Citation: Xue Zhang, Shuni Song, Jianhong Wu. Onset and termination of oscillation of disease spread through contaminated environment[J]. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1515-1533. doi: 10.3934/mbe.2017079
[1] | Mingzhu Qu, Chunrui Zhang, Xingjian Wang . Analysis of dynamic properties on forest restoration-population pressure model. Mathematical Biosciences and Engineering, 2020, 17(4): 3567-3581. doi: 10.3934/mbe.2020201 |
[2] | Bruno Buonomo, Marianna Cerasuolo . The effect of time delay in plant--pathogen interactions with host demography. Mathematical Biosciences and Engineering, 2015, 12(3): 473-490. doi: 10.3934/mbe.2015.12.473 |
[3] | Bruno Buonomo, Alberto d’Onofrio, Deborah Lacitignola . Rational exemption to vaccination for non-fatal SIS diseases: Globally stable and oscillatory endemicity. Mathematical Biosciences and Engineering, 2010, 7(3): 561-578. doi: 10.3934/mbe.2010.7.561 |
[4] | Guangxun Sun, Binxiang Dai . Stability and bifurcation of a delayed diffusive predator-prey system with food-limited and nonlinear harvesting. Mathematical Biosciences and Engineering, 2020, 17(4): 3520-3552. doi: 10.3934/mbe.2020199 |
[5] | Honghua Bin, Daifeng Duan, Junjie Wei . Bifurcation analysis of a reaction-diffusion-advection predator-prey system with delay. Mathematical Biosciences and Engineering, 2023, 20(7): 12194-12210. doi: 10.3934/mbe.2023543 |
[6] | Shunyi Li . Hopf bifurcation, stability switches and chaos in a prey-predator system with three stage structure and two time delays. Mathematical Biosciences and Engineering, 2019, 16(6): 6934-6961. doi: 10.3934/mbe.2019348 |
[7] | Zuolin Shen, Junjie Wei . Hopf bifurcation analysis in a diffusive predator-prey system with delay and surplus killing effect. Mathematical Biosciences and Engineering, 2018, 15(3): 693-715. doi: 10.3934/mbe.2018031 |
[8] | Hongying Shu, Wanxiao Xu, Zenghui Hao . Global dynamics of an immunosuppressive infection model with stage structure. Mathematical Biosciences and Engineering, 2020, 17(3): 2082-2102. doi: 10.3934/mbe.2020111 |
[9] | Peng Feng, Menaka Navaratna . Modelling periodic oscillations during somitogenesis. Mathematical Biosciences and Engineering, 2007, 4(4): 661-673. doi: 10.3934/mbe.2007.4.661 |
[10] | Swadesh Pal, Malay Banerjee, Vitaly Volpert . Spatio-temporal Bazykin’s model with space-time nonlocality. Mathematical Biosciences and Engineering, 2020, 17(5): 4801-4824. doi: 10.3934/mbe.2020262 |
We consider the spread of a disease carried by a biological species and transmitted through contaminated environment. We assume the diseased individuals move randomly in a spatial domain
∂u∂t=dΔu+ru[1−a1∫ΩP1(x,y)u(y,t−τ1)dy−a2∫ΩP2(x,y)u(y,t−τ2)dy], | (1) |
where
Note that we assume the time for the biosafety intervention is much slower than the virus spread in the environment, and hence the delay in the spread process is ignored.
u(x,t)=0,x∈∂Ωandt∈(0,+∞) |
which implies that the exterior environment is hostile and the species cannot move across the boundary of environment, and initial condition satisfies
u(x,s)=η(x,s)≥0,x∈Ωandt∈[−τ,0], |
where
This study is motivated by the spread of avian influenza, an infectious disease of birds that is caused by influenza virus type A strains. The involvement of different bird species and their interactions with environments together lead to complex transmission pathways which include birds to birds, birds to mammals, birds to human, birds to insects, human to human, and environment to birds/mammals/human and vice-versa [9]. How to model the interplay of different transmission pathways and its impact on the spread of avian influenza imposes significant challenge [1][11][16]. In the study of Wang et al.[17], a system of reaction diffusion equations on unbounded domains was proposed to establish the existence and nonexistence of traveling wave solutions of a reaction-convection epidemic model for the spatial spread of avian influenza involving a wide range of bird species and environmental contamination. In the earlier studies of Gourley et al.[6], the role of migrating birds were examined using partial differential equations and their reduction to delay differential systems. Here we focus on the spread of avian influenza among the wild birds, where the virus is shredded into the environment, through which the virus further spreads and infects other wild birds coming to contact with contaminated environment. The parameter
Our goal in this paper is to 1). Determine whether there is a critical value of
We use
{−dΔu(x)=ru(x),x∈Ω,u(x)=0,x∈∂Ω, |
and
The positive steady state solutions of (1) satisfy the following equation:
{dΔu+ru[1−2∑i=1ai∫ΩPi(x,y)u(y)dy]=0,x∈Ω,u(x)=0,x∈∂Ω. | (2) |
Let
N(dΔ+r∗)=span{ϕ},R(dΔ+r∗)={y∈L2(Ω)|<ϕ,y>=0}. |
Then we have the following decompositions:
X=N(dΔ+r∗)⊕ˆX,Y=N(dΔ+r∗)⊕R(dΔ+r∗), |
where
ˆX={y∈X|<ϕ,y>=0}. |
Then we have the following result on positive steady state solution of model (1).
Theorem 2.1. There exist
ur(x)=αr(r−r∗)[ϕ(x)+(r−r∗)ξr(x)],r∈[r∗,r∗]. |
Moreover,
αr∗=∫Ωϕ2(x)dxr∗(2∑i=1ai∫Ω∫ΩPi(x,y)ϕ2(x)ϕ(y)dxdy) |
and
(dΔ+r∗)ξ+ϕ[1−r∗αr∗(2∑i=1ai∫ΩPi(x,y)ϕ(y)dy)]=0. |
The proof is standard. Namely, we let
f(ξr,αr,r)=(dΔ+r∗)ξr+ϕ(x)+(r−r∗)ξr−rαr(ϕ(x)+(r−r∗)ξr)⋅(2∑i=1ai∫ΩPi(x,y)(ϕ(y)+(r−r∗)ξ(y))dy), |
then
D(ξr,αr)f(ξr∗,αr∗,r∗)(η,ϵ)=(dΔ+r∗)η−rϕ(x)ϵ(2∑i=1ai∫ΩPi(x,y)ϕ(y)dy). |
Under the comparability condition, we have
f(ξr,αr,r)=0,r∈[r∗,r∗]. |
Therefore,
In what follows, we always assume that
It is easy to see that the linearized equation of the model (1) at the steady state solution
{∂v(x,t)∂t=dΔv(x,t)+rv(x,t)[1−(2∑i=1ai∫ΩPi(x,y)ur(y)dy)]−rur(x)⋅(2∑i=1ai∫ΩPi(x,y)v(y,t−τi)dy),x∈Ω,t>0,v(x,t)=0,x∈∂Ω, t>0,v(x,t)=η(x,t),(x,t)∈Ω×[−τ,0], | (3) |
where
Define a operator
Ar=dΔ+r[1−(2∑i=1ai∫ΩPi(x,y)ur(y)dy)]. |
From [13],
Λ(r,λ,τ1,τ2)ψ=Arψ−rur(2∑i=1aie−λτi∫ΩPi(x,y)ψ(y)dy)−λψ=0, | (4) |
where
σ(Aτ1τ2,r)={λ∈C:Λ(r,λ,τ1,τ2)ψ=0,forψ∈XC∖{0}}, |
where
Aτ1τ2,rψ=˙ψ, |
and
D(Aτ1τ2,r)={ψ∈CC∩C1C:ψ(0)∈XC,˙ψ(0)=Arψ(0)−rur(2∑i=1ai∫ΩPi(x,y)ψ(y,−τi)dy)}, |
where
Then
Arψ−rur(2∑i=1aie−iωτi∫ΩPi(x,y)ψ(y)dy)−iωψ=0 |
is solvable for some
Next, we discuss the effects of two nonlocal delays on the stability at the positive steady state solution
Case 1.
In this case, the equation (4) can be reduced into
Λ(r,λ,0,τ2)ψ=Arψ−rur[a1∫ΩP1(x,y)ψ(y)dy+a2e−λτ2∫ΩP2(x,y)ψ(y)dy]−λψ=0. | (5) |
If there exit
⟨Arψτ2−rur∫Ω(a1P1(x,y)+a2e−iωτ2τ2P2(x,y))ψτ2(y)dy−iωτ2ψτ2,ψτ2⟩=0. | (6) |
Separating the real and imaginary parts, we obtain
⟨ωτ2ψτ2,ψτ2⟩=Im⟨−rur∫Ω(a1P1(x,y)+a2e−iωτ2τ2P2(x,y))ψτ2(y)dy,ψτ2⟩≤2∑i=1|⟨rur∫ΩaiPi(x,y)ψτ2(y)dy,ψτ2⟩|. |
Thus,
ωτ2r−r∗≤(a1+a2)rαr(‖ | (7) |
It implies that
Ignoring a scalar factor, we know that
\begin{aligned}\psi_{\tau_2}=\beta_{\tau_2}\phi+(r-r_*)z_{\tau_2}, \langle \phi, z_{\tau_2} \rangle=0, \beta_{\tau_2}\geq 0, \\ \|\psi_{\tau_2}\|_{Y_{\mathbb{C}}}^2=\beta_{\tau_2}^2\|\phi\|_{Y_{\mathbb{C}}}^2+(r-r_*)^2\|z_{\tau_2}\|_{Y_\mathbb{C}}^2=\|\phi\|_{Y_\mathbb{C}}^2. \end{aligned} | (8) |
Substituting (8) and
\begin{aligned}g_1(z_{\tau_2}, \beta_{\tau_2}, k_{\tau_2}, r)=&(d\Delta+r_*)z_{\tau_2}+[1-ik_{\tau_2}-\displaystyle{\sum\limits_{i=1}^{2}}\int_{\Omega}a_ir\alpha_rP_i(x, y)(\phi(y)+(r-r_*)\\&\cdot\xi_r(y))dy] (\beta_{\tau_2}\phi+(r-r_*)z_{\tau_2})-r\alpha_r(\phi(x)+(r-r_*)\xi_r(x))\\ &\cdot\int_{\Omega}(a_1P_1(x, y)+a_2e^{-i\omega_{\tau_2}\tau_2}P_2(x, y))(\beta_{\tau_2}\phi+(r-r_*)z_{\tau_2})dy\\=&0, \\ g_2(z_{\tau_2}, \beta_{\tau_2}, k_{\tau_2}, r)=&(\beta_{\tau_2}^2-1)\|\phi\|_{Y_{\mathbb{C}}}^2+(r-r_*)^2\|z_{\tau_2}\|_{Y_\mathbb{C}}^2=0. \end{aligned} |
Define
G_{\tau_2}(z_{\tau_2, r_*}, \beta_{\tau_2, r_*}, k_{\tau_2, r_*}, r_*)=0. |
Denote
\tilde a_i=a_i\int_{\Omega}\int_{\Omega}P_i(x, y)\phi^2(x)\phi(y)dxdy, \;\;\text{for}\;\; i=1, 2. |
Separating the real and imaginary parts of
\left\{\begin{aligned} (d\Delta+r_*)z_{\tau_2, r_*}^1+&[1-\begin{pmatrix}\displaystyle{\sum\limits_{i=1}^{2}}a_ir_*\alpha_{r_*}\int_{\Omega}P_i(x, y)\phi(y)dy\end{pmatrix}] \phi-r_*\alpha_{r_*}\phi(x)\\&\cdot\int_{\Omega}(a_1P_1(x, y)+a_2P_2(x, y)\cos(\omega_{\tau_2, r_*}\tau_2))\phi(y)dy=0, \\ (d\Delta+r_*)z_{\tau_2, r_*}^2-&k_{\tau_2, r_*}\phi+a_2r_*\alpha_{r_*}\phi(x)\int_{\Omega}P_2(x, y)\phi(y)dy\sin(\omega_{\tau_2, r_*}\tau_2)=0, \end{aligned}\right. | (9) |
where
From Theorem (2.1), it can be seen that Eq. (9) is solvable if and only if
\begin{aligned}z_{\tau_2, r_*}&=(1-ik_{\tau_2, r_*})\xi_{r_*}, k_{\tau_2, r_*}=\dfrac{\sqrt{\tilde{a}_2^2-\tilde{a}_1^2}}{\tilde{a}_1+\tilde{a}_2}, (\tilde{a}_2>\tilde{a}_1)\\\beta_{\tau_2, r_*}&=1, \omega_{\tau_2, r_*}\tau_2=\arccos(-\dfrac{\tilde a_1}{\tilde a_2})+2n\pi, n=0, 1, 2, \cdots.\end{aligned} |
Case 2.
Assume that
If there exit
A_r\psi_{\tau_1}-ru_r\int_\Omega \begin{pmatrix}a_1e^{-i\omega_{\tau_1}\tau_1}P_1(x, y)+a_2P_2(x, y)\end{pmatrix} \psi_{\tau_1}(y)dy-i\omega_{\tau_1}\psi_{\tau_1}=0, |
then
\begin{aligned}g_1(z_{\tau_1}, \beta_{\tau_1}, k_{\tau_1}, r)&=(d\Delta+r_*)z_{\tau_1}+[1-ik_{\tau_1}-\displaystyle{\sum\limits_{i=1}^{2}}\int_{\Omega}a_ir\alpha_rP_i(x, y)(\phi(y)+(r-r_*)\\&\cdot\xi_r(y))dy] (\beta_{\tau_1}\phi+(r-r_*)z_{\tau_1})-r\alpha_r(\phi(x)+(r-r_*)\xi_r(x))\\ &\cdot\int_{\Omega}(a_1e^{-i\omega_{\tau_1}\tau_1}P_1(x, y)+a_2P_2(x, y))(\beta_{\tau_1}\phi+(r-r_*)z_{\tau_1})dy=0, \\ g_2(z_{\tau_1}, \beta_{\tau_1}, k_{\tau_1}, r)&=(\beta_{\tau_1}^2-1)\|\phi\|_{Y_{\mathbb{C}}}^2+(r-r_*)^2\|z_{\tau_1}\|_{Y_\mathbb{C}}^2=0. \end{aligned} |
Moreover, it is easy to see that
\begin{aligned}&z_{\tau_1, r_*}=(1-ik_{\tau_1, r_*})\xi_{r_*}, k_{\tau_1, r_*}=\dfrac{\sqrt{\tilde a_1^2-\tilde a_2^2}}{\tilde a_1+\tilde a_2}, (\tilde a_1>\tilde a_2)\\ &\beta_{\tau_1, r_*}=1, \omega_{\tau_1, r_*}\tau_1=\arccos(-\dfrac{\tilde a_2}{\tilde a_1})+2n\pi, n=0, 1, 2, \cdots.\end{aligned} |
Case 3.
In this case, we consider
\begin{aligned}&\left\langle \omega_{\tau_1\tau_2}\psi_{\tau_1\tau_2}, \psi_{\tau_1\tau_2} \right\rangle\\ =&\text{Im}\left\langle-ru_r\int_{\Omega}\begin{pmatrix}a_1e^{-i\omega_{\tau_1\tau_2}\tau_1}P_1(x, y)+a_2e^{-i\omega_{\tau_1\tau_2}\tau_2}P_2(x, y)\end{pmatrix}\psi_{\tau_1\tau_2}(y)dy, \psi_{\tau_1\tau_2}\right\rangle. \end{aligned} |
Therefore,
\begin{aligned}\psi_{\tau_1\tau_2}=\beta_{\tau_1\tau_2}\phi+(r-r_*)z_{\tau_1\tau_2}, \langle \phi, z_{\tau_1\tau_2} \rangle=0, \beta_{\tau_1\tau_2}\geq 0, \\ \|\psi_{\tau_1\tau_2}\|_{Y_{\mathbb{C}}}^2=\beta_{\tau_1\tau_2}^2\|\phi\|_{Y_{\mathbb{C}}}^2+(r-r_*)^2\|z_{\tau_1\tau_2}\|_{Y_\mathbb{C}}^2=\|\phi\|_{Y_\mathbb{C}}^2. \end{aligned} | (10) |
Based on (10) and
\begin{aligned}g_1(z_{\tau_1\tau_2}, \beta_{\tau_1\tau_2}, k_{\tau_1\tau_2}, r)=&(d\Delta+r_*)z_{\tau_1\tau_2}+[1-ik_{\tau_1\tau_2}-\displaystyle{\sum\limits_{i=1}^{2}}\int_{\Omega}a_ir\alpha_rP_i(x, y)(\phi(y)\\&+(r-r_*)\xi_r(y))dy] (\beta_{\tau_1\tau_2}\phi+(r-r_*)z_{\tau_1\tau_2})-r\alpha_r(\phi(x)\\&+(r-r_*)\xi_r(x)) \displaystyle{\sum\limits_{i=1}^2}\int_{\Omega}a_ie^{-i\omega_{\tau_1\tau_2}\tau_i}P_i(x, y)(\beta_{\tau_1\tau_2}\phi\\&+(r-r_*)z_{\tau_1\tau_2})dy=0, \\ g_2(z_{\tau_1\tau_2}, \beta_{\tau_1\tau_2}, k_{\tau_1\tau_2}, r)=&(\beta_{\tau_1\tau_2}^2-1)\|\phi\|_{Y_{\mathbb{C}}}^2+(r-r_*)^2\|z_{\tau_1\tau_2}\|_{Y_\mathbb{C}}^2=0. \end{aligned} |
Define
\begin{aligned}&z_{\tau_1\tau_2, r_*}=(1-ik_{\tau_1\tau_2, r_*})\xi_{r_*}, k_{\tau_1\tau_2, r_*}=\dfrac{\sqrt{\tilde{a}_2^2-\tilde{a}_1^2}}{\tilde{a}_1+\tilde{a}_2}, (\tilde{a}_2>\tilde{a}_1) \\&\beta_{\tau_1\tau_2, r_*}=1, \omega_{\tau_1\tau_2, r_*}\tau_2=\arccos(-\dfrac{\tilde a_1}{\tilde a_2})+2n\pi, n=0, 1, 2, \cdots.\end{aligned} |
Case 4.
Assume that there exit
A_r\psi_{\tau_2\tau_1}-ru_r\begin{pmatrix}\displaystyle{\sum\limits_{i=1}^2}a_ie^{-i\omega_{\tau_2\tau_1}\tau_i}\int_\Omega P_i(x, y)\psi_{\tau_2\tau_1}(y)dy\end{pmatrix}-i\omega_{\tau_2\tau_1}\psi_{\tau_2\tau_1}=0. |
By the similar analysis as in the Case 3, the following result can be obtained:
\begin{aligned}&z_{\tau_2\tau_1, r_*}=(1-ik_{\tau_2\tau_1, r_*})\xi_{r_*}, k_{\tau_2\tau_1, r_*}=\dfrac{\sqrt{\tilde{a}_1^2-\tilde{a}_2^2}}{\tilde{a}_1+\tilde{a}_2}, (\tilde{a}_1>\tilde{a}_2) \\&\beta_{\tau_2\tau_1, r_*}=1, \omega_{\tau_2\tau_1, r_*}\tau_1=\arccos(-\dfrac{\tilde a_2}{\tilde a_1})+2n\pi, n=0, 1, 2, \cdots.\end{aligned} |
Since stability analysis is similar for the above four cases, we will only discuss Case 3. For other cases, we omit them in this paper.
Theorem 3.1. There exists a continuously differentiable mapping
r\mapsto (z_{\tau_1\tau_2, r}, \beta_{\tau_1\tau_2, r}, k_{\tau_1\tau_2, r}) |
from
Proof. Define
\begin{aligned}T_1(z, \beta, k, \theta)=&(d\Delta+r_*)z+[1-r_*\alpha_{r_*}(a_1e^{-i\omega_{\tau_1\tau_2, r_*}\tau_1}\int_{\Omega}P_1(x, y)\phi(y)dy \\&+(a_2-i\sqrt{a_2^2-a_1^2})\int_{\Omega}P_2(x, y)\phi(y)dy)-\dfrac{\sqrt{a_2^2-a_1^2}}{a_1+a_2}i] \phi\beta-i\phi k\\&-r\alpha_r(a_1i-\sqrt{a_2^2-a_1^2})\phi(x)\theta\int_{\Omega}P_2(x, y)\phi(y)dy, \\ T_2(z, \beta, k, \theta)=&2\|\phi\|_{Y_{\mathbb{C}}}^2\beta.\end{aligned} |
Then
Now, from the analysis above, we can obtain the following conclusion:
Remark 1. For
\Delta(r, i\omega_{\tau_1\tau_2}, \tau_1, \tau_2)\psi_{\tau_1\tau_2}=0, \omega_{\tau_1\tau_2}>0, \tau_2>0, \psi\in X_{\mathbb{C}}\backslash\{0\} |
has a solution
\omega_{\tau_1\tau_2}=(r-r_*)k_{\tau_1\tau_2}, |
where
Theorem 4.1. When
The proof is essentially same as Proposition 2.9 in [3], hence is omitted.
Next, we introduce the adjoint operator of
\Delta^*(r, i\omega_{\tau_1\tau_2}, \tau_1, \tau_2)\psi^*=A_r\psi^*+i\omega_{\tau_1\tau_2}\psi^*-r\displaystyle{\sum\limits_{i=1}^2}\int_{\Omega}a_ie^{i\omega_{\tau_1\tau_2}\tau_i}P_i(x, y)u_r(y)\psi^*(y)dy. |
Similar to the analysis of (4), we conclude that the following adjoint equation
A_r\psi^*-r\begin{pmatrix}\displaystyle{\sum\limits_{i=1}^2}a_ie^{i\omega_{\tau_1\tau_2}\tau_i}\int_{\Omega}P_i(x, y)u_r(y)\psi^*(y)dy\end{pmatrix}+i\omega^*_{\tau_1\tau_2}\psi^*=0 | (11) |
is solvable and the solution is denoted by
\sigma(\Delta(r, i\omega_{\tau_1\tau_2}, \tau_1, \tau_2))=\sigma(\Delta^*(r, i\omega_{\tau_1\tau_2}, \tau_1, \tau_2)). |
Define the following function
\begin{aligned}S_n(r):=&\int_{\Omega}\bar{\psi^*}(x)\psi(x)dx-ra_1\tau_1\int_{\Omega}\int_{\Omega}P_1(x, y)u_r(x)\bar{\psi^*}(x)\psi(y)dxdye^{-i\omega\tau_1}\\ &-ra_2\tau_{2n}\int_{\Omega}\int_{\Omega}P_2(x, y)u_r(x)\bar{\psi^*}(x)\psi(y)dxdye^{-i\omega\tau_{2n}}.\end{aligned} |
It is easy to see that
\begin{aligned}S_n(r)\rightarrow &[\dfrac{(a_1+a_2)\int_{\Omega}\int_{\Omega}P_2(x, y)\phi^2(x)\phi(y)dxdy}{\displaystyle{\sum\limits_{i=1}^2}a_i\int_{\Omega}\int_{\Omega}P_i(x, y)\phi^2(x)\phi(y)dxdy} (\arccos(-\dfrac{a_1}{a_2}\cos{(\omega_{\tau_1\tau_2, r_*}\tau_1)})+2n\pi)\\&\cdot\dfrac{a_1\sin(\omega_{\tau_1\tau_2, r_*}\tau_1)-\sqrt{a_2^2-a_1^2\cos^2(\omega_{\tau_1\tau_2, r_*}\tau_1)}}{a_1-a_2} (i\sqrt{a_2^2-a_1^2\cos^2(\omega_{\tau_1\tau_2, r_*}\tau_1)}\\&+a_1\cos(\omega_{\tau_1\tau_2, r_*}\tau_1))+1]\int_{\Omega}\phi^2(x)dx, \;\;\text{as} \;\;r\rightarrow r_*, \end{aligned} |
which leads to
Theorem 4.2. For
Proof. Notice that
[A_{\tau_1\tau_{2n}, r}-i\omega_{\tau_1\tau_2}]^2\xi=0, |
which leads to
[A_{\tau_1\tau_{2n}, r}-i\omega_{\tau_1\tau_2}]\xi\in\mathscr{N}[A_{\tau_1\tau_{2n}, r}-i\omega_{\tau_1\tau_2}]=\text{Span}\{e^{i\omega_{\tau_1\tau_2}\cdot}\psi_{\tau_1\tau_2}\}. |
Thus, there exists a constant
[A_{\tau_1\tau_{2n}, r}-i\omega_{\tau_1\tau_2}]\xi=le^{i\omega_{\tau_1\tau_2}\cdot}\psi_{\tau_1\tau_2}, |
i.e.,
\begin{aligned} \dot{\xi}(\theta)&=i\omega_{\tau_1\tau_2}\xi(\theta)+le^{i\omega_{\tau_1\tau_2}\theta}\psi_{\tau_1\tau_2} \theta\in[-\tau_{2n}, 0]\\ \dot\xi(0)&=A_r\xi(0)-a_1ru_r\int_{\Omega}P_1(x, y)\xi(-\tau_1)(y)dy-a_2ru_r\int_{\Omega}P_2(x, y)\xi(-\tau_{2n})(y)dy. \end{aligned} | (12) |
The first equation of (12) leads to
\begin{aligned} \xi(\theta)&=\xi(0)e^{i\omega_{\tau_1\tau_2}\theta}+l\theta e^{i\omega_{\tau_1\tau_2}\theta}\psi_{\tau_1\tau_2} \\ \dot\xi(0)&=i\omega_{\tau_1\tau_2}\xi(0)+l\psi_{\tau_1\tau_2}. \end{aligned} |
Thus, we have
\begin{aligned}&\Delta(r, i\omega_{\tau_1\tau_2}, \tau_1, \tau_{2n})\xi(0)\\=&l[\psi_{\tau_1\tau_2}-ru_r(a_1\tau_1e^{-i\omega\tau_1}\int_{\Omega}P_1(x, y)\psi(y)dy+a_2\tau_{2n}e^{-i\omega\tau_{2n}}\int_{\Omega}P_2(x, y)\psi(y)dy)].\end{aligned} |
Moreover,
\begin{aligned}0=&\langle \Delta^*(r, i\omega_{\tau_1\tau_2}, \tau_1, \tau_{2n})\psi^*_{\tau_1\tau_2}, \xi(0) \rangle\\=&\langle \psi^*_{\tau_1\tau_2}, \Delta(r, i\omega_{\tau_1\tau_2}, \tau_1, \tau_{2n})\xi(0) \rangle\\=&l[\int_{\Omega}\bar{\psi^*}(x)\psi(x)dx-r\int_{\Omega}\int_{\Omega}\bar{\psi^*}(x)u_r(x)(a_1\tau_1e^{-i\omega_{\tau_1\tau_2}\tau_1}P_1(x, y)\\&+a_2\tau_{2n}e^{-i\omega_{\tau_1\tau_2}\tau_2}P_2(x, y))\psi(y)dxdy] \\=&lS_n(r).\end{aligned} |
Due to
\xi\in\mathscr{N}[A_{\tau_1\tau_{2n}, r}-i\omega_{\tau_1\tau_2}]^j=\mathscr{N}[A_{\tau_1\tau_{2n}, r}-i\omega_{\tau_1\tau_2}], j=1, 2, 3\cdots, n=0, 1, 2\cdots, |
and this shows that
From the implicit function theorem, we can obtain that there is a neighborhood
\begin{aligned} \lambda(\tau_{2n})&=i\omega_{\tau_1\tau_2, r}, \psi(\tau_{2n})=\psi_{\tau_1\tau_2, r}, \\ \Delta(r, \mu, \tau_1, \tau_2)\psi&=(A_r-\mu(\tau_2))\psi-ru_r\displaystyle{\sum\limits_{i=1}^2}\int_{\Omega}a_ie^{-\mu(\tau_2)\tau_i}P_i(x, y)\psi(\tau_2)(y)dy=0. \end{aligned} | (13) |
Then, the following result describes the transversality condition of Hopf bifurcation:
Theorem 4.3. For any
Proof. Differentiating (13) with respect to
\begin{aligned}\dfrac{d\lambda(\tau_2)}{d\tau_2}=&\dfrac{a_2ri\omega\int_{\Omega}\int_{\Omega}\bar{\psi^*}(x)u_r(x)P_2(x, y)\psi(\tau_2)(y)dxdye^{-i\theta}}{\int_{\Omega}\bar{\psi^*}(x)\psi(x)dx-r\int_{\Omega}\int_{\Omega}\begin{pmatrix}\displaystyle{\sum\limits_{i=1}^2}a_i\tau_ie^{-i\omega\tau_i}P_i(x, y)\end{pmatrix}\bar{\psi^*}(x)u_r(x)\psi(y)dxdy}\\ =&\dfrac{1}{|S_n(r)|^2}\{a_2ri\omega e^{-i\theta}\int_{\Omega}\psi^*(x)\bar{\psi}(x)dx\int_{\Omega}\int_{\Omega}P_2(x, y)u_r(x)\bar{\psi^*}(x)\psi(y)dxdy\\&-a_1a_2r^2i\omega\tau_1e^{i(\omega\tau_1-\theta)}\int_{\Omega}\int_{\Omega}P_1(x, y)u_r(x)\psi^*(x)\bar{\psi}(y)dxdy\\&\cdot\int_{\Omega}\int_{\Omega}P_2(x, y)u_r(x)\bar{\psi^*}(x)\psi(\tau_2)(y)dxdy-a_2^2r^2\tau_2 i\omega\int_{\Omega}\int_{\Omega}P_2(x, y)u_r(x)\\&\cdot\psi^*(x)\bar{\psi}(y)dxdy\int_{\Omega}\int_{\Omega}P_2(x, y)u_r(x)\bar{\psi^*}(x)\psi(\tau_2)(y)dxdy\}. \end{aligned} |
Therefore,
\begin{aligned}&\lim\limits_{r\rightarrow r_*}\text{Re}(\dfrac{d\lambda(\tau_2)}{d\tau_2})\\=&\dfrac{1}{|S_n(r)|^2}\sqrt{a_2^2-a_1^2\cos^2(\omega_{\tau_1\tau_2}\tau_1)}\arccos(-\dfrac{a_1}{a_2}\cos(\omega_{\tau_1\tau_2}\tau_1))r_*\alpha_{r_*}\int_{\Omega}\phi^2(x)dx\\&\cdot\int_{\Omega}\int_{\Omega}P_2(x, y)\phi^2(x)\phi(y)dxdy>0.\end{aligned} |
Then we conclude
Theorem 4.4. For
This section contains lengthy and technical discussions about the direction of Hopf bifurcation, stability and period of the periodic solution bifurcating from the positive steady solution
\dfrac{dU(t)}{dt}=\tau_{20}d\Delta U(t)+\tau_{20}L_0(U_t)+F(U_t, \nu), | (14) |
and
\begin{aligned}L_0(\psi)=&r[1-\begin{pmatrix}\displaystyle{\sum\limits_{i=1}^2}a_i\int_{\Omega}P_i(x, y)u_r(y)dy\end{pmatrix}]\psi(0)-ru_r[a_1\int_{\Omega}P_1(x, y)\psi(-\dfrac{\tau_1}{\tau_{20}})dy\\&+a_2\int_{\Omega}P_2(x, y)\psi(-1)dy], \\ F(\psi, \nu)=&\nu d\Delta\psi(0)+\nu L_0(\psi)-r(\nu+\tau_{20})(a_1\int_{\Omega}P_1(x, y)\psi(-\dfrac{\tau_1}{\tau_{20}})dy\\&+a_2\int_{\Omega}P_2(x, y)\psi(-1)dy)\psi(0), \end{aligned} |
where
There exists a function
L_0\psi=\int_{-1}^{0}d\eta (\theta, x, \psi(\theta)), |
where
\begin{aligned} \eta(\theta,x,\psi(\theta))=&r[1-\begin{pmatrix}\displaystyle{\sum_{i=1}^2}a_i\int_{\Omega}P_i(x,y)u_r(y)dy\end{pmatrix}]\delta(\theta)\psi(\theta)-a_1ru_r\int_{\Omega}P_1(x,y)\\&\cdot\delta(\theta+\dfrac{\tau_1}{\tau_{20}})\psi(\theta)(y)dy -a_2ru_r\int_{\Omega}P_2(x,y)\delta(\theta+1)\psi(\theta)(y)dy. \end{aligned} |
For
A_{\tau_2}\psi=\begin{cases} \dfrac{d\psi(\theta)}{d\theta}\quad \theta\in[-1, 0), \\ \tau_2d\Delta\psi(0)+\tau_2\int_{-1}^0d\eta(\theta, x, \psi(\theta)) \theta=0, \end{cases} |
and
R(\psi, \nu)=\begin{cases}0 \quad \theta\in[-1, 0)\\F(\psi, \nu) \quad \theta=0\end{cases} |
Then system (14) is equivalent to
\dfrac{dU_t}{dt}=A_{\tau_2}U_t+R(U_t, \nu), | (15) |
where
For
A^*_{\tau_2}\tilde\psi(s)=\begin{cases} -\dfrac{d\tilde\psi(s)}{ds}\quad s\in(0, 1], \\ \tau_2d\Delta\tilde\psi(0)+\tau_2\int_{-1}^0d\eta(s, x, \tilde\psi(-s))\quad s=0, \end{cases} |
and the formal duality
\ll \tilde\psi, \psi\gg=\langle \tilde\psi(0), \psi(0)\rangle-\int_{-1}^0\int_{\xi=0}^\theta \langle \tilde\psi(\xi-\theta), d\eta(\theta, y, \psi(\xi)) \rangle d\xi. |
From the previous definition, we have
\begin{aligned}&\ll A_{\tau_2}^*\tilde\psi, \psi\gg\\=&\langle A_{\tau_2}^*\tilde\psi(0), \psi(0) \rangle-a_1r\tau_{20}\int_{-\dfrac{\tau_1}{\tau_{2}}}^{0}\langle A_{\tau_2}^*\tilde\psi(s+\dfrac{\tau_1}{\tau_{2}}), u_r(x)\int_{\Omega}P_1(x, y)\psi(s)(y)dy\rangle ds\\ &-a_2r\tau_{20}\int_{-1}^{0}\langle A_{\tau_2}^*\tilde\psi(s+1), u_r(x)\int_{\Omega}P_2(x, y)\psi(s)(y)dy\rangle ds\\ =&\langle \tau_2d\Delta\tilde\psi(0)+\tau_2r\begin{pmatrix}1-\displaystyle{\sum\limits_{i=1}^{2}}\int_{\Omega}a_iP_i(x, y)u_r(y)dy\end{pmatrix}\tilde\psi(0) -ra_1\tau_2u_r(x)\\ &\cdot\int_{\Omega}P_1(x, y)\psi(\dfrac{\tau_1}{\tau_2})(y)dy-ra_2\tau_2u_r(x)\int_{\Omega}P_2(x, y)\psi(1)(y)dy, \psi(0)\rangle \\ &-a_1r\tau_{20}\int_{-\dfrac{\tau_1}{\tau_2}}^{0}\langle -\dot{\tilde\psi}(s+\dfrac{\tau_1}{\tau_2}), u_r(x)\int_{\Omega}P_1(x, y)\psi(s)(y)dy\rangle ds\\ &-a_2r\tau_{2}\int_{-1}^{0}\langle -\dot{\tilde\psi}(s+1), u_r(x)\int_{\Omega}P_2(x, y)\psi(s)(y)dy\rangle ds\\ =& \langle \tilde\psi(0), \tau_2d\Delta\psi(0)+\tau_2r\begin{pmatrix}1-\displaystyle{\sum\limits_{i=1}^{2}}\int_{\Omega}a_iP_i(x, y)u_r(y)dy\end{pmatrix}\psi(0)\rangle -ra_1\tau_2\langle \tilde\psi(\dfrac{\tau_1}{\tau_2}), \\&u_r(x)\int_{\Omega}P_1(x, y)\psi(0)(y)dy\rangle-ra_2\tau_2\langle \tilde\psi(1), u_r(x)\int_{\Omega}P_2(x, y)\psi(0)(y)dy\rangle \\&+a_1r\tau_{20}\int_{-\dfrac{\tau_1}{\tau_2}}^{0}\langle \dot{\tilde\psi}(s+\dfrac{\tau_1}{\tau_2}), u_r(x)\int_{\Omega}P_1(x, y)\psi(s)(y)dy\rangle ds+a_2r\tau_{2}\int_{-1}^{0}\langle \dot{\tilde\psi}(s+1), \\& u_r(x)\int_{\Omega}P_2(x, y)\psi(s)(y)dy\rangle ds\\ =&\langle \tilde\psi(0), A_{\tau_2}\psi(0) \rangle-a_1r\tau_2\int_{-\dfrac{\tau_1}{\tau_2}}^{0} \langle \tilde\psi(s+\dfrac{\tau_1}{\tau_2}), u_r(x)\int_{\Omega}P_1(x, y)\dot\psi(s)(y)dy\rangle ds\\&-a_2r\tau_{20}\int_{-1}^{0} \langle \tilde\psi(s+1), u_r(x)\int_{\Omega}P_2(x, y)\dot{\psi}(s)(y)dy\rangle ds\\ =&\ll \tilde\psi, A_{\tau_2}\psi \gg. \end{aligned} |
Since
Q=\{\psi\in C_{\mathbb{C}}: \ll \psi, \phi \gg=0, \;\;\text{for all} \;\; \psi\in P^*\}. |
Denote
\Psi=\begin{pmatrix}\dfrac{1}{\bar{S}_n(r)}q^*(s)\\ \dfrac{1}{S_n(r)}\bar{q^*}(s)\end{pmatrix}, |
then
Let
z(t)=\ll \dfrac{1}{\bar S_n(r)}q^*(s), U_t\gg, W(t, \theta)=U_t-\Phi(\theta)\cdot (z(t), \bar{z}(t))^T. | (16) |
Then we obtain the following center manifold
W(t, \theta)=W(z(t), \bar{z}(t), \theta)=W_{20}(\theta)\dfrac{z^2}{2}+W_{11}(\theta)z\bar{z}+W_{02}(\theta)\dfrac{\bar{z}^2}{2}+\cdots | (17) |
with the range in
\begin{aligned} \dot{z}(t)&=\dfrac{d}{dt}\ll \dfrac{1}{\bar{S}_n(r)}q^*(s), U_t\gg\\&=\ll \dfrac{1}{\bar{S}_n(r)}q^*(s), A_{\tau_2}U_t\gg+\ll \dfrac{1}{\bar{S}_n(r)}q^*(s), R(U_t, 0)\gg\\ &=\ll \dfrac{1}{\bar{S}_n(r)}A^*_{\tau_2}q(s), U_t\gg+\dfrac{1}{S_n(r)}\langle q^*(0), F(U_t, 0)\rangle\\&=i\omega\tau_{20}z(t)+\dfrac{1}{S_n(r)}\langle q^*(0), F(W(z(t), \bar{z}(t), 0)+2Re\{z(t)q(\theta)\}, 0) \rangle. \end{aligned} |
We rewrite this equation as
\dot{z}(t)=i\omega\tau_{20}z(t)+g(z, \bar{z}), |
where
\begin{aligned}g(z, \bar{z})&=\dfrac{1}{S_n(r)}\langle q^*(0), F(W(z(t), \bar{z}(t), 0)+2Re\{z(t)q(\theta)\}, 0)\rangle\\ &=g_{20}\dfrac{z^2}{2}+g_{11}z\bar{z}+g_{02}\dfrac{\bar{z}^2}{2}+g_{21}\dfrac{z^2\bar{z}}{2}+\cdots.\end{aligned} | (18) |
Computing the coefficients of (18), we have
\begin{aligned}g_{20}=&-\dfrac{2\tau_{20}r}{S_n}\int_{\Omega}\int_{\Omega}(a_1e^{-i\omega\tau_1}P_1(x, y)+a_2e^{-i\omega\tau_{20}}P_2(x, y))\bar{\psi}^*_{\tau_1\tau_2}(x)\psi_{\tau_1\tau_2}(x)\\&\cdot\psi_{\tau_1\tau_2}(y)dxdy, \end{aligned} |
\begin{aligned}g_{11}=&-\dfrac{\tau_{20}r}{S_n}[\int_{\Omega}\int_{\Omega}(a_1e^{-i\omega\tau_1}P_1(x, y)+a_2e^{-i\omega\tau_{20}}P_2(x, y))\bar{\psi}^*_{\tau_1\tau_2}(x)\bar\psi_{\tau_1\tau_2}(x)\\&\cdot\psi_{\tau_1\tau_2}(y)dxdy+\int_{\Omega}\int_{\Omega}(a_1e^{i\omega\tau_1}P_1(x, y)+a_2e^{i\omega\tau_{20}}P_2(x, y))\bar{\psi}^*_{\tau_1\tau_2}(x)\\&\cdot\psi_{\tau_1\tau_2}(x)\bar\psi_{\tau_1\tau_2}(y)dxdy], \end{aligned} |
\begin{aligned}g_{02}=&-\dfrac{2\tau_{20}r}{S_n}\int_{\Omega}\int_{\Omega}(a_1e^{i\omega\tau_1}P_1(x, y)+a_2e^{i\omega\tau_{20}}P_2(x, y))\bar{\psi}^*_{\tau_1\tau_2}(x)\bar\psi_{\tau_1\tau_2}(x)\\&\cdot\bar\psi_{\tau_1\tau_2}(y)dxdy, \end{aligned} |
\begin{aligned}g_{21}=&-\dfrac{2\tau_{20}r}{S_n}\int_{\Omega}\int_{\Omega}(a_1e^{-i\omega\tau_1}P_1(x, y)+a_2e^{-i\omega\tau_{20}}P_2(x, y))\bar{\psi}^*_{\tau_1\tau_2}(x)\psi_{\tau_1\tau_2}(y)\\&\cdot W_{11}(0)(x)dxdy-\dfrac{\tau_{20}r}{S_n}\int_{\Omega}\int_{\Omega}(a_1e^{i\omega\tau_1}P_1(x, y)+a_2e^{i\omega\tau_{20}}P_2(x, y))\bar{\psi}^*_{\tau_1\tau_2}(x)\\&\bar\psi_{\tau_1\tau_2}(y)W_{20}(0)(x)dxdy -\dfrac{\tau_{20}r}{S_n}\int_{\Omega}\int_{\Omega}\bar{\psi}^*_{\tau_1\tau_2}(x)\bar\psi_{\tau_1\tau_2}(x)(a_1P_1(x, y)\\&W_{20}(-\dfrac{\tau_1}{\tau_2})(y)+a_2P_2(x, y)W_{20}(-1)(y))dxdy -\dfrac{2\tau_{20}r}{S_n}\int_{\Omega}\int_{\Omega}\bar{\psi}^*_{\tau_1\tau_2}(x)\psi_{\tau_1\tau_2}(x)\\&\cdot(a_1P_1(x, y)W_{11}(-\dfrac{\tau_1}{\tau_2})(y)+a_2P_2(x, y)W_{11}(-1)(y))dxdy. \end{aligned} |
From the expression of
\begin{aligned}\dot W&=\left\{\begin{aligned}A_{\tau_2}W-\Phi(\theta)\langle \Psi(0), F(W(z, \bar{z})+\Phi(z, \bar{z})^T, 0) \rangle,\quad -1\leq\theta< 0, &\\ A_{\tau_2}W-\Phi(\theta)\langle \Psi(0), F(W(z, \bar{z})+\Phi(z, \bar{z})^T, 0) \rangle+F(W(z, \bar{z})+\Phi&(z, \bar{z})^T, 0) \\ & \theta=0, \end{aligned} \right.\\&=A_{\tau_2}W+H(z, \bar{z}, \theta), \end{aligned} | (19) |
where
H(z, \bar{z}, \theta)=H_{20}(\theta)\dfrac{z^2}{2}+H_{11}(\theta)z\bar{z}+H_{02}(\theta)\dfrac{\bar{z}^2}{2}+\cdots. | (20) |
Due to the chain rule
\dot W=W_z\dot{z}+W_{\bar{z}}\dot{\bar{z}}, |
we have
(-2i\omega_{\tau_1\tau_2}\tau_{20}+A_{\tau_2})W_{20}(\theta)=-H_{20}(\theta), A_{\tau_2}W_{11}(\theta)=-H_{11}(\theta). | (21) |
From (19), we know that for
H(z, \bar{z}, \theta)=-\Phi(\theta)\langle \Psi(0), F(W(z, \bar{z}, \theta)+\Phi(z, \bar{z})^T, 0) \rangle=-gq(\theta)-\bar{g}\bar{q}(\theta). |
Comparing the coefficients with (20), we obtain
H_{20}(\theta)=-g_{20}q(\theta)-\bar{g}_{02}\bar{q}(\theta), H_{11}(\theta)=-g_{11}q(\theta)-\bar g_{11}\bar{q}(\theta). | (22) |
From (21) and (22) and the definition of
\dot{W}_{20}(\theta)=2i\omega_{\tau_1\tau_2}\tau_{20}W_{20}(\theta)+g_{20}q(\theta)+\bar{g}_{02}\bar{q}(\theta). | (23) |
Hence,
W_{20}(\theta)=\dfrac{ig_{20}}{\omega_{\tau_1\tau_2}\tau_{20}}q(\theta)+\dfrac{i\bar{g}_{02}}{3\omega_{\tau_1\tau_2}\tau_{20}}\bar{q}(\theta)+M_1e^{2i\omega_{\tau_1\tau_2}\tau_{20}\theta}. | (24) |
Similarly, we can obtain
W_{11}(\theta)=-\dfrac{ig_{11}}{\omega_{\tau_1\tau_2}\tau_{20}}q(\theta)+\dfrac{i\bar{g}_{11}}{\omega_{\tau_1\tau_2}\tau_{20}}\bar{q}(\theta)+M_2. | (25) |
In the following we shall find out
\begin{aligned}H_{20}(0)=&-g_{20}q(0)-\bar{g}_{02}\bar{q}(0)-2r\tau_{20}\psi_{\tau_1\tau_2}(x)\int_{\Omega}(a_1e^{-i\omega_{\tau_1\tau_2}\tau_1}P_1(x, y)\\&+a_2e^{-i\omega_{\tau_1\tau_2}\tau_{20}}P_2(x, y))\psi_{\tau_1\tau_2}(y)dy, \\ H_{11}(0)=&-g_{11}q(0)-\bar{g}_{11}\bar{q}(0)-r\tau_{20}[\psi_{\tau_1\tau_2}(x)(a_1\int_{\Omega}P_1(x, y)\bar{\psi}_{\tau_1\tau_2}(y)e^{i\omega_{\tau_1\tau_2}\tau_1}dy\\&+a_2\int_{\Omega}P_2(x, y)\bar{\psi}_{\tau_1\tau_2}(y)e^{i\omega_{\tau_1\tau_2}\tau_{20}}dy) +\bar\psi_{\tau_1\tau_2}(x)(a_1\int_{\Omega}P_1(x, y)\psi_{\tau_1\tau_2}(y)\\&\cdot e^{-i\omega_{\tau_1\tau_2}\tau_1}dy+a_2\int_{\Omega}P_2(x, y)\psi_{\tau_1\tau_2}(y)e^{-i\omega_{\tau_1\tau_2}\tau_{20}}dy)]. \end{aligned} |
Thus, we can compute
\begin{aligned}M_1=&2r\Delta^{-1}(r, 2i\omega_{\tau_1\tau_2}, \tau_1, \tau_2)\psi_{\tau_1\tau_2}(x)\int_{\Omega}(a_1e^{-i\omega_{\tau_1\tau_2}\tau_{1}}P_1(x, y)\\&+a_2e^{-i\omega_{\tau_1\tau_2}\tau_{20}}P_2(x, y))\cdot\psi_{\tau_1\tau_2}(y)dy, \\ M_2=&r\Delta^{-1}(r, 0, \tau_1, \tau_2)[\psi_{\tau_1\tau_2}(x)\int_{\Omega}(a_1e^{i\omega_{\tau_1\tau_2}\tau_1}P_1(x, y)\\&+a_2e^{i\omega_{\tau_1\tau_2}\tau_{20}}P_2(x, y))\bar{\psi}_{\tau_1\tau_2}(y)dy\\ &+\bar\psi_{\tau_1\tau_2}(x)\int_{\Omega}(a_1P_1(x, y)e^{-i\omega_{\tau_1\tau_2}\tau_1}+a_2P_2(x, y)e^{-i\omega_{\tau_1\tau_2}\tau_{20}})\psi_{\tau_1\tau_2}(y)dy] \end{aligned} |
Now, we can determine
\begin{aligned}c_1(0)&=\dfrac{i}{2\omega_{\tau_1\tau_2}\tau_{20}}(g_{20}g_{11}-2|g_{11}|^2-\dfrac{|g_{02}|^2}{3})+\dfrac{g_{21}}{2}, \\ \mu_2&=-\dfrac{Re \{c_1(0)\}}{Re \{\lambda'(\tau_{20})\}}, \\ \beta_2&=2Re\{c_1(0)\}, \\ T_2&=-\dfrac{Im\{c_1(0)\}+\mu_2Im\{\lambda'(\tau_{20})\}}{\omega_{\tau_1\tau_2}\tau_{20}}.\end{aligned} |
From the conclusion of [19], [8], we have the following results.
Theorem 5.1.
In this section, we present some numerical simulations to demonstrate our analytical results.
We choose the parameters
Here we interpreted the classical logistic model with two non-local delayed terms in the framework of avian influenza spread between wild birds and the environment---the environment is contaminated by infected birds and the contaminated environment then pass on the pathogen to other susceptible birds. Due to the random movement of the infected birds and pathogens, the disease spreads in the geographical domain and pathogen loads in any given spatial location are not just the consequence of local contamination. Here we consider the case where resources are available for cleaning the environment. These resources can be used to launch either rapid or slow environment cleaning interventions, but the resources are limited so optimal allocations will be needed. Our study shows that disease outbreak in the form of a nontrivial equilibrium is possible assuming the intrinsic reproduction number is sufficiently large, and nonlinear oscillations around this nontrivial equilibrium can take place. Our analysis and simulations show that to prevent this oscillation, the resources should be distributed for both rapid and slow responses, focusing on either rapid or slow response will require the slow response to be also very rapid. For example, in Figure 3, if we normalized the delay so that the rapid response takes place with
In recent years, reaction-diffusion equations with time delay have been investigated extensively. Su et al.[15] studied a diffusive logistic equation with mixed delayed and instantaneous density dependence, with some interesting results on global continuation of Hopf bifurcation branches. Hu and Yuan[10] proposed a coupled system of reaction-diffusion system with distributed delay and studied stability of the positive steady state solution and the occurrence of Hopf bifurcation. The Hopf bifurcation was also considered in Ma [12] for a coupled reaction-diffusion systems involving three interacting species. The earlier work introducing nonlocal terms into the diffusive Fisher equation included the paper of Britton[2]. Guo[7] investigated the existence, stability and multiplicity of spatially nonhomogeneous steady state solutions and periodic solutions for reaction-diffusion models with nonlocal delay effect by using the Lyapunov-Schmidt reduction. Deng and Wu[5] established a comparison principle and constructed monotone sequences to show the global stability for a nonlocal reaction-diffusion population model. Zuo and Song[22] studied the effect of three weight functions on the dynamics of a general reaction-diffusion equation with nonlocal delay and showed that the average delay for the case of strong kernel may induce the stability switches. Chen and Yu [4] considered a nonlocal delayed reaction-diffusion equation with general form of nonlocal delay. More discussions about the biological backgrounds of non-local reaction diffusion equations with delay and further results on the existence of nontrivial equilibria and Hopf bifurcations can be found in [21][20][18] and references therein. Here we link a logistic model with two non-local delay terms to the understanding of optimal strategies to prevent nonlinear oscillations in disease spread involving environment contamination and resources allocation, and we believe this line of research in modeling and analysis may generate interest for further expanding the models to reflect more biological realities and disease spread such as temporal heterogeneity and multiple routes of transmission.
This work was supported by the Fundamental Research Funds for the Central University of China (N140504005) and the Natural Sciences and Engineering Research Council of Canada (105588-2011-RGPIN).
[1] | [ L. Bourouiba, S. Gourley, R. Liu, J. Takekawa and J. Wu, Avian Influenza Spread and Transmission Dynamics. In Analyzing and Modeling Spatial and Temporal Dynamics of Infectious Diseases, John Wiley and Sons Inc., 2014. |
[2] | [ N. Britton, Reaction-diffusion Equations and Their Applications to Biology, Academic Press, London, 1986. |
[3] | [ S. Chen,J. Shi, Stability and Hopf bifurcation in a diffusive logistic population model with nonlocal delay effect, J. Differ. Equations, 253 (2012): 3440-3470. |
[4] | [ S. Chen,J. Yu, Stability and bifurcations in a nonlocal delayed reaction-diffusion population model, J. Differ. Equaitons, 260 (2016): 218-240. |
[5] | [ K. Deng,Y. Wu, Global stability for a nonlocal reaction-diffusion population model, Nonlinear Anal. Real World Appl., 25 (2015): 127-136. |
[6] | [ S. Gourley,R. Lui,J. Wu, Spatiotemporal distributions of migratory birds: Patchy models with delay, SIAM Journal on Applied Dynamical Systems, 9 (2010): 589-610. |
[7] | [ S. Guo, Stability and bifurcation in a reaction-diffusion model with nonlocal delay effect, J. Differ. Equations, 259 (2015): 1409-1448. |
[8] | [ B. D. Hassard, N. D. Kazarinoff and Y. H. Wan, Theory and Applications of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981. |
[9] | [ Y. Hsieh, J. Wu, J. Fang, Y. Yang and J. Lou, Quantification of bird-to-bird and bird-to-human infections during 2013 novel H7N9 avian influenza outbreak in China, PLoS One, 9 (2014), e111834. |
[10] | [ R. Hu,Y. Yuan, Spatially nonhomogeneous equilibrium in a reaction-diffusion system with distributed delay, J. Differ. Equations, 250 (2011): 2779-2806. |
[11] | [ R. Liu,V. Duvvuri,J. Wu, Spread patternformation of H5N1-avian influenza and its implications for control strategies, Math. Model. Nat. Phenom., 3 (2008): 161-179. |
[12] | [ Z. P. Ma, Stability and Hopf bifurcation for a three-component reaction-diffeusion population model with delay effect, Appl. Math. Model., 37 (2013): 5984-6007. |
[13] | [ A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983. |
[14] | [ J. So,J. Wu,X. Zou, A reaction-diffusion model for a single species with age structure. I travelling wavefronts on unbounded domains, Proceedings of the Royal Society: London A, 457 (2001): 1841-1853. |
[15] | [ Y. Su,J. Wei,J. Shi, Hopf bifurcation in a diffusive logistic equation with mixed delayed and instantaneous density dependence, J. Dyn. Differ. Equ., 24 (2012): 897-925. |
[16] | [ X. Wang,J. Wu, Periodic systems of delay differential equations and avian influenza dynamics, J. Math. Sci., 201 (2014): 693-704. |
[17] | [ Z. Wang,J. Wu,R. Liu, Traveling waves of the spread of avian influenza, Proc. Amer. Math. Soc., 140 (2012): 3931-3946. |
[18] | [ Z. C. Wang,W. T. Li,J. Wu, Entire solutions in delayed lattice differential equations with monostable nonlinearity, SIAM J. Math. Anal., 40 (2009): 2392-2420. |
[19] | [ J. Wu, Theory and Applications of Partial Functional Differential Equations, Spinger-Verlag, New York, 1996. |
[20] | [ T. Yi,X. Zou, Global dynamics of a delay differential equaiton with spatial non-locality in an unbounded domain, J. Differ. Equations, 251 (2011): 2598-2611. |
[21] | [ G. Zhao,S. Ruan, Existence, uniqueness and asymptotic stability of time periodic traveling waves for a periodic Lotka-Volterra competition system with diffusion, J. Math. Pures Appl., 95 (2011): 627-671. |
[22] | [ W. Zuo,Y. Song, Stability and bifurcation analysis of a reaction-diffusion equaiton with spatio-temporal delay, J. Math. Anal. Appl., 430 (2015): 243-261. |
1. | Houfu Liu, Yuanyuan Cong, Ying Su, DYNAMICS OF A TWO-PATCH NICHOLSON'S BLOWFLIES MODEL WITH RANDOM DISPERSAL, 2022, 12, 2156-907X, 692, 10.11948/20210268 |