Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations

  • Received: 23 June 2016 Accepted: 27 September 2016 Published: 01 October 2017
  • MSC : Primary: 65C20, 65C30; Secondary: 92D25

  • In this paper, we investigate the dynamics of a delayed logistic model with both impulsive and stochastic perturbations. The impulse is introduced at fixed moments and the stochastic perturbation is of white noise type which is assumed to be proportional to the population density. We start with the existence and uniqueness of the positive solution of the model, then establish sufficient conditions ensuring its global attractivity. By using the theory of integral Markov semigroups, we further derive sufficient conditions for the existence of the stationary distribution of the system. Finally, we perform the extinction analysis of the model. Numerical simulations illustrate the obtained theoretical results.

    Citation: Sanling Yuan, Xuehui Ji, Huaiping Zhu. Asymptotic behavior of a delayed stochastic logistic model with impulsive perturbations[J]. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1477-1498. doi: 10.3934/mbe.2017077

    Related Papers:

    [1] Jérôme Droniou . Remarks on discretizations of convection terms in Hybrid mimetic mixed methods. Networks and Heterogeneous Media, 2010, 5(3): 545-563. doi: 10.3934/nhm.2010.5.545
    [2] Jinhu Zhao . Natural convection flow and heat transfer of generalized Maxwell fluid with distributed order time fractional derivatives embedded in the porous medium. Networks and Heterogeneous Media, 2024, 19(2): 753-770. doi: 10.3934/nhm.2024034
    [3] Steinar Evje, Kenneth H. Karlsen . Hyperbolic-elliptic models for well-reservoir flow. Networks and Heterogeneous Media, 2006, 1(4): 639-673. doi: 10.3934/nhm.2006.1.639
    [4] Verónica Anaya, Mostafa Bendahmane, David Mora, Ricardo Ruiz Baier . On a vorticity-based formulation for reaction-diffusion-Brinkman systems. Networks and Heterogeneous Media, 2018, 13(1): 69-94. doi: 10.3934/nhm.2018004
    [5] Stefan Berres, Ricardo Ruiz-Baier, Hartmut Schwandt, Elmer M. Tory . An adaptive finite-volume method for a model of two-phase pedestrian flow. Networks and Heterogeneous Media, 2011, 6(3): 401-423. doi: 10.3934/nhm.2011.6.401
    [6] Farman Ali Shah, Kamran, Dania Santina, Nabil Mlaiki, Salma Aljawi . Application of a hybrid pseudospectral method to a new two-dimensional multi-term mixed sub-diffusion and wave-diffusion equation of fractional order. Networks and Heterogeneous Media, 2024, 19(1): 44-85. doi: 10.3934/nhm.2024003
    [7] Xiongfa Mai, Ciwen Zhu, Libin Liu . An adaptive grid method for a singularly perturbed convection-diffusion equation with a discontinuous convection coefficient. Networks and Heterogeneous Media, 2023, 18(4): 1528-1538. doi: 10.3934/nhm.2023067
    [8] Zhangxin Chen . On the control volume finite element methods and their applications to multiphase flow. Networks and Heterogeneous Media, 2006, 1(4): 689-706. doi: 10.3934/nhm.2006.1.689
    [9] Rong Huang, Zhifeng Weng . A numerical method based on barycentric interpolation collocation for nonlinear convection-diffusion optimal control problems. Networks and Heterogeneous Media, 2023, 18(2): 562-580. doi: 10.3934/nhm.2023024
    [10] Brahim Amaziane, Leonid Pankratov, Andrey Piatnitski . An improved homogenization result for immiscible compressible two-phase flow in porous media. Networks and Heterogeneous Media, 2017, 12(1): 147-171. doi: 10.3934/nhm.2017006
  • In this paper, we investigate the dynamics of a delayed logistic model with both impulsive and stochastic perturbations. The impulse is introduced at fixed moments and the stochastic perturbation is of white noise type which is assumed to be proportional to the population density. We start with the existence and uniqueness of the positive solution of the model, then establish sufficient conditions ensuring its global attractivity. By using the theory of integral Markov semigroups, we further derive sufficient conditions for the existence of the stationary distribution of the system. Finally, we perform the extinction analysis of the model. Numerical simulations illustrate the obtained theoretical results.


    [1] [ S. Aida,S. Kusuoka,D. Strook, On the support of Wiener functionals, Longman Scient. Tech., 284 (1993): 3-34.
    [2] [ T. Alkurdi,S. Hille,O. Gaans, Ergodicity and stability of a dynamical system perturbed by impulsive random interventions, J. Math. Anal. Appl., 407 (2013): 480-494.
    [3] [ L. Arnold, Stochastic Differential Equations: Theory and Applications, Wiley, New York-London-Sydney, 1974.
    [4] [ I. Barbalat, Systems dequations differentielles d'osci d'oscillations nonlineaires, Rev. Roumaine Math. Pures Appl., 4 (1959): 267-270.
    [5] [ G. Ben Arous,R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale (Ⅱ), Probab. Theory Related Fields, 90 (1991): 377-402.
    [6] [ A. Freedman, Stochastic differential equations and their applications, Stochastic Differential Equations, 77 (1976): 75-148.
    [7] [ S. Foguel, Harris operators, Israel J. Math., 33 (1979): 281-309.
    [8] [ K. Gopalsamy, Stability and Oscillations in Delay Differential Equations of Population Dynamics, Springer-Verlag, New York, 1992.
    [9] [ R. Z. Has'minskii, Stochastic Stability of Differential Equations, Sijthoof & Noordhoof, Alphen aan den Rijn, The Netherlands, 1980.
    [10] [ D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001): 525-546.
    [11] [ D. Jiang,N. Shi, A note on nonautonomous logistic equation with random perturbation, J. Math. Anal. Appl., 303 (2005): 164-172.
    [12] [ D. Jiang,N. Shi,X. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., 340 (2008): 588-597.
    [13] [ I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Springer Verlag, Berlin, 1991.
    [14] [ Y. Kuang, Delay differential equations with applications in population dynamics, in Mathematics in Science and Engineering, Academic Press, New York, 1993.
    [15] [ X. Li,X. Mao, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discrete Contin. Dyn. Syst., 24 (2009): 523-545.
    [16] [ M. Liu,K. Wang, Persistence and extinction in stochastic non-autonomous logistic systems, J. Math. Anal. Appl., 375 (2011): 443-457.
    [17] [ M. Liu,K. Wang, On a stochastic logistic equation with impulsive perturbations, Comput. Math. Appl., 63 (2012): 871-886.
    [18] [ Z. Ma and Y. Zhou, Qualitative and Stability Method of Ordinary Differential Equation, Science Press, Beijing, 2001.
    [19] [ M. Mackey,M. Kamińska,R. Yvinec, Molecular distributions in gene regulatory dynamics, J. Theoret. Biol., 247 (2011): 84-96.
    [20] [ X. Mao, Stochastic Differential Equations and their Applications, Horwood publishing, Chichester, England, 1997.
    [21] [ J. Norris, Simplified Malliavin calculus, in SLeminaire de probabilitiLes XX, Lecture Notes in Mathematics, Springer, New York, 1024 (1986), 101–130.
    [22] [ K. Pichór,R. Rudnicki, Stability of Markov semigroups and applications to parabolic systems, J. Math. Anal. Appl., 215 (1997): 56-74.
    [23] [ K. Pichór,R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000): 668-685.
    [24] [ S. Ruan, Delay differential equations in single species dynamics, in Delay Differential Equations and Applications, Springer, Berlin, 205 (2006), 477–517.
    [25] [ R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad. Math., 43 (1995): 245-262.
    [26] [ J. Yan, On the oscillation of impulsive neutral delay differential equations, Chinese Ann. Math., 21A (2000): 755-762.
  • This article has been cited by:

    1. Lorenzo Botti, Daniele A. Di Pietro, Jérôme Droniou, A Hybrid High-Order method for the incompressible Navier–Stokes equations based on Temam's device, 2019, 376, 00219991, 786, 10.1016/j.jcp.2018.10.014
    2. Vikendra Singh, A Local Meshless Method for Steady State Convection Dominated Flows, 2017, 14, 0219-8762, 1750067, 10.1142/S0219876217500670
    3. Jerome Droniou, Finite volume schemes for diffusion equations: Introduction to and review of modern methods, 2014, 24, 0218-2025, 1575, 10.1142/S0218202514400041
    4. Claire Chainais-Hillairet, Maxime Herda, Simon Lemaire, Julien Moatti, Long-time behaviour of hybrid finite volume schemes for advection–diffusion equations: linear and nonlinear approaches, 2022, 151, 0029-599X, 963, 10.1007/s00211-022-01289-w
    5. Ophélie Angelini, Konstantin Brenner, Danielle Hilhorst, A finite volume method on general meshes for a degenerate parabolic convection–reaction–diffusion equation, 2013, 123, 0029-599X, 219, 10.1007/s00211-012-0485-5
    6. Daniele A. Di Pietro, Jérôme Droniou, Alexandre Ern, A Discontinuous-Skeletal Method for Advection-Diffusion-Reaction on General Meshes, 2015, 53, 0036-1429, 2135, 10.1137/140993971
    7. Daniele Antonio Di Pietro, Jérôme Droniou, 2020, Chapter 9, 978-3-030-37202-6, 421, 10.1007/978-3-030-37203-3_9
    8. A. Abushaikha, K. Terekhov, Adaptive Dynamic Grids and Mimetic Finite Difference Method for Miscible Displacement Problem, 2024, 45, 1995-0802, 143, 10.1134/S1995080224010025
  • Reader Comments
  • © 2017 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3528) PDF downloads(501) Cited by(9)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog