Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations

  • In this paper, we investigate the dynamics of a delayed logistic model with both impulsive and stochastic perturbations. The impulse is introduced at fixed moments and the stochastic perturbation is of white noise type which is assumed to be proportional to the population density. We start with the existence and uniqueness of the positive solution of the model, then establish sufficient conditions ensuring its global attractivity. By using the theory of integral Markov semigroups, we further derive sufficient conditions for the existence of the stationary distribution of the system. Finally, we perform the extinction analysis of the model. Numerical simulations illustrate the obtained theoretical results.

    Citation: Sanling Yuan, Xuehui Ji, Huaiping Zhu. Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations[J]. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1477-1498. doi: 10.3934/mbe.2017077

    Related Papers:

    [1] Martin Frank, Armin Fügenschuh, Michael Herty, Lars Schewe . The coolest path problem. Networks and Heterogeneous Media, 2010, 5(1): 143-162. doi: 10.3934/nhm.2010.5.143
    [2] Simone Göttlich, Camill Harter . A weakly coupled model of differential equations for thief tracking. Networks and Heterogeneous Media, 2016, 11(3): 447-469. doi: 10.3934/nhm.2016004
    [3] Maya Briani, Emiliano Cristiani . An easy-to-use algorithm for simulating traffic flow on networks: Theoretical study. Networks and Heterogeneous Media, 2014, 9(3): 519-552. doi: 10.3934/nhm.2014.9.519
    [4] Samitha Samaranayake, Axel Parmentier, Ethan Xuan, Alexandre Bayen . A mathematical framework for delay analysis in single source networks. Networks and Heterogeneous Media, 2017, 12(1): 113-145. doi: 10.3934/nhm.2017005
    [5] Qinglan Xia, Shaofeng Xu . On the ramified optimal allocation problem. Networks and Heterogeneous Media, 2013, 8(2): 591-624. doi: 10.3934/nhm.2013.8.591
    [6] Massimiliano Caramia, Giovanni Storchi . Evaluating the effects of parking price and location in multi-modal transportation networks. Networks and Heterogeneous Media, 2006, 1(3): 441-465. doi: 10.3934/nhm.2006.1.441
    [7] Santiago Moral, Victor Chapela, Regino Criado, Ángel Pérez, Miguel Romance . Efficient algorithms for estimating loss of information in a complex network: Applications to intentional risk analysis. Networks and Heterogeneous Media, 2015, 10(1): 195-208. doi: 10.3934/nhm.2015.10.195
    [8] Edward S. Canepa, Alexandre M. Bayen, Christian G. Claudel . Spoofing cyber attack detection in probe-based traffic monitoring systems using mixed integer linear programming. Networks and Heterogeneous Media, 2013, 8(3): 783-802. doi: 10.3934/nhm.2013.8.783
    [9] Delio Mugnolo . Gaussian estimates for a heat equation on a network. Networks and Heterogeneous Media, 2007, 2(1): 55-79. doi: 10.3934/nhm.2007.2.55
    [10] Serge Nicaise, Cristina Pignotti . Asymptotic analysis of a simple model of fluid-structure interaction. Networks and Heterogeneous Media, 2008, 3(4): 787-813. doi: 10.3934/nhm.2008.3.787
  • In this paper, we investigate the dynamics of a delayed logistic model with both impulsive and stochastic perturbations. The impulse is introduced at fixed moments and the stochastic perturbation is of white noise type which is assumed to be proportional to the population density. We start with the existence and uniqueness of the positive solution of the model, then establish sufficient conditions ensuring its global attractivity. By using the theory of integral Markov semigroups, we further derive sufficient conditions for the existence of the stationary distribution of the system. Finally, we perform the extinction analysis of the model. Numerical simulations illustrate the obtained theoretical results.


    [1] [ S. Aida,S. Kusuoka,D. Strook, On the support of Wiener functionals, Longman Scient. Tech., 284 (1993): 3-34.
    [2] [ T. Alkurdi,S. Hille,O. Gaans, Ergodicity and stability of a dynamical system perturbed by impulsive random interventions, J. Math. Anal. Appl., 407 (2013): 480-494.
    [3] [ L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, New York-London-Sydney, 1974.
    [4] [ I. Barbalat, Systems dequations differentielles d'osci d'oscillations nonlineaires, Rev. Roumaine Math. Pures Appl., 4 (1959): 267-270.
    [5] [ G. Ben Arous,R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale (Ⅱ), Probab. Theory Related Fields, 90 (1991): 377-402.
    [6] [ A. Freedman, Stochastic differential equations and their applications, Stochastic Differential Equations, 77 (1976): 75-148.
    [7] [ S. Foguel, Harris operators, Israel J. Math., 33 (1979): 281-309.
    [8] [ K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Springer-Verlag, New York, 1992.
    [9] [ R. Z. Has'minskii, Stochastic Stability of Differential Equations, Sijthoof & Noordhoof, Alphen aan den Rijn, The Netherlands, 1980.
    [10] [ D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001): 525-546.
    [11] [ D. Jiang,N. Shi, A note on nonautonomous logistic equation with random perturbation, J. Math. Anal. Appl., 303 (2005): 164-172.
    [12] [ D. Jiang,N. Shi,X. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., 340 (2008): 588-597.
    [13] [ I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer Verlag, Berlin, 1991.
    [14] [ Y. Kuang, Delay differential equations with applications in population dynamics, in Mathematics in Science and Engineering, Academic Press, New York, 1993.
    [15] [ X. Li,X. Mao, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discrete Contin. Dyn. Syst., 24 (2009): 523-545.
    [16] [ M. Liu,K. Wang, Persistence and extinction in stochastic non-autonomous logistic systems, J. Math. Anal. Appl., 375 (2011): 443-457.
    [17] [ M. Liu,K. Wang, On a stochastic logistic equation with impulsive perturbations, Comput. Math. Appl., 63 (2012): 871-886.
    [18] [ Z. Ma and Y. Zhou, Qualitative and Stability Method of Ordinary Differential Equation, Science Press, Beijing, 2001.
    [19] [ M. Mackey,M. Kamińska,R. Yvinec, Molecular distributions in gene regulatory dynamics, J. Theoret. Biol., 247 (2011): 84-96.
    [20] [ X. Mao, Stochastic Differential Equations and their Applications, Horwood publishing, Chichester, England, 1997.
    [21] [ J. Norris, Simplified Malliavin calculus, in SLeminaire de probabilitiLes XX, Lecture Notes in Mathematics, Springer, New York, 1024 (1986), 101–130.
    [22] [ K. Pichór,R. Rudnicki, Stability of Markov semigroups and applications to parabolic systems, J. Math. Anal. Appl., 215 (1997): 56-74.
    [23] [ K. Pichór,R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000): 668-685.
    [24] [ S. Ruan, Delay differential equations in single species dynamics, in Delay Differential Equations and Applications, Springer, Berlin, 205 (2006), 477–517.
    [25] [ R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad. Math., 43 (1995): 245-262.
    [26] [ J. Yan, On the oscillation of impulsive neutral delay differential equations, Chinese Ann. Math., 21A (2000): 755-762.
  • This article has been cited by:

    1. Armin Fügenschuh, Markus Bambach, Johannes Buhl, 2019, Chapter 41, 978-3-030-18499-5, 331, 10.1007/978-3-030-18500-8_41
    2. Fabian Gnegel, Michael Dudzinski, Armin Fügenschuh, Markus Stiemer, 2018, Chapter 64, 978-3-319-89919-0, 483, 10.1007/978-3-319-89920-6_64
    3. Markus Bambach, Armin Fügenschuh, Johannes Buhl, Felix Jensch, Johannes Schmidt, Mathematical Modeling and Optimization for Powder-Based Additive Manufacturing, 2020, 47, 23519789, 1159, 10.1016/j.promfg.2020.04.158
    4. Donatella Granata, Luca Lorenzi, An Evaluation of Propagation of the HIV-Infected Cells via Optimization Problem, 2022, 10, 2227-7390, 2021, 10.3390/math10122021
    5. Fabian Gnegel, Armin Fügenschuh, Michael Hagel, Sven Leyffer, Marcus Stiemer, A solution framework for linear PDE-constrained mixed-integer problems, 2021, 188, 0025-5610, 695, 10.1007/s10107-021-01626-1
    6. Jesse Beisegel, Johannes Buhl, Rameez Israr, Johannes Schmidt, Markus Bambach, Armin Fügenschuh, 2023, Chapter 5, 978-981-99-0775-5, 121, 10.1007/978-981-99-0776-2_5
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3468) PDF downloads(501) Cited by(8)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog