Traveling bands for the Keller-Segel model with population growth

  • Received: 01 April 2014 Accepted: 29 June 2018 Published: 01 April 2015
  • MSC : 35C07, 35K55, 46N60, 62P10, 92C17.

  • This paper is concerned with the existence of the traveling bands to the Keller-Segel model with cell population growth in the form of a chemical uptake kinetics. We find that when the cell growth is considered, the profile of traveling bands, the minimum wave speed and the range of the chemical consumption rate for the existence of traveling wave solutions will change. Our results reveal that collective interaction of cell growth and chemical consumption rate plays an essential role in the generation of traveling bands. The research in the paper provides new insights into the mechanisms underlying the chemotactic pattern formation of wave bands.

    Citation: Shangbing Ai, Zhian Wang. Traveling bands for the Keller-Segel model with population growth[J]. Mathematical Biosciences and Engineering, 2015, 12(4): 717-737. doi: 10.3934/mbe.2015.12.717

    Related Papers:

  • This paper is concerned with the existence of the traveling bands to the Keller-Segel model with cell population growth in the form of a chemical uptake kinetics. We find that when the cell growth is considered, the profile of traveling bands, the minimum wave speed and the range of the chemical consumption rate for the existence of traveling wave solutions will change. Our results reveal that collective interaction of cell growth and chemical consumption rate plays an essential role in the generation of traveling bands. The research in the paper provides new insights into the mechanisms underlying the chemotactic pattern formation of wave bands.


    加载中
    [1] Science, 44 (1975), 341-356.
    [2] Science, 166 (1969), 1588-1597.
    [3] Dicrete Contin. Dyn. Syst.-Series B, 20 (2015), 1-21.
    [4] Dicrete Contin. Dyn. Syst., 34 (2014), 5165-5179.
    [5] C. R. Acad. Sci. Paris. Ser. I., 336 (2003), 141-146.
    [6] Milan j. Math., 72 (2004), 1-28.
    [7] SIAM J. Math. Anal., 33 (2002), 1330-1355.
    [8] Interfaces Free Bound., 8 (2006), 223-245.
    [9] J. Differential Equations, 255 (2013), 193-219.
    [10] Biophysical Journal, 96 (2009), 2439-2448.
    [11] J. Theor. Biol., 30 (1971), 235-248.
    [12] Bull. Math. Biol., 42 (1980), 397-429.
    [13] Biophy. J., 22 (1978), 1-13.
    [14] Bull. Math. Biol., 46 (1984), 19-40.
    [15] Math. Biosci, 168 (2000), 71-115.
    [16] Math. Models Methods Appl. Sci., 21 (2011), 1631-1650.
    [17] Math. Models Methods Appl. Sci., 24 (2014), 2819-2849.
    [18] SIAM J. Appl. Math., 70 (2009), 1522-1541.
    [19] Math. Models Methods Appl. Sci., 20 (2010), 1967-1998.
    [20] J. Differential Equations, 250 (2011), 1310-1333.
    [21] J. Math. Biol., 61 (2010), 739-761.
    [22] Interfaces Free Bound., 10 (2008), 517-538.
    [23] J. Math. Biol., 30 (1991), 169-184.
    [24] Math. Biosci., 13 (1972), 397-406.
    [25] J. Theor. Biol., 49 (1975), 311-321.
    [26] Bull. Math. Biol., 40 (1978), 671-674.
    [27] Math. Biosci., 24 (1975), 273-279.
    [28] PLoS computational biology, 6 (2010), e1000890, 12pp.
    [29] PNAS, 108 (2011), 16235-16240.
    [30] Proc. Appl. Math. Mech., 3 (2003), 476-478.
    [31] SIAM J. Math. Anal., 38 (2006), 1694-1713.
    [32] Discrete Contin. Dyn. Syst.-Series B, 17 (2012), 2849-2860.
    [33] Discrete Contin. Dyn. Syst.-Series B, 18 (2013), 601-641.
    [34] Math. Methods. Appl. Sci., 31 (2008), 45-70.
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1937) PDF downloads(510) Cited by(8)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog