Traveling bands for the Keller-Segel model with population growth

  • Received: 01 April 2014 Accepted: 29 June 2018 Published: 01 April 2015
  • MSC : 35C07, 35K55, 46N60, 62P10, 92C17.

  • This paper is concerned with the existence of the traveling bands to the Keller-Segel model with cell population growth in the form of a chemical uptake kinetics. We find that when the cell growth is considered, the profile of traveling bands, the minimum wave speed and the range of the chemical consumption rate for the existence of traveling wave solutions will change. Our results reveal that collective interaction of cell growth and chemical consumption rate plays an essential role in the generation of traveling bands. The research in the paper provides new insights into the mechanisms underlying the chemotactic pattern formation of wave bands.

    Citation: Shangbing Ai, Zhian Wang. Traveling bands for the Keller-Segel model with population growth[J]. Mathematical Biosciences and Engineering, 2015, 12(4): 717-737. doi: 10.3934/mbe.2015.12.717

    Related Papers:

    [1] Ana Isabel Muñoz, J. Ignacio Tello . On a mathematical model of bone marrow metastatic niche. Mathematical Biosciences and Engineering, 2017, 14(1): 289-304. doi: 10.3934/mbe.2017019
    [2] Changxiang Huan, Jiaxin Gao . Insight into the potential pathogenesis of human osteoarthritis via single-cell RNA sequencing data on osteoblasts. Mathematical Biosciences and Engineering, 2022, 19(6): 6344-6361. doi: 10.3934/mbe.2022297
    [3] Swadesh Pal, Malay Banerjee, Vitaly Volpert . Spatio-temporal Bazykin’s model with space-time nonlocality. Mathematical Biosciences and Engineering, 2020, 17(5): 4801-4824. doi: 10.3934/mbe.2020262
    [4] Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl . Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences and Engineering, 2017, 14(3): 625-653. doi: 10.3934/mbe.2017036
    [5] Ali Moussaoui, Vitaly Volpert . The impact of immune cell interactions on virus quasi-species formation. Mathematical Biosciences and Engineering, 2024, 21(11): 7530-7553. doi: 10.3934/mbe.2024331
    [6] Chichia Chiu, Jui-Ling Yu . An optimal adaptive time-stepping scheme for solving reaction-diffusion-chemotaxis systems. Mathematical Biosciences and Engineering, 2007, 4(2): 187-203. doi: 10.3934/mbe.2007.4.187
    [7] Hoang Pham . Analyzing the relationship between the vitamin D deficiency and COVID-19 mortality rate and modeling the time-delay interactions between body's immune healthy cells, infected cells, and virus particles with the effect of vitamin D levels. Mathematical Biosciences and Engineering, 2022, 19(9): 8975-9004. doi: 10.3934/mbe.2022417
    [8] Ana I. Muñoz, José Ignacio Tello . Mathematical analysis and numerical simulation of a model of morphogenesis. Mathematical Biosciences and Engineering, 2011, 8(4): 1035-1059. doi: 10.3934/mbe.2011.8.1035
    [9] Marek Bodnar, Urszula Foryś . Time Delay In Necrotic Core Formation. Mathematical Biosciences and Engineering, 2005, 2(3): 461-472. doi: 10.3934/mbe.2005.2.461
    [10] Changwook Yoon, Sewoong Kim, Hyung Ju Hwang . Global well-posedness and pattern formations of the immune system induced by chemotaxis. Mathematical Biosciences and Engineering, 2020, 17(4): 3426-3449. doi: 10.3934/mbe.2020194
  • This paper is concerned with the existence of the traveling bands to the Keller-Segel model with cell population growth in the form of a chemical uptake kinetics. We find that when the cell growth is considered, the profile of traveling bands, the minimum wave speed and the range of the chemical consumption rate for the existence of traveling wave solutions will change. Our results reveal that collective interaction of cell growth and chemical consumption rate plays an essential role in the generation of traveling bands. The research in the paper provides new insights into the mechanisms underlying the chemotactic pattern formation of wave bands.


    [1] Science, 44 (1975), 341-356.
    [2] Science, 166 (1969), 1588-1597.
    [3] Dicrete Contin. Dyn. Syst.-Series B, 20 (2015), 1-21.
    [4] Dicrete Contin. Dyn. Syst., 34 (2014), 5165-5179.
    [5] C. R. Acad. Sci. Paris. Ser. I., 336 (2003), 141-146.
    [6] Milan j. Math., 72 (2004), 1-28.
    [7] SIAM J. Math. Anal., 33 (2002), 1330-1355.
    [8] Interfaces Free Bound., 8 (2006), 223-245.
    [9] J. Differential Equations, 255 (2013), 193-219.
    [10] Biophysical Journal, 96 (2009), 2439-2448.
    [11] J. Theor. Biol., 30 (1971), 235-248.
    [12] Bull. Math. Biol., 42 (1980), 397-429.
    [13] Biophy. J., 22 (1978), 1-13.
    [14] Bull. Math. Biol., 46 (1984), 19-40.
    [15] Math. Biosci, 168 (2000), 71-115.
    [16] Math. Models Methods Appl. Sci., 21 (2011), 1631-1650.
    [17] Math. Models Methods Appl. Sci., 24 (2014), 2819-2849.
    [18] SIAM J. Appl. Math., 70 (2009), 1522-1541.
    [19] Math. Models Methods Appl. Sci., 20 (2010), 1967-1998.
    [20] J. Differential Equations, 250 (2011), 1310-1333.
    [21] J. Math. Biol., 61 (2010), 739-761.
    [22] Interfaces Free Bound., 10 (2008), 517-538.
    [23] J. Math. Biol., 30 (1991), 169-184.
    [24] Math. Biosci., 13 (1972), 397-406.
    [25] J. Theor. Biol., 49 (1975), 311-321.
    [26] Bull. Math. Biol., 40 (1978), 671-674.
    [27] Math. Biosci., 24 (1975), 273-279.
    [28] PLoS computational biology, 6 (2010), e1000890, 12pp.
    [29] PNAS, 108 (2011), 16235-16240.
    [30] Proc. Appl. Math. Mech., 3 (2003), 476-478.
    [31] SIAM J. Math. Anal., 38 (2006), 1694-1713.
    [32] Discrete Contin. Dyn. Syst.-Series B, 17 (2012), 2849-2860.
    [33] Discrete Contin. Dyn. Syst.-Series B, 18 (2013), 601-641.
    [34] Math. Methods. Appl. Sci., 31 (2008), 45-70.
  • This article has been cited by:

    1. James L. Buchanan, Robert Gilbert, Yvonne Ou, Anja Nohe, Rachel Schaefer, The Kinetics of Vitamin D3 in the Osteoblastic Cell, 2013, 75, 0092-8240, 1612, 10.1007/s11538-013-9861-2
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3241) PDF downloads(525) Cited by(11)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog