A note on modelling with measures: Two-features balance equations

  • Received: 01 April 2014 Accepted: 29 June 2018 Published: 01 December 2014
  • MSC : Primary: 00A71, 35L65; Secondary: 92D25.

  • In this note we explain by an example what we understandby a balance situation and by a balance equation in termsof measures.
        The latter ones are an attempt to start modelling of (not only)diffusion-reaction or mass-conservation scenarios in terms of measuresrather than by derivatives and other rates.
        By means of three examples this concept is extended to two-features (=two-traits-) balance situations, which, e.g., combine features like aging andphysical motion in populations or physical motion and formation of polymers by means of a single model equation.

    Citation: Michael Böhm, Martin Höpker. A note on modelling with measures: Two-features balance equations[J]. Mathematical Biosciences and Engineering, 2015, 12(2): 279-290. doi: 10.3934/mbe.2015.12.279

    Related Papers:

    [1] Jiakou Wang, Margaret J. Slattery, Meghan Henty Hoskins, Shile Liang, Cheng Dong, Qiang Du . Monte carlo simulation of heterotypic cell aggregation in nonlinear shear flow. Mathematical Biosciences and Engineering, 2006, 3(4): 683-696. doi: 10.3934/mbe.2006.3.683
    [2] Abdelkarim Lamghari, Dramane Sam Idris Kanté, Aissam Jebrane, Abdelilah Hakim . Modeling the impact of distancing measures on infectious disease spread: a case study of COVID-19 in the Moroccan population. Mathematical Biosciences and Engineering, 2024, 21(3): 4370-4396. doi: 10.3934/mbe.2024193
    [3] Jinyun Jiang, Jianchen Cai, Qile Zhang, Kun Lan, Xiaoliang Jiang, Jun Wu . Group theoretic particle swarm optimization for gray-level medical image enhancement. Mathematical Biosciences and Engineering, 2023, 20(6): 10479-10494. doi: 10.3934/mbe.2023462
    [4] Karl Peter Hadeler . Structured populations with diffusion in state space. Mathematical Biosciences and Engineering, 2010, 7(1): 37-49. doi: 10.3934/mbe.2010.7.37
    [5] Minette Herrera, Aaron Miller, Joel Nishimura . Altruistic aging: The evolutionary dynamics balancing longevity and evolvability. Mathematical Biosciences and Engineering, 2017, 14(2): 455-465. doi: 10.3934/mbe.2017028
    [6] Chenhao Wu, Lei Chen . A model with deep analysis on a large drug network for drug classification. Mathematical Biosciences and Engineering, 2023, 20(1): 383-401. doi: 10.3934/mbe.2023018
    [7] Yong Li, Meng Huang, Li Peng . A multi-group model for estimating the transmission rate of hand, foot and mouth disease in mainland China. Mathematical Biosciences and Engineering, 2019, 16(4): 2305-2321. doi: 10.3934/mbe.2019115
    [8] Cristeta U. Jamilla, Renier G. Mendoza, Victoria May P. Mendoza . Explicit solution of a Lotka-Sharpe-McKendrick system involving neutral delay differential equations using the r-Lambert W function. Mathematical Biosciences and Engineering, 2020, 17(5): 5686-5708. doi: 10.3934/mbe.2020306
    [9] Tongqian Zhang, Ning Gao, Tengfei Wang, Hongxia Liu, Zhichao Jiang . Global dynamics of a model for treating microorganisms in sewage by periodically adding microbial flocculants. Mathematical Biosciences and Engineering, 2020, 17(1): 179-201. doi: 10.3934/mbe.2020010
    [10] Boyi Zeng, Jun Zhao, Shantian Wen . A textual and visual features-jointly driven hybrid intelligent system for digital physical education teaching quality evaluation. Mathematical Biosciences and Engineering, 2023, 20(8): 13581-13601. doi: 10.3934/mbe.2023606
  • In this note we explain by an example what we understandby a balance situation and by a balance equation in termsof measures.
        The latter ones are an attempt to start modelling of (not only)diffusion-reaction or mass-conservation scenarios in terms of measuresrather than by derivatives and other rates.
        By means of three examples this concept is extended to two-features (=two-traits-) balance situations, which, e.g., combine features like aging andphysical motion in populations or physical motion and formation of polymers by means of a single model equation.


    [1] BirkhäuserBoston, Inc., Boston, MA, 1998.
    [2] Lecture Notes, in preparation.
    [3] Springer, 1974.
    [4] Journal of Contaminant Hydrology, 1 (1987), 309-327.
    [5] XIX International Conference on Water Resources, CMWR, 2012.
    [6] Continuum Mech. Thermodyn., 13 (2001), 149-169.
    [7] Collective Dynamics from Bacteria to Crowds, CISM International Centre for Mechanical Sciences, 553 (2014), 75-103.
    [8] Arch. Ration. Mech. Anal., 1984 (2007), 169-196.
    [9] Arch. Rational Mech. Anal., 154 (2000), 183-198.
    [10] Springer, Berlin, 1997.
    [11] Pure and Applied Chemistry, 83 (2011), 2229-2259.
    [12] $2^{nd}$ edition, Cambridge University Press, 2001.
    [13] $1^{st}$ edition, AcademicPress, Boston, 1991.
  • This article has been cited by:

    1. Alessandro Ciallella, Emilio N. M. Cirillo, Petru L. Curşeu, Adrian Muntean, Free to move or trapped in your group: Mathematical modeling of information overload and coordination in crowded populations, 2018, 28, 0218-2025, 1831, 10.1142/S0218202518400079
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2724) PDF downloads(444) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog