Citation: Qiuyan Zhang, Lingling Liu, Weinian Zhang. Bogdanov-Takens bifurcations in the enzyme-catalyzed reaction comprising a branched network[J]. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1499-1514. doi: 10.3934/mbe.2017078
[1] | Mohammad Sajid, Sahabuddin Sarwardi, Ahmed S. Almohaimeed, Sajjad Hossain . Complex dynamics and Bogdanov-Takens bifurcations in a retarded van der Pol-Duffing oscillator with positional delayed feedback. Mathematical Biosciences and Engineering, 2023, 20(2): 2874-2889. doi: 10.3934/mbe.2023135 |
[2] | Mengyun Xing, Mengxin He, Zhong Li . Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects. Mathematical Biosciences and Engineering, 2024, 21(1): 792-831. doi: 10.3934/mbe.2024034 |
[3] | Hongqiuxue Wu, Zhong Li, Mengxin He . Dynamic analysis of a Leslie-Gower predator-prey model with the fear effect and nonlinear harvesting. Mathematical Biosciences and Engineering, 2023, 20(10): 18592-18629. doi: 10.3934/mbe.2023825 |
[4] | Kunlun Huang, Xintian Jia, Cuiping Li . Analysis of modified Holling-Tanner model with strong Allee effect. Mathematical Biosciences and Engineering, 2023, 20(8): 15524-15543. doi: 10.3934/mbe.2023693 |
[5] | Yingzi Liu, Zhong Li, Mengxin He . Bifurcation analysis in a Holling-Tanner predator-prey model with strong Allee effect. Mathematical Biosciences and Engineering, 2023, 20(5): 8632-8665. doi: 10.3934/mbe.2023379 |
[6] | Xiaoli Wang, Junping Shi, Guohong Zhang . Bifurcation analysis of a wild and sterile mosquito model. Mathematical Biosciences and Engineering, 2019, 16(5): 3215-3234. doi: 10.3934/mbe.2019160 |
[7] | Zhenliang Zhu, Yuming Chen, Zhong Li, Fengde Chen . Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey. Mathematical Biosciences and Engineering, 2023, 20(6): 10977-10999. doi: 10.3934/mbe.2023486 |
[8] | Juan Li, Yongzhong Song, Hui Wan, Huaiping Zhu . Dynamical analysis of a toxin-producing phytoplankton-zooplankton model with refuge. Mathematical Biosciences and Engineering, 2017, 14(2): 529-557. doi: 10.3934/mbe.2017032 |
[9] | Juan Ye, Yi Wang, Zhan Jin, Chuanjun Dai, Min Zhao . Dynamics of a predator-prey model with strong Allee effect and nonconstant mortality rate. Mathematical Biosciences and Engineering, 2022, 19(4): 3402-3426. doi: 10.3934/mbe.2022157 |
[10] | Yuhong Huo, Gourav Mandal, Lakshmi Narayan Guin, Santabrata Chakravarty, Renji Han . Allee effect-driven complexity in a spatiotemporal predator-prey system with fear factor. Mathematical Biosciences and Engineering, 2023, 20(10): 18820-18860. doi: 10.3934/mbe.2023834 |
Many differential equations have been proposed (see [8,11,13], [17]-[19], [21]-[22], [24,27] and references therein) to model the dynamic changes of substrate concentration and product one in enzyme-catalyzed reactions. Among those models, a typical form ([7]) is the following skeletal system
{˙x=v−V1(x,y)−V3(x),˙y=q(V1(x,y)−V2(y)), | (1) |
where
V1(0,y)=0, ∂V1/∂x>0, ∂V1/∂y>0, V2(y)≥0, ∀x,y>0, |
and
The case that
{˙x=1−xmyn−lx,˙y=q(xmyn−y), |
called the multi-molecular reaction model sometimes, where
{˙x=v−γxmyn−βx,˙y=γxmyn−v2yμ2+y, |
where
{˙x=v−V1(x,y)−v3xu3+x,˙y=q(V1(x,y)−v2yu2+y) |
with
{˙x=v−v1xy−v3xu3+x,˙y=q(v1xy−v2yu2+y) | (2) |
with
{˙x=a−xy−bx1+x,˙y=κy(x−c1+y), | (3) |
where we still use
{˙x=(1+y){(1+x)(a−xy)−bx},˙y=κ(1+x)y{(1+y)x−c}, | (4) |
in the first quadrant
In this paper we continue the work of [27] to give conditions for the existence of a cusp and compute the parameter curves for the Bogdanov-Takens bifurcation, which induces the appearance of homoclinic orbits and periodic orbits, indicating the tendency to steady-states or a rise of periodic oscillations for the concentrations of the substrate and product.
It is proved in [27] that system (4) has at most 3 equilibria, i.e.,
p1:=−12{(a−b−c+1)−[(a−b−c+1)2−4(a−c)]1/2},p2:=−12{(a−b−c+1)+[(a−b−c+1)2−4(a−c)]1/2}. | (5) |
Moreover, if
TE0:={(a,b,c,κ)∈R4+|a=bc/(1+c),b≠(c+1)2}:=4⋃i=1T(i)E0,PE0:={(a,b,c,κ)∈R4+|a=bc/(1+c),b=(c+1)2},HE1:={(a,b,c,κ)∈R4+|κ=κ1,bc/(1+c)<a<c,0<b≤1}∪{(a,b,c,κ)∈R4+|κ=κ1,bc/(1+c)<a<c+(b1/2−1)2,1<b<(c+1)2},SNE∗:={(a,b,c,κ)∈R4+|a=a∗, 1<b<(c+1)2,κ≠κ∗}:=4⋃i=1SN(i)E∗,B1:={(a,b,c,κ)∈R4+|a=c},B2:={(a,b,c,κ)∈R4+|a=b}, |
which divide
R1:={(a,b,c,κ)∈R4+|c<a<a∗,1<b<c,c>1, or b<a<a∗,c<b<(c+1)2/4,c>1},R2:={(a,b,c,κ)∈R4+|b<a<c,0<b<c}R3:={(a,b,c,κ)∈R4+|bc/(1+c)<a<b,0<b<c or bc/(1+c)<a<c,c<b<c+1},R4:={(a,b,c,κ)∈R4+|0<a<bc/(1+c),0<b<c+1 or 0<a<c,b>c+1},R5:={(a,b,c,κ)∈R4+|c<a<bc/(1+c),b>c+1},R6:={(a,b,c,κ)∈R4|c<a<b,c<b<(c+1),c>3 or bc/(1+c)<a<b,c+1<b<(c+1)2/4,c>3 or bc/(1+c)<a<a∗,(c+1)2/4<b<(c+1)2,c>3 or c<a<b,c<b<(c+1)2/4,1<c≤3 or c<a<a∗,(c+1)2/4<b<c+1,1<c≤3 or bc/(1+c)<a<c+(b1/2−1)2,(c+1)<b<(c+1)2,c≤3 or c<a<a∗,1<b<c+1,c≤1},R7:={(a,b,c,κ)∈R4+|c+(b1/2−1)2<a<b,(c+1)2/4<b<(c+1)2,c>1 or bc/(1+c)<a<b,b>(c+1)2 or c<a<b,c<b<1,c≤1 or c+(b1/2−1)2<a<b,1<b<(c+1)2,c≤1},R0:=R4+∖{PE0∪SNE∗∪TE0∪(2⋃i=1Bi)∪B∪(7⋃i=1Ri)}, |
where
T(1)E0:={(a,b,c,κ)∈R4+|a=bc/(1+c),0<b<c+1},T(2)E0:={(a,b,c,κ)∈R4+|a=bc/(1+c),c+1<b<(c+1)2},T(3)E0:={(a,b,c,κ)∈R4+|a=bc/(1+c),b>(c+1)2},T(4)E0:={(a,b,c,κ)∈R4+|a=bc/(1+c),b=c+1},SN(1)E∗:={(a,b,c,κ)∈R4+|a=a∗, 1<b<(c+1)2/4,c>1,κ≠κ∗},SN(2)E∗:={(a,b,c,κ)∈R4+|a=a∗, b=(c+1)2/4,c>1,κ≠κ∗},SN(3)E∗:={(a,b,c,κ)∈R4+|a=a∗, (c+1)2/4<b<(c+1)2,c>1,κ≠κ∗},SN(4)E∗:={(a,b,c,κ)∈R4+|a=a∗, 1<b<(c+1)2,c≤1,κ≠κ∗},κ1:=p−21{(p1+1)(c−p1)}−1c{p1(c−p1)+a},κ∗:=(c−b1/2+1)−1(b1/2−1)−2c2. | (6) |
The following lemma is a summary of Theorems 1, 2 and 3 of [27].
Lemma 2.1. (ⅰ) System (4) has a saddle-node
(ⅱ) System (4) has a weak focus
H(2)E1:={(a,b,c,κ)∈HE1:2p1(p1+1)a3+{(p21+p1+1)c2+p1(2p21+p1−2)c−3p31(p1+1)}a2−(c−p1){(p31+3p21+p1+1)c2+2p21(p21+3p1+3)c+3p41(p1+1)}a+p21{(p1+2)c+p21}{c−p1(p1+1)}(c−p1)2=0}. |
(ⅲ) System (4) has a saddle-node
The above Lemma 2.1 does not consider parameters in the set
B:={(a,b,c,κ)∈R4+|a=a∗, 1<b<(c+1)2,κ=κ∗}, | (7) |
where
This paper is devoted to bifurcations in
Lemma 2.2. If
C:={(a,b,c,κ)∈B|c=ς(b):=14b1/2(b1/2−1){b1/2+2+(17b−12b1/2+4)1/2}}, |
then equilibrium
Proof. For simplicity in statements, we use the notation
p:=b1/2−1. | (8) |
For
{˙x=y+c(p2+cp+c)p3x2+1p+1xy−pc2(p+1)y2−c(p2+c)p4x3−p2+2pc+2cp2c(p+1)x2y−2p+1c2(p+1)2xy2−c2p4x4−2p2(p+1)x3y−1c2(p+1)2x2y2,˙y=−c3(p+1)p3x2−c2(p+1)p2(c−p)xy−1c−py2−(p+1)(p2+c)p5(c−p)x3−c(p2+2pc+2c)p3(c−p)x2y−2p+1p(p+1)(c−p)xy2−c4(p+1)p5(c−p)x4−2c2p3(c−p)x3y−1p(p+1)(c−p)x2y2, | (9) |
by translating
{˙u=v,˙v=−c3(p+1)p3u2+c{(2p+2)c2−(p2+3p)c−2p3}p3(c−p)uv+c−2p−1(p+1)(c−p)v2+c3(p2+c)p4(c−p)u3−c{(p+1)(p+3)c2+p(p2−3p−3)c−p3(3p+2)}p4(p+1)(c−p)u2v−(5p2+8p+4)c+2p2(p+1)cp2(p+1)2uv2−1c2(p+1)v3−c2(c2+2p2c−p3)p5(c−p)u4+1p5(p+1)2(c−p){(p+4)(p+1)2c3+p(7p3+7p2−3p−4)c2−p3(8p2+15p+8)c−2p5(p+1)}u3v+(3p3+6p2+6p+2)c2+p(2p+1)(2p2+2p−1)c−p3(p+1)(7p+4)cp3(p+1)3(c−p)u2v2−(3p+4)c2−3p(p+2)c−2p3c3p(p+1)2(c−p)uv3−2c−3pc4(p+1)2(c−p)v4+O(|u,v|5). | (10) |
Since the linear part is nilpotent, by Theorem 8.4 in [14] system (10) is conjugated to the Bogdanov-Takens normal form, i.e., the right-hand side of the second equation is a sum of terms of the form
{˙u=v,˙v=−c3(p+1)p3u2+c{(2p+2)c2−(p2+3p)c−2p3}p3(c−p)uv+O(|u,v|3), | (11) |
where the term of
c2−p2+3p2(p+1)c−p3p+1=0, | (12) |
which comes from the numerator of the coefficient of
c=14(p+1)−1p{p+3+(17p2+22p+9)1/2}, |
which defines the function
In this section we discuss in the case that
Theorem 3.1. If
SN+:={(a,κ)∈U|a=a∗, κ>κ∗,0<c<ς(b)}∪{(a,κ)∈U|a=a∗, κ<κ∗,c>ς(b)},SN−:={(a,κ)∈U|a=a∗, κ<κ∗,0<c<ς(b)}∪{(a,κ)∈U|a=a∗, κ>κ∗,c>ς(b)},H:={(a,κ)∈U|a=a∗−((2b1/2+1)c2−((b1/2−1)2+3(b1/2−1))c −2(b1/2−1)3)−2b1/2(b1/2−1)6(c−b1/2+1)4(κ−κ∗)2+O(|κ−κ∗|3), κ>κ∗,0<c<ς(b)}∪{(a,κ)∈U|a=a∗−((2b1/2+1)c2−((b1/2−1)2+3(b1/2−1))c −2(b1/2−1)3)−2b1/2(b1/2−1)6(c−b1/2+1)4(κ−κ∗)2+O(|κ−κ∗|3), κ<κ∗,c>ς(b)},L:={(a,κ)∈U|a=a∗−49/25((2b1/2+1)c2−((b1/2−1)2+3(b1/2−1))c −2(b1/2−1)3)−2b1/2(b1/2−1)6(c−b1/2+1)4(κ−κ∗)2+O(|κ−κ∗|3), κ>κ∗,0<c<ς(b)}∪{(a,κ)∈U|a=a∗−49/25((2b1/2+1)c2−((b1/2−1)2+3(b1/2−1))c −2(b1/2−1)3)−2b1/2(b1/2−1)6(c−b1/2+1)4(κ−κ∗)2+O(|κ−κ∗|3), κ<κ∗,c>ς(b)}, |
such that system (4) produces a saddle-node bifurcation near
The above bifurcation curve
Proof. Let
ε1:=a−a∗,ε2:=κ−κ∗, | (13) |
and consider
{˙x=c(p+1)pε1+(−c2(p+1)p2+cpε1)x+(−c(p+1)+(p+1)ε1)y−c(c−p)p2x2+(−c(2+3p)p+ε1)xy−p(p+1)y2+O(‖(x,y)‖3),˙y=(c3(p+1)p4+c(p+1)(c−p)p2ε2)x+(c2(p+1)p2+(p+1)(c−p)ε2)y+(c3p4+c(c−p)p2ε2)x2+(c3(2+3p)−c2p(2p+1)(c−p)p3+c(3p+2)−p(2p+1)pε2)xy+(c2(p+1)(c−p)p+p(p+1)ε2)y2+O(‖(x,y)‖3). | (14) |
Introducing new variables
{˙ξ1=η1,˙η1=E00(ε1,ε2)+E10(ε1,ε2)ξ1+E20(ε1,ε2)ξ21+F(ξ1,ε1,ε2)η1+E02(ε1,ε2)η21, | (15) |
where
F(0,0,0)=0, ∂F∂ξ1(0,0,0)=E11(0,0)=(2p+2)(c2−p2+3p2(p+1)c−p3p+1)≠0. |
By the Implicit Function Theorem, there exists a function
ξ2=ξ1−ξ1(ε1,ε2),η2=η1 |
to vanish the term proportional to
{˙ξ2=η2,˙η2=ψ1(ε1,ε2)+ψ2(ε1,ε2)ξ2+E20(ε1,ε2)ξ22+E11(ε1,ε2)ξ2η2+E02(ε1,ε2)η22, | (16) |
where
ψ1(ε1,ε2):=E00(ε1,ε2)+E10(ε1,ε2)ξ1(ε1,ε2)+E20(ε1,ε2)ξ21(ε1,ε2),ψ2(ε1,ε2):=E10(ε1,ε2)+2ξ1(ε1,ε2)E20(ε1,ε2). |
In order to eliminate the
ξ3=ξ2, η3=η2−E02(ε1,ε2)ξ2η2 |
together with the time-rescaling
{˙ξ3=η3,˙η3=ζ1(ε1,ε2)+ζ2(ε1,ε2)ξ3+˜E20(ε1,ε2)ξ23+E11(ε1,ε2)ξ3η3, | (17) |
where
ζ1(ε1,ε2):=ψ1(ε1,ε2), ζ2(ε1,ε2):=ψ2(ε1,ε2)−ψ1(ε1,ε2)E02(ε1,ε2),˜E20(ε1,ε2):=E20(ε1,ε2)−E10(ε1,ε2)E02(ε1,ε2). |
Further, in order to reduce coefficient of
u=˜E20(ε1,ε2)E211(ε1,ε2)ξ3,v=sign(E11(ε1,ε2)˜E20(ε1,ε2))˜E220(ε1,ε2)E311(ε1,ε2), |
where
{˙u=v,˙v=ϕ1(ε1,ε2)+ϕ2(ε1,ε2)u+u2+ϑuv, | (18) |
where
ϕ1(ε1,ε2):=E411(ε1,ε2)˜E320(ε1,ε2)ζ1(ε1,ε2)={(2p+2)c2−(p2+3p)c−2p3}4ε1ϕ11(ε1,ε2)p4(c−p)4ϕ212(ε1,ε2), ϕ2(ε1,ε2):=E211(ε1,ε2)˜E220(ε1,ε2)ζ2(ε1,ε2)=√2{(2p+2)c2−(p2+3p)c−2p3}ϕ21(ε1,ε2)c3/2(c−p)2(p+1)1/2pϕ3/212(ε1,ε2), |
and polynomials
Let
μ1=ϕ1(ε1,ε2),μ2=ϕ2(ε1,ε2), | (19) |
where
|∂ϕ1(ε1,ε2)∂ε1∂ϕ1(ε1,ε2)∂ε2∂ϕ2(ε1,ε2)∂ε1∂ϕ2(ε1,ε2)∂ε2|(ε1,ε2)=(0,0)=−{(2p+2)c2−(p2+3p)c−2p3}5p6c4(c−p)4(p+1)≠0, | (20) |
implying that (19) is a locally invertible transformation of parameters. This transformation makes a local equivalence between system (18) and the versal unfolding system
{˙˜u=˜v,˙˜v=μ1+μ2˜u+˜u2+ϑ˜u˜v, | (21) |
where
SN+:={(μ1,μ2)∈V0 | μ1=0, μ2>0},SN−:={(μ1,μ2)∈V0 | μ1=0, μ2<0},H:={(μ1,μ2)∈V0 | μ1=−μ22, μ2>0},L:={(μ1,μ2)∈V0 | μ1=−4925μ22+o(|μ2|2), μ2>0}, | (22) |
where
In what follows, we present above bifurcation curves in parameters
ε1=ω1(μ1,μ2), ε2=ω2(μ1,μ2) | (23) |
in a small neighborhood of
μ1=ϕ1(ω1(μ1,μ2),ω2(μ1,μ2)), μ2=ϕ2(ω1(μ1,μ2),ω2(μ1,μ2)). | (24) |
Substitute the second order formal Taylor expansions of
ϕ1(ε1,ε2)={(2p+2)c2−(p2+3p)c−2p3}4ε1/{p6c2(c−p)4(p+1)}−{(2p+2)c2−(p2+3p)c−2p3}4(24p2c4+42c4p+21c4−8p3c3−54c3p2−44c3p−36c2p4−12p3c2+27p2c2+8p5c+32cp4+16p6)ε21/{2c4p8(c−p)6(p+1)2}−{(2p+2)c2−(p2+3p)c−2p3}4ε1ε2/{(c4p4(c−p)3(p+1)}+o(|ε1,ε2|2), | (25) |
ϕ2(ε1,ε2)={(2p+2)c2−(p2+3p)c−2p3}ε1/{2c2(p3−2cp+p2+c2p+c2−2cp2)p4}−{(2p+2)c2−(p2+3p)c−2p3}ε2/c2−{(2p+2)c2−(p2+3p)c−2p3}(−243p3c3+832p3c4+513p2c4+455p4c3−594p5c2−1347p3c5−1209p2c5+165p4c4+1138p5c3−324p6c2−424p7c−200p5c4+382p6c3+512p7c2−520cp8−396c5p−48p9+108c6−48p10+384c6p3+414c6p−104cp9+264c2p8+594c6p2−672c5p4+96c6p4−136c5p5−44c4p6−76c3p7)ε21/{4c3(p+1)2(c−p)4p6}−{(2p+2)c2−(p2+3p)c−2p3}(8p2c4+23c4p+12c4+30p3c3+8c3p2−22c3p−58c2p4−85p3c2+6p2c2−8p5c+46cp4+24p6)ε1ε2/{4c4p2(p+1)(c−p)2}+(c−p)p2{(2p+2)c2−(p2+3p)c−2p3}ε22/c4+o(|ε1,ε2|2). | (26) |
Then, comparing the coefficients of terms of the same degree in (24), we obtain the second order approximations
ε1=c2p6(c−p)4(p+1)μ1/{(2p+2)c2−(p2+3p)c−2p3}4+c2p10(c−p)6(p+1)(32p2c4+56c4p+27c4−16p3c3−79c3p2−59c3p−48c2p4−19p3c2+36p2c2+12p5c+50cp4+24p6)μ21/{2{(2p+2)c2−(p2+3p)c−2p3}8}+c2p8(c−p)5(p+1)μ1μ2/{(2p+2)c2−(p2+3p)c−2p3}5+o(|μ1,μ2|2), | (27) |
\begin{eqnarray*} \varepsilon_2 &=& c^2p^2(c-p)^2(-8p^5-12cp^4-18cp^3+8c^3p^2-11p^2c^2 -9c^2p +14c^3p+6c^3)\mu_1 \nonumber\\ && / \{2\{(2p+2)c^2 -(p^2+3p)c-2p^3\}^4\} -c^2\mu_2/\{(2p+2)c^2-(p^2+3p)c-2p^3\} \nonumber\\ && +c^2p^6(c-p)^4(1314c^7p^2 +630p c^7-270p^3c^4+2068p^3c^5 +612p^2c^5 +677p^4c^4 \nonumber\\ && -1134p^5c^3+4387p^5c^4 -1056p^6c^3 -1804p^7c^2-3741c^6p^3+756c^5p^4 +1160c^3p^8 \nonumber\\ && -2268c^6p^4+1176c^7p^3-1272c^5p^6 -352c^6p^5 +384c^7p^4-320p^{11}+108c^7-704cp^{10} \nonumber\\ && +224c^2p^9-2046c^5p^5+4258c^4p^6+832p^7c^4 -1464p^8c^2-2289c^6p^2+1544p^7c^3 \nonumber\\ && -450c^6p-1344cp^9)\mu_1^2/ \{8\{(2p+2)c^2-(p^2+3p)c -2p^3\}^8\} +c^2p^4(c-p)^2(40p^2c^4 \nonumber\\ && +61c^4p+24c^4-78p^3c^3-158c^3p^2 -68c^3p-14c^2p^4 +43p^3c^2+48p^2c^2+32p^5c \nonumber\\ && +62cp^4 +24p^6)\mu_1\mu_2 /\{4\{(2p+2)c^2-(p^2+3p)c-2p^3\}^5\} +c^2p^2(c-p)\mu_2^2 \nonumber\\ && /\{(2p+2)c^2-(p^2+3p)c-2p^3\}^2 +o(|\mu_1, \mu_2|^2). \end{eqnarray*} | (28) |
Then we are ready to express those bifurcation curves in parameters
For curves
\varepsilon_2=-\frac{c^2}{(2p+2)\Psi(c)}\mu_2+O(|\mu_2|^2), \label{Psi(c)} | (29) |
where
\begin{eqnarray*} \mathcal{SN}^{+}:&=&\{(\varepsilon_{1}, \varepsilon_{2})\ |\ \varepsilon_{1}=0, \varepsilon_{2}>0, 0<c<\varsigma(b)\} \cup \{(\varepsilon_{1}, \varepsilon_{2})\ |\ \varepsilon_{1}=0, \varepsilon_{2}<0, c>\varsigma(b)\} , \nonumber\\ \mathcal{SN}^{-}:&=&\{(\varepsilon_{1}, \varepsilon_{2})\ |\ \varepsilon_{1}=0, \varepsilon_{2}<0, 0<c<\varsigma(b)\} \cup \{(\varepsilon_{1}, \varepsilon_{2})\ |\ \varepsilon_{1}=0, \varepsilon_{2}>0, c>\varsigma(b)\} . \end{eqnarray*} |
For curve
\frac{\partial\Upsilon}{\partial \varepsilon_1}\Big|_{(\varepsilon_{1}, \varepsilon_{2})=(0, 0)} = \{ (2p+2)\Psi(c) \}^4 / \{p^6c^2(c-p)^4(p+1)\}\ne 0. |
By the Implicit Function Theorem, there exists a unique
\varepsilon_1=\epsilon_1(\varepsilon_2) = -\frac{p^6(c-p)^4}{4(p+1)\Psi^2(c)}\varepsilon_2^2+o(|\varepsilon_2|^2). \label{Hp} | (30) |
Further, replacing
\varepsilon_2=-\frac{c^2}{(2p+2)\Psi(c)}\mu_2+o(|\mu_2|). |
Similarly to (29), from (22) we obtain that
\begin{eqnarray*} \mathcal{H} &:=& \big\{(\varepsilon_{1}, \varepsilon_{2})\ |\ \varepsilon_{1}=-\frac{p^6(c-p)^4}{4(p+1)\Psi^2(c)}\varepsilon_{2}^2+o(|\varepsilon_2|^2) , ~~\varepsilon_{2}>0, 0<c<\varsigma(b) \big\} \\ &&\cup \big\{(\varepsilon_{1}, \varepsilon_{2})\ |\ \varepsilon_{1}=-\frac{p^6(c-p)^4}{4(p+1)\Psi^2(c)}\varepsilon_{2}^2+o(|\varepsilon_2|^2) , ~~\varepsilon_{2}<0, c>\varsigma(b) \big\}. \end{eqnarray*} |
For curve
\varepsilon_{1}=-\frac{49p^6(c-p)^4}{100(p+1)\Psi^2(c)}\varepsilon_{2}^2+o(|\varepsilon_{2}|^{2}). |
Similarly to (29), from (22) we obtain that
\begin{eqnarray*} \mathcal{L} &:=& \big\{(\varepsilon_{1}, \varepsilon_{2})\ |\ \varepsilon_{1}=-\frac{49p^6(c-p)^4}{100(p+1)\Psi^2(c)}\varepsilon_{2}^2+o(|\varepsilon_{2}|^{2}), ~~\varepsilon_{2}>0, 0<c<\varsigma(b) \big\} \\ &&\cup \big\{(\varepsilon_{1}, \varepsilon_{2})\ |\ \varepsilon_{1}=-\frac{49p^6(c-p)^4}{100(p+1)\Psi^2(c)}\varepsilon_{2}^2+o(|\varepsilon_{2}|^{2}) , ~~\varepsilon_{2}<0, c>\varsigma(b) \big\}. \end{eqnarray*} |
Finally, with the replacement (13) we can rewrite the above bifurcation curves
In this paper we analyzed the dynamics of system (4) near the equilibrium
More concretely, in this case,
a_*=\frac{(c+1)^2}{4}, ~\kappa_*=\frac{8c^2}{(c+1)(c-1)^2}. |
Moreover, the four bifurcation curves divide the neighborhood
\begin{eqnarray*} \mathcal{D}_{I} &:=& \Big\{(a, \kappa)\in U|~a<\frac{(c+1)^2}{4}, ~\kappa\le\frac{8c^2}{(c+1)(c-1)^2}\Big\} \nonumber \\ &&\bigcup \Big\{(a, \kappa)\in U|~a<\frac{(c+1)^2}{4}-\frac{49(c-1)^6(c+1)^3}{3200(2c^2+c+1)^2}\big\{\kappa-\frac{8c^2}{(c+1)(c-1)^2}\big\}^2 \nonumber\\ && +O(|\kappa-\frac{8c^2}{(c+1)(c-1)^2}|^{3}), ~\kappa>\frac{8c^2}{(c+1)(c-1)^2}\Big\}, \nonumber\\ \mathcal{D}_{II} &:=& \Big\{(a, \kappa)\in U|~ \frac{(c+1)^2}{4}-\frac{49(c-1)^6(c+1)^3}{3200(2c^2+c+1)^2}\big\{\kappa-\frac{8c^2}{(c+1)(c-1)^2}\big\}^2 \nonumber\\ && +O(|\kappa-\frac{8c^2}{(c+1)(c-1)^2}|^{3}) <a<\frac{(c+1)^2}{4}-\frac{(c-1)^6(c+1)^3}{128(2c^2+c+1)^2} \nonumber\\ &&\big\{\kappa-\frac{8c^2}{(c+1)(c-1)^2}\big\}^2 +O(|\kappa-\frac{8c^2}{(c+1)(c-1)^2}|^{3}), ~\kappa>\frac{8c^2}{(c+1)(c-1)^2}\Big\}, \nonumber\\ \mathcal{D}_{III} &:=& \Big\{(a, \kappa)\in U|~ \frac{(c+1)^2}{4}-\frac{(c-1)^6(c+1)^3}{128(2c^2+c+1)^2} \big\{\kappa-\frac{8c^2}{(c+1)(c-1)^2}\big\}^2 \\ && +O(|\kappa-\frac{8c^2}{(c+1)(c-1)^2}|^{3}) <a<\frac{(c+1)^2}{4}, ~\kappa>\frac{8c^2}{(c+1)(c-1)^2}\Big\}, \nonumber\\ \mathcal{D}_{IV} &:=& \Big\{(a, \kappa)\in U|~a>\frac{(c+1)^2}{4}\Big\}. \nonumber \end{eqnarray*} |
Theorem 3.1 gives dynamical behaviors of system (4) near
p_1:=-\frac{1}{2}\big\{(a-b-c+1)-\{(a-b-c+1)^2-4(a-c)\}^{1/2}\big\}, \\ p_2:=-\frac{1}{2}\big\{(a-b-c+1)+\{(a-b-c+1)^2-4(a-c)\}^{1/2}\big\} |
as in [27].
Parameters |
Equilibria | Limit cycles and homoclinic orbits | Region in bifurcation diagram | |||
saddle | unstable focus | saddle | ||||
saddle | unstable focus | saddle | one homoclinic rrbit | |||
saddle | unstable focus | saddle | one limit cycle | |||
saddle | stable focus | saddle | ||||
saddle | stable focus | saddle | ||||
saddle-node | ||||||
cusp | ||||||
saddle-node |
The appearance of limit cycle displays a rise of oscillatory phenomenon in system (4). Choosing parameters
In this paper we only considered parameters in
The functions in system (15) are
\begin{eqnarray*} E_{00} &:=& \{(2p+2)c^2-(p^2+3p)c-2p^3\}^4\varepsilon_1/\big\{c^2(p+1)p^6(c-p)^4\big\}, \\ E_{10} &:=& -\{(2p+2)c^2-(p^2+3p)c-2p^3\}^2\varepsilon_{1}\big\{(-6c^3p-4c^3p^2-4p^3c^2+3p^2c^2 +4cp^4+4c^4p \\ && +3c^4) -(p^2c^2-3c^3p-3c^2p+cp^2+2cp^3-2p^4)\varepsilon_1 -(p^3c^2-2cp^4+p^5+4c^2p^4 \\ && -5p^5c-p^3c^3+2p^6)\varepsilon_2\big\}/\big\{(p+1)p^4c^3(c-p)^4\big\}, \\ E_{20} &:=& \big\{(-2c^6(p+1)^2(c-p)^2) +(9c^3p^2+4c^2p^4-13c^4p+4p^5c^2+6p^3c^3 +9c^5p-15p^2c^4 \\ && -2p^4c^3+4p^2c^5-4p^3c^4+6c^5)\varepsilon_1 -(2p^7c-6p^7c^2-6p^6c^2-2p^5c^4+6p^6c^3 +2cp^8 \\ && -2p^4c^4+6p^5c^3)\varepsilon_2 +(6p^5c^2-2p^4c^3-6p^6c-6p^7c+6p^6c^2-2p^5c^3+2p^7+2p^8)\varepsilon_1\varepsilon_2 \\ && +(6p^3c^3-4p^2c^4-2c^2p^4-10p^3c^2-9c^4p-2cp^4+17c^3p^2 -2p^5c+13c^3p-9p^2c^2 \\ && -6c^4)\varepsilon_1^2\big\} /\big\{2c^3p^2(c-p)^2(p+1)\big\}, \\ E_{01} &:=& -\{(2p+2)c^2-(p^2+3p)c-2p^3\}\{2c^3\varepsilon_1 +(cp^4-2p^3c^2+c^3p^2)\varepsilon_2 +(2p^4-6cp^3 \\ && +4p^2c^2)\varepsilon_1\varepsilon_2 +(12c^2-6cp)\varepsilon_1^2\}/\big\{p^2(c-p)^2c^3\big\}, \\ E_{11} &:=& \big\{(3c^3p^2-8p^2c^4-p^4c^3+2c^5+2c^2p^4+4c^5p+2p^2c^5-5c^4p+2p^5c^2 +2p^3c^3 \\ && -3p^3c^4) +(3c^2p^4+3c^3p+p^2c^2+2p^5c+3p^2c^4+3p^3c^2+2c^4p+2cp^4 -4p^3c^3 \\ && +c^3p^2)\varepsilon_1 +(5p^6c^2-2p^7c-3p^6c+7p^5c^2 +2c^2p^4 -p^5c-5p^4c^3-p^3c^3+p^3c^4 \\ && +p^4c^4-4p^5c^3)\varepsilon_2 -(5p^6c-4p^5c^2+p^4c^3-5c^2p^4-p^3c^2+7p^5c+p^3c^3 +2cp^4 \\ && -2p^7-p^5-3p^6)\varepsilon_1\varepsilon_2 +(13cp^2-8cp^4+9c^3p^2-38p^2c^2 +5cp^3+10p^4+10p^5 \\ && +19c^3p+10c^3-13p^3c^2 -25c^2p)\varepsilon_1^2\big\} /\big\{c^2(p+1)(-p+c)\big\}, \\ E_{02} &:=& \big\{(c-2p-1)+(5c^3-2c^2p)\varepsilon_1-(3p^3c^2-2c^3p^2-cp^4)\varepsilon_2 +(p^4-cp^3)\varepsilon_1\varepsilon_2-(2cp \\ && -c^2)\varepsilon_1^2\big\} /\big\{(p+1)^2(c-p)^2\big\}. \end{eqnarray*} |
The functions below system (18) are
\begin{eqnarray*} \phi_{11} &:=& 24c^6p^5+4c^8p^2-16c^7p^4+4c^8p^3-16c^5p^6+4p^7c^4 +24c^6p^4-16c^7p^3-16c^5p^5 \\ && +4c^4p^6 +(9p^4c^4-16p^6c^3+40c^3p^7+68p^5c^4-26p^3c^5+3c^8 -6c^8p +42c^6p^3+36c^6p^4 \\ && -94c^5p^4 +6c^7p^2-4c^4p^6-16c^2p^8 -56c^5p^5-8c^8p^2+8c^7p^3+28c^6p^2-14c^7p)\varepsilon_1 \\ && +(4c^7p^4+40c^5p^7 -4c^2p^9-4c^2p^{10}+20c^3p^8+20c^3p^9 -20c^6p^5+40c^5p^6-20c^6p^6 \\ && -40c^4p^8+4c^7p^5-40p^7c^4)\varepsilon_2 -(40p^2c^5+12p^4c^3+32c^7p^2 +8p^5c^3+12c^7+92p^3c^5 \\ && +8p^6c^2-32p^3c^4-12p^6c^3-28p^7c^2 +4c^5p^4-88c^6p^2 -56p^4c^4+36c^7p+48p^5c^4 \\ && -60c^6p^3+16cp^8-32c^6p)\varepsilon_1^2 +(12cp^9-24p^7c^4 -8c^7p^4-6c^7p^3-88c^5p^5-32c^2p^8 \\ && +20cp^{10} -24c^5p^4+6c^6p^3+2c^3p^7-24p^6c^3+36c^6p^5 +72c^4p^6+96c^3p^8 -76c^2p^9 \\ && +36p^5c^4+40c^6p^4-44c^5p^6+6p^7c^2)\varepsilon_1\varepsilon_2 +(8p^7c-9p^2c^4 -16p^5c^2+6p^3c^3-c^2p^4 \\ && +11p^4c^4 +6p^3c^5 +10p^4c^3-16p^5c^3-18p^2c^5+12p^3c^4 -9c^6p^2+4p^6c-4p^8)\varepsilon_1^3 \\ && +(-34c^4p^6+2c^3p^7+4p^9-28cp^9-16cp^8+6p^4c^4 +8p^{10} -2p^7c+32c^2p^8 +32p^7c^2 \\ && -32p^6c^3-14p^5c^3 +10p^6c^2-6c^6p^4 +26c^5p^5+12p^5c^4)\varepsilon_1^2\varepsilon_2+(4c^3p^7-c^6p^6+44c^3p^9 \\ && -41c^2p^{10} -c^4p^6+4cp^9 +2c^5p^6-4p^{11}+28c^3p^8-32c^2p^9+8c^5p^7-26c^4p^8 +20p^{11}c \\ && -12p^7c^4 -p^{10}-4p^{12}+18cp^{10}-6c^2p^8)\varepsilon_1\varepsilon_2^2, \\ \phi_{12} &:=& (2p^5c^3-4p^3c^4+2p^4c^3+2p^3c^5+2p^2c^5-4p^4c^4) +(9c^3p^2+4c^2p^4-13c^4p+4p^5c^2 \\ && +6p^3c^3 +9c^5p-15p^2c^4-2p^4c^3+4p^2c^5-4p^3c^4+6c^5)\varepsilon_1 +(-2p^7c+6p^7c^2+6p^6c^2 \\ && +2p^5c^4-6p^6c^3 -2cp^8 +2p^4c^4-6p^5c^3)\varepsilon_2 +(6p^3c^3-4p^2c^4-2c^2p^4-10p^3c^2 -9c^4p \\ && -2cp^4+17c^3p^2-2p^5c +13c^3p -9p^2c^2-6c^4)\varepsilon_1^2 +(6p^5c^2 -2p^4c^3-6p^6c-6p^7c \\ && +6p^6c^2-2p^5c^3+2p^7+2p^8)\varepsilon_1\varepsilon_2, \\ \phi_{21} &:=& (6c^{10}+12c^8p^5+69c^8p^4-77c^9p^3+20c^7p^6 +9c^6p^4-33c^7p^3+18c^5p^6-34c^6p^5 \\ && +45c^8p^2 -26c^7p^4+102c^8p^3-27c^9p-80c^9p^2+27c^7p^5 +6c^5p^7+8c^4p^8-12c^5p^8 \\ && -55c^6p^6-12c^6p^7 +8c^4p^9 +22c^{10}p^2-24c^9p^4+8c^{10}p^3+20c^{10}p)\varepsilon_1 +(4p^{10}c^4+20p^9c^6 \\ && -10p^{10}c^5-4p^5c^9 +2p^{11}c^4 -2c^9p^4-2p^6c^9+10p^7c^8+20p^6c^8+10c^8p^5 -20p^9c^5 \\ && +2c^4p^9-40p^7c^7-20c^7p^8 -10c^5p^8 -20c^7p^6 +40c^6p^8+20c^6p^7)\varepsilon_2 +(-12c^9+12c^3p^9 \\ && -47c^8p^4+10c^9p^3-86c^6p^4 -19c^7p^3+102c^5p^6-220c^6p^5+60c^8p^2+159c^7p^4 -40c^8p^3 \\ && +61c^5p^5+2c^4p^6-16p^7c^4 -18c^9p +3c^9p^2+92c^7p^5 +12c^3p^8+26c^5p^7-14c^4p^8 \\ && +53c^8p+35c^6p^3-76c^7p^2-79c^6p^6)\varepsilon_1^2 +(2p^5c^9-34c^8p^5+2c^3p^9+19c^8p^4 -10c^9p^3 \\ && +151c^7p^6-17c^5p^6 +39c^6p^5-45c^7p^4 +26c^8p^3 -2c^3p^{10}+3p^7c^4-6c^9p^2+23c^7p^5 \\ && +77c^5p^7-26c^4p^8+145c^5p^8-85c^6p^6-227c^6p^7-31c^4p^9 -2c^9p^4 -103c^6p^8+83p^7c^7 \\ && +51p^9c^5-2p^{10}c^4-4p^{11}c^3-27p^6c^8)\varepsilon_1\varepsilon_2 +(-4p^7c^8-2p^6c^8 -30p^{10}c^4-60p^{11}c^4 \\ && +40p^9c^5-2p^8c^8+12p^{11}c^3 +24c^7p^8+12c^7p^9-60p^9c^6+12p^{13}c^3 -30p^{10}c^6+40p^{11}c^5 \\ && -30p^{12}c^4 -4p^{13}c^2-2p^{14}c^2-2p^{12}c^2+24p^{12}c^3-30c^6p^8+80p^{10}c^5 +12p^7c^7)\varepsilon_2^2 \\ && +(-30c^8+69p^3c^5-16p^4c^4-212p^5c^4+58p^6c^3+331c^5p^4-232c^6p^4 +79c^7p^3 \\ && +117c^5p^6-65c^6p^5-21c^8p^2-3c^7p^4+5c^8p^3+379c^5p^5 -187c^4p^6+4p^7c^4-94c^3p^8 \\ && +44c^2p^8 +44c^2p^9+91c^7p-53c^8p -263c^6p^3+163c^7p^2-106c^6p^2-38c^3p^7)\varepsilon_1^3 \\ && +(36c^2p^{10} -10c^8p^5 -199c^3p^9-41c^8p^4+9c^7p^6+18c^2p^{11}-166c^6p^4+84c^7p^3 \\ && +165c^5p^6-297c^6p^5-18c^8p^2 +193c^7p^4-48c^8p^3-110c^3p^{10} +164c^5p^5-76c^4p^6 \\ && +47p^7c^4+123c^7p^5-78c^3p^8+18c^2p^9 -208c^5p^7 +351c^4p^8-219c^5p^8-62c^6p^6 \\ && +79c^6p^7+233c^4p^9+12c^3p^7)\varepsilon_1^2\varepsilon_2 +(-2p^{14}c+c^2p^{10} -4c^3p^9-8c^7p^6+21c^2p^{11} \\ && -2p^{12}c-72c^3p^{10}-4p^{13}c -4c^5p^7+6c^4p^8-102c^5p^8+c^6p^6 +45c^6p^7+118c^4p^9 \\ && +58p^9c^6 -114p^{10}c^5+121p^{11}c^4+102c^6p^8-22p^7c^7-212p^9c^5+233p^{10}c^4 -138p^{11}c^3 \\ && +40p^{12}c^2-70p^{12}c^3+20p^{13}c^2-14c^7p^8+p^7c^8+p^6c^8)\varepsilon_1\varepsilon_2^2 (-176p^3c^4+41p^4c^3 \\ && +769p^3c^5+293p^2c^5-388p^4c^4+27p^5c^3 +28p^6c^2-178p^5c^4-58p^6c^3+4p^7c^2+20cp^8 \\ && +20cp^9+603c^5p^4 -192c^6p^4+75c^7p^3+127c^5p^5+34c^4p^6+72c^7-234c^6p-24c^2p^8 \\ && +210c^7p-616c^6p^3+213c^7p^2-658c^6p^2-44c^3p^7)\varepsilon_1^4 +(-286p^5c^4+154p^6c^3-32p^7c^2 \\ && +136c^2p^{10}-56cp^{10}-198c^3p^9 -24cp^9+262c^5p^4-32cp^{11}-330c^6p^4+70c^7p^3 \\ && +438c^5p^6 -284c^6p^5 +68c^7p^4+636c^5p^5-580c^4p^6-210p^7c^4+22c^7p^5-154c^3p^8 \\ && +30c^2p^8 +198c^2p^9 +64c^5p^7+84c^4p^8-122c^6p^3+24c^7p^2-76c^6p^6+198c^3p^7)\varepsilon_1^3\varepsilon_2 \\ && +(4p^{12}+102c^2p^{10}-cp^{10} -158c^3p^9-c^7p^6+198c^2p^{11}-64p^{12}c -33cp^{11}-c^5p^6 \\ && -313c^3p^{10}-32p^13c+4p^7c^4+8p^{13} -6c^3p^8+4c^2p^9 -57c^5p^7+132c^4p^8-126c^5p^8 \\ && +10c^6p^6+26c^6p^7+272c^4p^9+4p^{14} +16c^6p^8 -p^7c^7-70p^9c^5+144p^{10}c^4-161p^{11}c^3 \\ && +100p^{12}c^2)\varepsilon_1^2\varepsilon_2^2. \end{eqnarray*} |
[1] | [ A. Betz,E. Sel'kov, Control of phosphofructokinase [PFK] activity in conditions simulating those of glycolysing yeast extract, FEBS Lett., 3 (1969): 5-9. |
[2] | [ S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer, New York, 1982. |
[3] | [ F. A. Davidson,J. Liu, Global stability of the attracting set of an enzyme-catalysed reaction system, Math. Comput. Model., 35 (2002): 1467-1481. |
[4] | [ F. A. Davidson,R. Xu,J. Liu, Existence and uniqueness of limit cycles in an enzyme-catalysed reaction system, Appl. Math. Comput., 127 (2002): 165-179. |
[5] | [ F. Dumortier,R. Roussarie,J. Sotomayor, Generic 3-parameter families of vector fields on the plane, unfolding a singularity with nilpotent linear part. The cusp case of codimension 3, Ergod. Theor. Dyn. Syst., 7 (1987): 375-413. |
[6] | [ D. Erle, Nonuniqueness of stable limit cycles in a class of enzyme catalyzed reactions, J. Math. Anal. Appl., 82 (1981): 386-391. |
[7] | [ D. Erle,K. H. Mayer,T. Plesser, The existence of stable limit cycles for enzyme catalyzed reactions with positive feedback, Math. Biosci., 44 (1979): 191-208. |
[8] | [ A. Goldbeter, Biochemical Oscillations and Cellular Rhythms: The Molecular Bases of Periodic and Chaotic Behaviour, Cambridge University Press, Cambridge, 1996. |
[9] | [ A. Goldbeter,G. Dupont, Allosteric regulation, cooperativity and biochemical oscillations, Biophy. Chem., 37 (1990): 341-353. |
[10] | [ J. Guckenheimer and P. Holmes, Nonlinear Oscillations Dynamical Systems and Bifurcations of Vector Fields, Springer, New York, 1990. |
[11] | [ B. Hassard,K. Jiang, Unfolding a point of degenerate Hopf bifurcation in an enzyme-catalyzed reaction model, SIAM J. Math. Anal., 23 (1992): 1291-1304. |
[12] | [ X. Hou,R. Yan,W. Zhang, Bifurcations of a polynomial differential system of degree n in biochemical reactions, Comput. Math. Appl., 43 (2002): 1407-1423. |
[13] | [ J. P. Kernévez,G. Joly,M. C. Duban,B. Bunow,D. Thomas, Hysteresis, oscillations, and pattern formation in realistic immmobilized enzyme systems, J. Math. Biol., 7 (1979): 41-56. |
[14] | [ Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, Appl. Math. Sci., 112, Springer, New York, 1995. |
[15] | [ Z. Leng,B. Gao,Z. Wang, Qualitative analysis of a generalized system of saturated enzyme reaction, Math. Comput. Model., 49 (2009): 556-562. |
[16] | [ J. Liu, Coordination restriction of enzyme-catalysed reaction systems as nonlinear dynamical systems, Proc. R. Soc. Lond. A, 455 (1999): 285-298. |
[17] | [ A. G. Marangoni, Enzymes Kinetics: A Modern Approach, Wiley-Interscience, Hoboken, NJ, 2003. |
[18] | [ L. Michaelis,M. L. Menten, Die kinetik der invertinwirkung, Biochem. Z., 49 (1913): 333-369. |
[19] | [ J. D. Murray, Mathematical Biology Ⅰ: An Introduction, Interdisciplinary Applied Mathematics 17, Springer, Berlin, 2002. |
[20] | [ H. G. Othmer,J. A. Aldridge, The effects of cell density and metabolite flux on cellular dynamics, J. Math. Biol., 5 (1978): 169-200. |
[21] | [ I. Stoleriu,F. A. Davidson,J. Liu, Effects of priodic input on the quasi-steady state assumptions for enzyme-catalyzed reactions, J. Math. Biol., 50 (2005): 115-132. |
[22] | [ Y. Tang,D. Huang,W. Zhang, Direct parametric analysis of an enzyme-catalyzed reaction model, IMA J. Appl. Math., 76 (2011): 876-898. |
[23] | [ Y. Tang,W. Zhang, Bogdanov-Takens bifurcation of a polynomial differential system in biochemical reaction, Comput. Math. Appl., 48 (2004): 869-883. |
[24] | [ R. Varón,M. García-Moreno,F. García-Molina,M. E. Fuentes,E. Arribas,J. M. Yago,M. Ll. Amo-Saus,E. Valero, Two new regulatory properties arising from the transient phase kinetics of monocyclic enzyme cascades, J. Math. Chem., 38 (2005): 437-450. |
[25] | [ Y. -Q. Ye et al., Theory of Limit Cycles, Transl. Math. Monogr. 66 American Mathematical Society, Providence, RI, 1986. |
[26] | [ Z. -F. Zhang, T. -R. Ding, W. -Z. Huang and Z. -X. Dong, Qualitative Theory of Differential Equations, Transl. Math. Monogr., 101 Amer. Math. Soc., Providence, RI, 1992. |
[27] | [ Q. Zhang, L. Liu and W. Zhang, Local bifurcations of the enzyme-catalyzed reaction comprising a branched network, Int. J. Bifur. Chaos, 25 (2015), 155081 (26 pages). |
1. | Juan Su, Zhaoxia Wang, Global Dynamics of an Enzyme-Catalyzed Reaction System, 2020, 43, 0126-6705, 1919, 10.1007/s40840-019-00780-2 | |
2. | Juan Su, Bifurcation Analysis of an Enzyme Reaction System with General Power of Autocatalysis, 2019, 29, 0218-1274, 1950079, 10.1142/S0218127419500792 | |
3. | Juan Su, Bing Xu, Local bifurcations of an enzyme-catalyzed reaction system with cubic rate law, 2018, 94, 0924-090X, 521, 10.1007/s11071-018-4375-y |
Parameters |
Equilibria | Limit cycles and homoclinic orbits | Region in bifurcation diagram | |||
saddle | unstable focus | saddle | ||||
saddle | unstable focus | saddle | one homoclinic rrbit | |||
saddle | unstable focus | saddle | one limit cycle | |||
saddle | stable focus | saddle | ||||
saddle | stable focus | saddle | ||||
saddle-node | ||||||
cusp | ||||||
saddle-node |
Parameters |
Equilibria | Limit cycles and homoclinic orbits | Region in bifurcation diagram | |||
saddle | unstable focus | saddle | ||||
saddle | unstable focus | saddle | one homoclinic rrbit | |||
saddle | unstable focus | saddle | one limit cycle | |||
saddle | stable focus | saddle | ||||
saddle | stable focus | saddle | ||||
saddle-node | ||||||
cusp | ||||||
saddle-node |