structure on epidemiological invasions, Proc. R. Soc. Lond. B., 266 (1999), 859–867.
16. K. T. D. Eames and M. J. Keeling, Monogamous networks and the spread of sexually transmitted diseases, Math. Biosci., 189 (2004), 115–130.
17. Y.Wang, J. D. Cao, A. Alsaedi, et al., Edgebased SEIR dynamics with or without infectious force in latent period on random networks, Commun. Nonlinear Sci., 45 (2017), 35–54.
18. Y. Wang, J. D. Cao, X. D. Li, et al., Edgebased epidemic dynamics with multiple routes of transmission on random networks, Nonlinear Dynam., 91 (2018), 403–420.
19. Y.Wang, J. D. Cao and M. Q. Li, et al., Global behavior of a twostage contact process on complex networks, J. Franklin I., In Press.
20. J. Y. Yang and F. Xu, The coumputational approach for the basic reproduction number of epidemic models on complex networks, IEEE Access, 2019, 10.1109/ACESS2019.2898639.
21. L. Li, C. H. Wang, S. F. Wang, et al., Hemorrhagic fever with renal syndrome in China: Mechanisms on two distinct annual peaks and control measures, Int. J. Biomath., 11 (2018), 1850030.
22. L. Li, J. Zhang, C. Liu, et al., Analysis of transmission dynamics for Zika virus on networks, Appl. Math. Comput., 347 (2019), 566–577.
23. D. J.Watts and S. H. Strogatz, Collective dynamics of 'smallworld' networks, Nature, 393 (1998), 440–442.
24. A. L. Barabási and R. Albert, Emergence of scaling in random networks, Science, 286 (1999), 509–512.
25. R. M. May and A. L. Lloyd, Infection dynamics on scalefree networks, Physic. Rev. E, 64 (2001), 066112.
26. V. M. Eguiluz and K. Klemm, Epidemic threshold in structured scalefree networks, Physic. Rev. Lett., 89 (2002), 108701.
27. M. Boguna, R. PastorSatorras, A. Vespignani, Absence of epidemic threshold in scalefree networks with degree correlations, Physic. Rev. Lett., 90 (2003), 028701.
28. H. Zhang, P. Shu, Z.Wang, et al., Preferential imitation can invalidate targeted subsidy policies on seasonalinfluenza diseases, Appl. Math. Comput., 294 (2017), 332–342.
29. T. Gross, C. J. D. D'Lima and B. Blasius, Epidemic dynamics on an adaptive network, Physic. Rev. Lett., 96 (2006), 208701.
30. T. Gross and B. Blasius, Adaptive coevolutionary networks: a review, J. R. Soc. Inter., 5 (2008), 259–271.
31. X. Zhang, C. Shan, Z. Jin, et al., Complex dynamics of epidemic models on adaptive networks, J. Difer. Equa., 266 (2019), 803–832.
32. L. B. Shaw and I. B. Schwartz, Fluctuating epidemics on adaptive networks, Physic. Rev. E, 77 (2008), 066101.
33. D. H. Zanette and S. RisauGusman, Infection Spreading in a Population with Evolving Contacts, J. Biol. Phys., 34 (2008), 135–148.
34. Y. Schwarzkopf, A. Ráos and D. Mukamel, Epidemic spreading in evolving networks, Physic. Rev. E, 82 (2010), 036112.
35. T. Rogers, W. ClifordBrown, C. Mills, et al., Stochastic oscillations of adaptive networks: application to epidemic modelling, J. Stat. Mech. Theory. E, 8 (2012), 1–15.
36. D. Juher, J. Ripoll and J. Saldaña, Outbreak analysis of an SIS epidemic model with rewiring, J. Math. Biol., 67 (2013), 411–432.
37. J. Zhou, G. Xiao, S. A. Cheong, et al., Epidemic reemergence in adaptive complex networks, Physic. Rev. E, 85 (2012), 036107.
38. A. SzabóSolticzky, L. Berthouze, I. Z. Kiss, et al., Oscillating epidemics in a dynamic network model: stochastic and meanfield analysis, J. Math. Biol., 72 (2016), 1153–1176.
39. S.J. Fan, A new extracting formula and a new distinguishing means on the one variable cubic equation, Nat. Sci. J. Hainan Teacheres Coll., 2 (1989), 91–98 (in Chinese).
40. S. N. Chow and J. K. Hale, Methods of bifurcation theory, Springer Science & Business Media, 2012.
41. L. Perko, Diferential equations and dynamical systems, Springer Science & Business Media, 2013.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)