Mathematical Biosciences and Engineering, 2015, 12(6): 1321-1340. doi: 10.3934/mbe.2015.12.1321.

Primary: 92CXX; Secondary: 92BXX, 92D25.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Models, measurement and inference in epithelial tissue dynamics

1. Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Radcli e Observatory Quarter, Woodstock Road, Oxford, OX2 6GG
2. Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford OX1 3QD

The majority of solid tumours arise in epithelia and therefore much research effort has gone into investigating the growth, renewal and regulation of these tissues. Here we review different mathematical and computational approaches that have been used to model epithelia. We compare different models and describe future challenges that need to be overcome in order to fully exploit new data which present, for the first time, the real possibility for detailed model validation and comparison.
  Figure/Table
  Supplementary
  Article Metrics

Keywords cancer; inference.; individual-based modelling; multiscale modelling; Epithelia; continuum modelling; compartmental modelling

Citation: Oliver J. Maclaren, Helen M. Byrne, Alexander G. Fletcher, Philip K. Maini. Models, measurement and inference in epithelial tissue dynamics. Mathematical Biosciences and Engineering, 2015, 12(6): 1321-1340. doi: 10.3934/mbe.2015.12.1321

References

  • 1. J. Mech. Phys. Solids, 59 (2011), 863-883.
  • 2. Cell Rep., 8 (2014), 940-947.
  • 3. J. Am. Statist. Assoc., 95 (2000), 1269-1276.
  • 4. Curr. Opin. Genet. Dev., 21 (2011), 653-663.
  • 5. Nat. Methods, 6 (2009), 458-464.
  • 6. Phys. Rev. Lett., 99 (2007), 248101.
  • 7. J. R. Soc. Interface, 9 (2012), 20120263.
  • 8. J. Theor. Biol., 98 (1982), 531-541.
  • 9. PLoS Comput. Biol., 7 (2011), e1001045.
  • 10. Integr. Biol., 6 (2014), 243-257.
  • 11. Biophy. J., 99 (2010), 3145-3154.
  • 12. BMC Sys. Biol., 4 (2010), p107.
  • 13. arXiv:1302.6989v3
  • 14. J. Math. Biol., 66 (2013), 1409-1462.
  • 15. J. R. Soc. Interface, 11 (2014), 20140631.
  • 16. Springer, 2005.
  • 17. SIAM J. Appl. Math., 73 (2013), 1164-1182.
  • 18. In Multiscale Cancer Modeling, Editor: TS Deisboeck, 6 (2010), 111-134.
  • 19. J. Theor. Biol., 300 (2012), 118-133.
  • 20. Prog. Biophys. Mol. Bio., 113 (2013), 299-326.
  • 21. Math. Med. Biol., 27 (2010), 39-74.
  • 22. Springer, New York, 2008.
  • 23. Appl. Mech. Rev., 62 (2009), 030801.
  • 24. Brit. J. Cancer, BJC, 97 (2007), 646-653.
  • 25. CRC press, 2013.
  • 26. Br. J. Math. Stat. Psychol., 66 (2013), 8-38.
  • 27. Phys. Rev. E, 47 (1993), p2128.
  • 28. In Single-Cell-Based Models in Biology and Medicine, pages 79-106. Springer, 2007.
  • 29. Phys. Rev. Lett., 69 (1992), p2013.
  • 30. Eur. Phys. J. E Soft Matter, 25 (2008), 349-369.
  • 31. Springer, 2000.
  • 32. Cambridge University Press, 2010.
  • 33. J. Math. Biol., 67 (2013), 1457-1485.
  • 34. Springer, 2007.
  • 35. In SIAM News, volume July/August, 2014.
  • 36. Springer, 1989.
  • 37. Cambridge University Press, 2003.
  • 38. Cell Cycle, 6 (2007), 2106-2112.
  • 39. Proc. Natl. Acad. Sci. USA, 104 (2007), 4008-4013.
  • 40. SIAM Rev., 54 (2012), 52-118.
  • 41. IET Syst. Biol., 7 (2013), p57.
  • 42. PLoS Biol., 7 (2009), e1000015.
  • 43. Biophys. J., 69 (1995), 1284-1298.
  • 44. Math. Biosci. Eng.: MBE, 6 (2009), 59-82.
  • 45. Cell Prolif., 19 (1986), 627-645.
  • 46. Phys Rev. E, 78 (2008), 061904.
  • 47. Annu. Rev. Pathol. - Mech., 5 (2010), 119-144.
  • 48. Disc. Cont. Dyn. Syst., 34 (2014), 5123-5133.
  • 49. Eur. Phys. J.E, 25 (2008), 371-384.
  • 50. World Scientific, 1999.
  • 51. Cell Prolif., 34 (2001), 253-266.
  • 52. Mech. Res. Commun., 42 (2012), 1-14.
  • 53. J. Theor. Biol., 359 (2014), 220-232.
  • 54. J. Theor. Biol., 312 (2012), 143-156.
  • 55. PLoS Comput. Biol., 9 (2013), e1002970, 8pp.
  • 56. Int. Geophys. Series, 81 (2002), 237-265.
  • 57. Phys. Rev. E, 80 (2009), 031912.
  • 58. Phys. Rev. E, 85 (2012), 021921.
  • 59. Phys. Biol., 8 (2011), 026011.
  • 60. Phys. Rev. E, 70 (2004), 051916.
  • 61. Math. Biosci. Eng.: MBE, 2 (2005), 613-624.
  • 62. Math. Mod. Meth. Appl. S., 20 (2010), 477-517.
  • 63. Math. Mod. Meth. Appl. S., 23 (2013), 1309-1338.
  • 64. Phil. Trans. R. Soc. A, 368 (2010), 5013-5028.
  • 65. Physica A, 329 (2003), 451-458.
  • 66. Biophys. J., 104 (2013), 237-246.
  • 67. Science, 307 (2005), 1904-1909.
  • 68. Phys. Rev. E, 81 (2010), 031404.
  • 69. Compr. Physiol., 2011.
  • 70. Phys. Biol., 8 (2011), 045008.
  • 71. Phys. Biol., 8 (2011), 045007.
  • 72. Phys. Biol., 5 (2008), 015002.
  • 73. Science, 137 (1962), 762-763.
  • 74. Proc. Natl. Acad. Sci. USA, 48 (1962), 1577-1582.
  • 75. Proc. Natl. Acad. Sci. USA, 48 (1962), 1769-1776.
  • 76. Science, 141 (1963), 401-408.
  • 77. Acta Numerica, 19 (2010), 451-559.
  • 78. SIAM, 2005.
  • 79. Cambridge University Press, Cambridge, 1942.
  • 80. J. Theor. Biol., 216 (2002), 85-100.
  • 81. Cell Prolif., 42 (2009), 617-636.
  • 82. PloS one, 7 (2012), e42852.
  • 83. PhD thesis, University of Nottingham, 2009.
  • 84. Clarendon Press Oxford, 1984.
  • 85. BMC Syst. Biol., 6 (2012), p93.
  • 86. Elsevier, 1983.

 

This article has been cited by

  • 1. Julien Varennes, Bumsoo Han, Andrew Mugler, Collective Chemotaxis through Noisy Multicellular Gradient Sensing, Biophysical Journal, 2016, 111, 3, 640, 10.1016/j.bpj.2016.06.040
  • 2. Oliver J. Maclaren, Aimée Parker, Carmen Pin, Simon R. Carding, Alastair J. M. Watson, Alexander G. Fletcher, Helen M. Byrne, Philip K. Maini, Qing Nie, A hierarchical Bayesian model for understanding the spatiotemporal dynamics of the intestinal epithelium, PLOS Computational Biology, 2017, 13, 7, e1005688, 10.1371/journal.pcbi.1005688
  • 3. François Graner, Daniel Riveline, ‘The Forms of Tissues, or Cell-aggregates’: D'Arcy Thompson's influence and its limits, Development, 2017, 144, 23, 4226, 10.1242/dev.151233
  • 4. Zahra Sadat Hosseini, Seyed Mohammad Reza Hashemi Gholpayeghani, Masoud Sotoudeh, Reza Malekzadeh, A fractal based approach to evaluate the progression of esophageal squamous cell dysplasia, Biomedical Signal Processing and Control, 2019, 48, 273, 10.1016/j.bspc.2018.09.001
  • 5. David J. Warne, Ruth E. Baker, Matthew J. Simpson, Simulation and inference algorithms for stochastic biochemical reaction networks: from basic concepts to state-of-the-art, Journal of The Royal Society Interface, 2019, 16, 151, 20180943, 10.1098/rsif.2018.0943
  • 6. Axel A. Almet, Philip K. Maini, Derek E. Moulton, Helen M. Byrne, Modelling perspectives on the intestinal crypt, a canonical system for growth, mechanics, and remodelling, Current Opinion in Biomedical Engineering, 2020, 10.1016/j.cobme.2019.12.012
  • 7. Zahra Sadat Hosseini, Seyed Mohammad Reza Hashemi Golpayegani, Esophageal epithelium modeling based on globally coupled map: an approach toward precancerous lesion diagnosis, Medical & Biological Engineering & Computing, 2020, 10.1007/s11517-020-02151-7

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Oliver J. Maclaren, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved