[1]
|
[ S. Aida,S. Kusuoka,D. Strook, On the support of Wiener functionals, Longman Scient. Tech., 284 (1993): 3-34.
|
[2]
|
[ T. Alkurdi,S. Hille,O. Gaans, Ergodicity and stability of a dynamical system perturbed by impulsive random interventions, J. Math. Anal. Appl., 407 (2013): 480-494.
|
[3]
|
[ L. Arnold,
Stochastic Differential Equations: Theory and Applications, Wiley, New York-London-Sydney, 1974.
|
[4]
|
[ I. Barbalat, Systems dequations differentielles d'osci d'oscillations nonlineaires, Rev. Roumaine Math. Pures Appl., 4 (1959): 267-270.
|
[5]
|
[ G. Ben Arous,R. Léandre, Décroissance exponentielle du noyau de la chaleur sur la diagonale (Ⅱ), Probab. Theory Related Fields, 90 (1991): 377-402.
|
[6]
|
[ A. Freedman, Stochastic differential equations and their applications, Stochastic Differential Equations, 77 (1976): 75-148.
|
[7]
|
[ S. Foguel, Harris operators, Israel J. Math., 33 (1979): 281-309.
|
[8]
|
[ K. Gopalsamy,
Stability and Oscillations in Delay Differential Equations of Population Dynamics, Springer-Verlag, New York, 1992.
|
[9]
|
[ R. Z. Has'minskii,
Stochastic Stability of Differential Equations, Sijthoof & Noordhoof, Alphen aan den Rijn, The Netherlands, 1980.
|
[10]
|
[ D. Higham, An algorithmic introduction to numerical simulation of stochastic differential equations, SIAM Review, 43 (2001): 525-546.
|
[11]
|
[ D. Jiang,N. Shi, A note on nonautonomous logistic equation with random perturbation, J. Math. Anal. Appl., 303 (2005): 164-172.
|
[12]
|
[ D. Jiang,N. Shi,X. Li, Global stability and stochastic permanence of a non-autonomous logistic equation with random perturbation, J. Math. Anal. Appl., 340 (2008): 588-597.
|
[13]
|
[ I. Karatzas and S. Shreve,
Brownian Motion and Stochastic Calculus, Springer Verlag, Berlin, 1991.
|
[14]
|
[ Y. Kuang, Delay differential equations with applications in population dynamics, in Mathematics in Science and Engineering, Academic Press, New York, 1993.
|
[15]
|
[ X. Li,X. Mao, Population dynamical behavior of non-autonomous Lotka-Volterra competitive system with random perturbation, Discrete Contin. Dyn. Syst., 24 (2009): 523-545.
|
[16]
|
[ M. Liu,K. Wang, Persistence and extinction in stochastic non-autonomous logistic systems, J. Math. Anal. Appl., 375 (2011): 443-457.
|
[17]
|
[ M. Liu,K. Wang, On a stochastic logistic equation with impulsive perturbations, Comput. Math. Appl., 63 (2012): 871-886.
|
[18]
|
[ Z. Ma and Y. Zhou,
Qualitative and Stability Method of Ordinary Differential Equation, Science Press, Beijing, 2001.
|
[19]
|
[ M. Mackey,M. Kamińska,R. Yvinec, Molecular distributions in gene regulatory dynamics, J. Theoret. Biol., 247 (2011): 84-96.
|
[20]
|
[ X. Mao,
Stochastic Differential Equations and their Applications, Horwood publishing, Chichester, England, 1997.
|
[21]
|
[ J. Norris, Simplified Malliavin calculus, in SLeminaire de probabilitiLes XX, Lecture Notes
in Mathematics, Springer, New York, 1024 (1986), 101–130.
|
[22]
|
[ K. Pichór,R. Rudnicki, Stability of Markov semigroups and applications to parabolic systems, J. Math. Anal. Appl., 215 (1997): 56-74.
|
[23]
|
[ K. Pichór,R. Rudnicki, Continuous Markov semigroups and stability of transport equations, J. Math. Anal. Appl., 249 (2000): 668-685.
|
[24]
|
[ S. Ruan, Delay differential equations in single species dynamics, in Delay Differential Equations and Applications, Springer, Berlin, 205 (2006), 477–517.
|
[25]
|
[ R. Rudnicki, On asymptotic stability and sweeping for Markov operators, Bull. Polish Acad. Math., 43 (1995): 245-262.
|
[26]
|
[ J. Yan, On the oscillation of impulsive neutral delay differential equations, Chinese Ann. Math., 21A (2000): 755-762.
|