Loading [Contrib]/a11y/accessibility-menu.js

Modelling periodic oscillations during somitogenesis

  • Received: 01 July 2007 Accepted: 29 June 2018 Published: 01 August 2007
  • MSC : Primary: 34C23, 34C25; Secondary: 92B20.

  • We consider a model of genetic network that has been previously presented by J. Lewis. This model takes the form of delay differential equations with two delays. We give conditions for the local stability of the non-trivial steady state. We investigate the condition underwhich stability is lost and oscillations occur. In particular, we show that when the ratio of the time delays passes a threshold, sustained oscillations occur through a Hopf bifurcation. Through numerical simulations, we further investigate the ways in which various parameters influence the period and the amplitude of the oscillations. In conclusion, we discuss the implications of our results.

    Citation: Peng Feng, Menaka Navaratna. Modelling periodic oscillations during somitogenesis[J]. Mathematical Biosciences and Engineering, 2007, 4(4): 661-673. doi: 10.3934/mbe.2007.4.661

    Related Papers:

    [1] B. Spagnolo, D. Valenti, A. Fiasconaro . Noise in ecosystems: A short review. Mathematical Biosciences and Engineering, 2004, 1(1): 185-211. doi: 10.3934/mbe.2004.1.185
    [2] Yanqin Wang, Xin Ni, Jie Yan, Ling Yang . Modeling transcriptional co-regulation of mammalian circadian clock. Mathematical Biosciences and Engineering, 2017, 14(5&6): 1447-1462. doi: 10.3934/mbe.2017075
    [3] Changwook Yoon, Sewoong Kim, Hyung Ju Hwang . Global well-posedness and pattern formations of the immune system induced by chemotaxis. Mathematical Biosciences and Engineering, 2020, 17(4): 3426-3449. doi: 10.3934/mbe.2020194
    [4] Hongying Shu, Wanxiao Xu, Zenghui Hao . Global dynamics of an immunosuppressive infection model with stage structure. Mathematical Biosciences and Engineering, 2020, 17(3): 2082-2102. doi: 10.3934/mbe.2020111
    [5] Yue Xing, Weihua Jiang, Xun Cao . Multi-stable and spatiotemporal staggered patterns in a predator-prey model with predator-taxis and delay. Mathematical Biosciences and Engineering, 2023, 20(10): 18413-18444. doi: 10.3934/mbe.2023818
    [6] Qingwen Hu . A model of regulatory dynamics with threshold-type state-dependent delay. Mathematical Biosciences and Engineering, 2018, 15(4): 863-882. doi: 10.3934/mbe.2018039
    [7] Anuj Kumar, Yasuhiro Takeuchi, Prashant K Srivastava . Stability switches, periodic oscillations and global stability in an infectious disease model with multiple time delays. Mathematical Biosciences and Engineering, 2023, 20(6): 11000-11032. doi: 10.3934/mbe.2023487
    [8] Haitao Song, Dan Tian, Chunhua Shan . Modeling the effect of temperature on dengue virus transmission with periodic delay differential equations. Mathematical Biosciences and Engineering, 2020, 17(4): 4147-4164. doi: 10.3934/mbe.2020230
    [9] Marek Bodnar, Urszula Foryś . Time Delay In Necrotic Core Formation. Mathematical Biosciences and Engineering, 2005, 2(3): 461-472. doi: 10.3934/mbe.2005.2.461
    [10] Kalyan Manna, Malay Banerjee . Stability of Hopf-bifurcating limit cycles in a diffusion-driven prey-predator system with Allee effect and time delay. Mathematical Biosciences and Engineering, 2019, 16(4): 2411-2446. doi: 10.3934/mbe.2019121
  • We consider a model of genetic network that has been previously presented by J. Lewis. This model takes the form of delay differential equations with two delays. We give conditions for the local stability of the non-trivial steady state. We investigate the condition underwhich stability is lost and oscillations occur. In particular, we show that when the ratio of the time delays passes a threshold, sustained oscillations occur through a Hopf bifurcation. Through numerical simulations, we further investigate the ways in which various parameters influence the period and the amplitude of the oscillations. In conclusion, we discuss the implications of our results.


  • This article has been cited by:

    1. Kanu Wahi, Matthew S. Bochter, Susan E. Cole, The many roles of Notch signaling during vertebrate somitogenesis, 2016, 49, 10849521, 68, 10.1016/j.semcdb.2014.11.010
    2. Kanu Wahi, Sophia Friesen, Vincenzo Coppola, Susan E. Cole, Putative binding sites for mir-125 family miRNAs in the mouse Lfng 3′UTR affect transcript expression in the segmentation clock, but mir-125a-5p is dispensable for normal somitogenesis, 2017, 246, 10588388, 740, 10.1002/dvdy.24552
    3. Giulia Giordano, Abhyudai Singh, Franco Blanchini, 2019, Analysis of coupled genetic oscillators with delayed positive feedback interconnections, 978-3-907144-00-8, 674, 10.23919/ECC.2019.8796216
    4. Hiroshi Momiji, Nicholas A.M. Monk, Dissecting the dynamics of the Hes1 genetic oscillator, 2008, 254, 00225193, 784, 10.1016/j.jtbi.2008.07.013
    5. Lidan Sun, Rongling Wu, Mapping complex traits as a dynamic system, 2015, 13, 15710645, 155, 10.1016/j.plrev.2015.02.007
    6. Luis G. Morelli, Saúl Ares, Leah Herrgen, Christian Schröter, Frank Jülicher, Andrew C. Oates, Delayed coupling theory of vertebrate segmentation, 2009, 3, 1955-2068, 55, 10.2976/1.3027088
    7. Aitor González, Ryoichiro Kageyama, Hopf bifurcation in the presomitic mesoderm during the mouse segmentation, 2009, 259, 00225193, 176, 10.1016/j.jtbi.2009.02.007
    8. Kang-Ling Liao, Chih-Wen Shih, Jui-Pin Tseng, Synchronized oscillations in a mathematical model of segmentation in zebrafish, 2012, 25, 0951-7715, 869, 10.1088/0951-7715/25/4/869
    9. Guifang Fu, Zhong Wang, Jiahan Li, Rongling Wu, A mathematical framework for functional mapping of complex phenotypes using delay differential equations, 2011, 289, 00225193, 206, 10.1016/j.jtbi.2011.08.002
    10. Robert P. Jenkins, Anja Hanisch, Cristian Soza-Ried, Erik Sahai, Julian Lewis, Arthur D Lander, Stochastic Regulation of her1/7 Gene Expression Is the Source of Noise in the Zebrafish Somite Clock Counteracted by Notch Signalling, 2015, 11, 1553-7358, e1004459, 10.1371/journal.pcbi.1004459
    11. R. Murat Demirer, Oya Demirer, 2016, A numerical bifurcation analysis of circadian rhythms in Pacemaker Neurons: RNA-protein synthesis modeling analysis, 978-1-5090-0876-6, 1, 10.1109/EBBT.2016.7483694
    12. Maurisa F. Riley, Matthew S. Bochter, Kanu Wahi, Gerard J. Nuovo, Susan E. Cole, mir-125a-5p-Mediated Regulation of Lfng Is Essential for the Avian Segmentation Clock, 2013, 24, 15345807, 554, 10.1016/j.devcel.2013.01.024
    13. PENG FENG, DYNAMICS OF A SEGMENTATION CLOCK MODEL WITH DISCRETE AND DISTRIBUTED DELAYS, 2010, 03, 1793-5245, 399, 10.1142/S1793524510001112
    14. Fengpan Zhang, Jinrui Lu, Zhiguang Liu, Aimin Chen, Jianwei Shen, Effects of nonlinear degradation of protein on the oscillatory dynamics in a simple gene regulatory network, 2010, 389, 03784371, 1286, 10.1016/j.physa.2009.11.040
    15. Kiranmoy Das, Zhongwen Huang, Jingyuan Liu, Guifang Fu, Jiahan Li, Yao Li, Chunfa Tong, Junyi Gai, Rongling Wu, 2012, Chapter 12, 978-1-61779-784-2, 227, 10.1007/978-1-61779-785-9_12
    16. Cristian Soza-Ried, Emre Öztürk, David Ish-Horowicz, Julian Lewis, Pulses of Notch activation synchronise oscillating somite cells and entrain the zebrafish segmentation clock, 2014, 141, 1477-9129, 1780, 10.1242/dev.102111
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2594) PDF downloads(455) Cited by(16)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog