Bifurcation analysis and transient spatio-temporal dynamics for a diffusive plant-herbivore system with Dirichlet boundary conditions

  • Received: 01 March 2014 Accepted: 29 June 2018 Published: 01 April 2015
  • MSC : Primary: 35B32, 35B35; Secondary: 92B05.

  • In this paper, we study a diffusive plant-herbivore system with homogeneous and nonhomogeneous Dirichlet boundary conditions.Stability of spatially homogeneous steady states is established. We also derive conditions ensuring the occurrence of Hopfbifurcation and steady state bifurcation. Interesting transient spatio-temporal behaviors including oscillations in one or both of space and time are observed through numerical simulations.

    Citation: Lin Wang, James Watmough, Fang Yu. Bifurcation analysis and transient spatio-temporal dynamics for a diffusive plant-herbivore system with Dirichlet boundary conditions[J]. Mathematical Biosciences and Engineering, 2015, 12(4): 699-715. doi: 10.3934/mbe.2015.12.699

    Related Papers:

    [1] Ya Li, Z. Feng . Dynamics of a plant-herbivore model with toxin-induced functional response. Mathematical Biosciences and Engineering, 2010, 7(1): 149-169. doi: 10.3934/mbe.2010.7.149
    [2] Xin Wei, Jianjun Paul Tian, Jiantao Zhao . Fairy circles and temporal periodic patterns in the delayed plant-sulfide feedback model. Mathematical Biosciences and Engineering, 2024, 21(8): 6783-6806. doi: 10.3934/mbe.2024297
    [3] Sangeeta Kumari, Sidharth Menon, Abhirami K . Dynamical system of quokka population depicting Fennecaphobia by Vulpes vulpes. Mathematical Biosciences and Engineering, 2025, 22(6): 1342-1363. doi: 10.3934/mbe.2025050
    [4] Mingzhu Qu, Chunrui Zhang, Xingjian Wang . Analysis of dynamic properties on forest restoration-population pressure model. Mathematical Biosciences and Engineering, 2020, 17(4): 3567-3581. doi: 10.3934/mbe.2020201
    [5] Wanxiao Xu, Ping Jiang, Hongying Shu, Shanshan Tong . Modeling the fear effect in the predator-prey dynamics with an age structure in the predators. Mathematical Biosciences and Engineering, 2023, 20(7): 12625-12648. doi: 10.3934/mbe.2023562
    [6] Elvira Barbera, Giancarlo Consolo, Giovanna Valenti . A two or three compartments hyperbolic reaction-diffusion model for the aquatic food chain. Mathematical Biosciences and Engineering, 2015, 12(3): 451-472. doi: 10.3934/mbe.2015.12.451
    [7] Zhilan Feng, Wenzhang Huang, Donald L. DeAngelis . Spatially heterogeneous invasion of toxic plant mediated by herbivory. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1519-1538. doi: 10.3934/mbe.2013.10.1519
    [8] Guangxun Sun, Binxiang Dai . Stability and bifurcation of a delayed diffusive predator-prey system with food-limited and nonlinear harvesting. Mathematical Biosciences and Engineering, 2020, 17(4): 3520-3552. doi: 10.3934/mbe.2020199
    [9] Monika Joanna Piotrowska, Urszula Foryś, Marek Bodnar, Jan Poleszczuk . A simple model of carcinogenic mutations with time delay and diffusion. Mathematical Biosciences and Engineering, 2013, 10(3): 861-872. doi: 10.3934/mbe.2013.10.861
    [10] Sunmi Lee, Chang Yong Han, Minseok Kim, Yun Kang . Optimal control of a discrete-time plant–herbivore/pest model with bistability in fluctuating environments. Mathematical Biosciences and Engineering, 2022, 19(5): 5075-5103. doi: 10.3934/mbe.2022237
  • In this paper, we study a diffusive plant-herbivore system with homogeneous and nonhomogeneous Dirichlet boundary conditions.Stability of spatially homogeneous steady states is established. We also derive conditions ensuring the occurrence of Hopfbifurcation and steady state bifurcation. Interesting transient spatio-temporal behaviors including oscillations in one or both of space and time are observed through numerical simulations.


    [1] SIAM J. Math. Anal., 17 (1986), 1339-1353.
    [2] Adv. in Appl. Math., 3 (1982), 288-334.
    [3] J. Funct. Anal., 8 (1971), 321-340.
    [4] Trans. Amer. Math. Soc., 284 (1984), 729-743.
    [5] J. Diff. Equat., 60 (1985), 236-258.
    [6] Amer. Zool., 21 (1981), 853-864.
    [7] Cambridge University Press, Cambridge, MA, 1981.
    [8] J. of Animal Ecology, 67 (1998), 325-327.
    [9] Trans. Amer. Math. Soc., 305 (1988), 143-166.
    [10] Freeman and Company, New York, 2010.
    [11] Nonlinearity, 27 (2014), 87-104.
    [12] SIAM J. Math. Anal., 21 (1990), 327-345.
  • This article has been cited by:

    1. Yingwei Song, Tie Zhang, SPATIAL PATTERN FORMATIONS IN DIFFUSIVE PREDATOR-PREY SYSTEMS WITH NON-HOMOGENEOUS DIRICHLET BOUNDARY CONDITIONS, 2020, 10, 2156-907X, 165, 10.11948/20190097
    2. Prof Inyiama H.C, Dimoji D.O, SMS Based Remote Monitoring and Control of Industrial Processes using Artificial, 2020, 12, 2412-8856, 1, 10.47277/IJCEIT/12(1)1
    3. Fang Yu, Lin Wang, James Watmough, Transient spatio-temporal dynamics of a diffusive plant–herbivore system with Neumann boundary conditions, 2016, 10, 1751-3758, 477, 10.1080/17513758.2016.1218961
    4. Jun Jiang, Jinfeng Wang, Yingwei Song, The Influence of Dirichlet Boundary Conditions on the Dynamics for a Diffusive Predator–Prey System, 2019, 29, 0218-1274, 1950113, 10.1142/S021812741950113X
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2597) PDF downloads(537) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog