Hybrid models of cell and tissue dynamics in tumor growth

  • Received: 01 October 2014 Accepted: 29 June 2018 Published: 01 August 2015
  • MSC : Primary: 92C45, 92C50; Secondary: 92B05.

  • Hybrid models of tumor growth, in which some regions are described at the celllevel and others at the continuum level, provide a flexible description thatallows alterations of cell-level properties and detailed descriptions of theinteraction with the tumor environment, yet retain the computational advantagesof continuum models where appropriate. We review aspects of the general approachand discuss applications to breast cancer and glioblastoma.

    Citation: Yangjin Kim, Hans G. Othmer. Hybrid models of cell and tissue dynamics in tumor growth[J]. Mathematical Biosciences and Engineering, 2015, 12(6): 1141-1156. doi: 10.3934/mbe.2015.12.1141

    Related Papers:

    [1] Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028
    [2] Avner Friedman, Yangjin Kim . Tumor cells proliferation and migration under the influence of their microenvironment. Mathematical Biosciences and Engineering, 2011, 8(2): 371-383. doi: 10.3934/mbe.2011.8.371
    [3] Yuyang Xiao, Juan Shen, Xiufen Zou . Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. Mathematical Biosciences and Engineering, 2022, 19(4): 4120-4144. doi: 10.3934/mbe.2022190
    [4] Alexandra Shyntar, Thomas Hillen . Mathematical modeling of microtube-driven regrowth of gliomas after local resection. Mathematical Biosciences and Engineering, 2025, 22(1): 52-72. doi: 10.3934/mbe.2025003
    [5] Hasitha N. Weerasinghe, Pamela M. Burrage, Dan V. Nicolau Jr., Kevin Burrage . Agent-based modeling for the tumor microenvironment (TME). Mathematical Biosciences and Engineering, 2024, 21(11): 7621-7647. doi: 10.3934/mbe.2024335
    [6] Youshan Tao, J. Ignacio Tello . Nonlinear stability of a heterogeneous state in a PDE-ODE model for acid-mediated tumor invasion. Mathematical Biosciences and Engineering, 2016, 13(1): 193-207. doi: 10.3934/mbe.2016.13.193
    [7] Erin N. Bodine, K. Lars Monia . A proton therapy model using discrete difference equations with an example of treating hepatocellular carcinoma. Mathematical Biosciences and Engineering, 2017, 14(4): 881-899. doi: 10.3934/mbe.2017047
    [8] Hsiu-Chuan Wei . Mathematical modeling of tumor growth: the MCF-7 breast cancer cell line. Mathematical Biosciences and Engineering, 2019, 16(6): 6512-6535. doi: 10.3934/mbe.2019325
    [9] Peter Hinow, Philip Gerlee, Lisa J. McCawley, Vito Quaranta, Madalina Ciobanu, Shizhen Wang, Jason M. Graham, Bruce P. Ayati, Jonathan Claridge, Kristin R. Swanson, Mary Loveless, Alexander R. A. Anderson . A spatial model of tumor-host interaction: Application of chemotherapy. Mathematical Biosciences and Engineering, 2009, 6(3): 521-546. doi: 10.3934/mbe.2009.6.521
    [10] Marcelo E. de Oliveira, Luiz M. G. Neto . Directional entropy based model for diffusivity-driven tumor growth. Mathematical Biosciences and Engineering, 2016, 13(2): 333-341. doi: 10.3934/mbe.2015005
  • Hybrid models of tumor growth, in which some regions are described at the celllevel and others at the continuum level, provide a flexible description thatallows alterations of cell-level properties and detailed descriptions of theinteraction with the tumor environment, yet retain the computational advantagesof continuum models where appropriate. We review aspects of the general approachand discuss applications to breast cancer and glioblastoma.


    [1] Current opinion in cell biology, 19 (2007), 223-229.
    [2] Curr Opin Cell Biol, 23 (2011), 621-629.
    [3] Clin Cancer Res, 9 (2003), 1590-1595.
    [4] J. Theor. Biol., 231 (2004), 203-222.
    [5] Current opinion in cell biology, 23 (2011), 744-755.
    [6] Ann. Rev. Biomed. Eng., 13 (2011), 117-155.
    [7] Cell, 147 (2011), 992-1009.
    [8] Nature Reviews Molecular Cell Biology, 10 (2009), 445-457.
    [9] Biophysical J., 88 (2005), 62-75.
    [10] Cell Cycle, 9 (2010), 2742-2748.
    [11] Molecular Cell, 37 (2010), 620-632.
    [12] Bull. Math. Biol., 66 (2004), 167-193.
    [13] Cancer Research, 66 (2006), 1033-1039.
    [14] The Journal of pathology, 226 (2012), 185-199.
    [15] Nature Biotechnology, 15 (1997), 778-783.
    [16] Phys Biol., 8 (2011), 015010.
    [17] ASN NEURO, 3 (2011), e00063.
    [18] Cancer Res, 74 (2014), 4622-4637.
    [19] Cancer research, 66 (2006), p8927.
    [20] Frontiers in Molecular and Cellular Oncology, 3 (2013), p53.
    [21] Discrete and Continuous Dynamical Systems-B, 18 (2013), 969-1015.
    [22] Math. Models Methods in Appl Sci, 17 (2007), 1773-1798.
    [23] J. Theo. Biol., 260 (2009), 359-371.
    [24] PLoS One, 6 (2011), e28293.
    [25] Progress in Biophysics and Molecular Biology, 106 (2011b), 353-379.
    [26] PLoS One, 9 (2014), e102499.
    [27] Bull. Math. Biol., 75 (2013), 1304-1350.
    [28] Nonlinearity, 23 (2010), R1-R91.
    [29] J. Math. Biol., 58 (2009), 765-798.
    [30] Annual Review of Biochemistry, 67 ( 1998), p753.
    [31] Cell, 134 (2008), 215-230.
    [32] Nature Reviews Cancer, 6 (2006), 924-935.
    [33] J Theor Biol, 254 (2008), 1-13.
    [34] Proceedings of the National Academy of Science, 97 (2000), 11448-11453.
    [35] The Journal of Neuroscience, 33 (2013), 15603-15617.
    [36] In Vitro Cell Dev Biol Anim, 42 (2006), 242-247.
    [37] Biophys J, 92 (2007), 356-365.
    [38] Philosophical Transactions of the Royal Society A, 367 (2009), 3525-3553.
    [39] Semin Cancer Biol, 11 (2001), 97-104.
    [40] Cell cycle, 10 (2011), 3263-3268.
    [41] Science, 123 (1956), 309-314.
  • This article has been cited by:

    1. Yangjin Kim, Hyunji Kang, Gibin Powathil, Hyeongi Kim, Dumitru Trucu, Wanho Lee, Sean Lawler, Mark Chaplain, Dominik Wodarz, Role of extracellular matrix and microenvironment in regulation of tumor growth and LAR-mediated invasion in glioblastoma, 2018, 13, 1932-6203, e0204865, 10.1371/journal.pone.0204865
    2. Yangjin Kim, Junho Lee, Donggu Lee, Hans Othmer, Synergistic Effects of Bortezomib-OV Therapy and Anti-Invasive Strategies in Glioblastoma: A Mathematical Model, 2019, 11, 2072-6694, 215, 10.3390/cancers11020215
    3. Christian Engwer, Christian Stinner, Christina Surulescu, On a structured multiscale model for acid-mediated tumor invasion: The effects of adhesion and proliferation, 2017, 27, 0218-2025, 1355, 10.1142/S0218202517400188
    4. Markos Antonopoulos, Dimitra Dionysiou, Georgios Stamatakos, Nikolaos Uzunoglu, Three-dimensional tumor growth in time-varying chemical fields: a modeling framework and theoretical study, 2019, 20, 1471-2105, 10.1186/s12859-019-2997-9
    5. Junho Lee, Donggu Lee, Sean Lawler, Yangjin Kim, Stacey Finley, Role of neutrophil extracellular traps in regulation of lung cancer invasion and metastasis: Structural insights from a computational model, 2021, 17, 1553-7358, e1008257, 10.1371/journal.pcbi.1008257
    6. Stefaan W. Verbruggen, Laoise M. McNamara, 2018, 9780128129524, 157, 10.1016/B978-0-12-812952-4.00006-4
    7. Thomas Hillen, Kevin J. Painter, Magdalena A. Stolarska, Chuan Xue, Multiscale phenomena and patterns in biological systems: special issue in honour of Hans Othmer, 2020, 80, 0303-6812, 275, 10.1007/s00285-020-01473-2
    8. Min-Jhe Lu, Chun Liu, John Lowengrub, Shuwang Li, Complex Far-Field Geometries Determine the Stability of Solid Tumor Growth with Chemotaxis, 2020, 82, 0092-8240, 10.1007/s11538-020-00716-z
    9. Yangjin Kim, Donggu Lee, Junho Lee, Seongwon Lee, Sean Lawler, Eugene Demidenko, Role of tumor-associated neutrophils in regulation of tumor growth in lung cancer development: A mathematical model, 2019, 14, 1932-6203, e0211041, 10.1371/journal.pone.0211041
    10. Raluca Eftimie, Joseph J. Gillard, Doreen A. Cantrell, Mathematical Models for Immunology: Current State of the Art and Future Research Directions, 2016, 78, 0092-8240, 2091, 10.1007/s11538-016-0214-9
    11. S. L. Waters, L. J. Schumacher, A. J. El Haj, Regenerative medicine meets mathematical modelling: developing symbiotic relationships, 2021, 6, 2057-3995, 10.1038/s41536-021-00134-2
    12. Vladimir Simic, Miljan Milosevic, Vladimir Milicevic, Nenad Filipovic, Milos Kojic, A novel composite smeared finite element for mechanics (CSFEM): Some applications, 2022, 09287329, 1, 10.3233/THC-220414
    13. Miloš Kojić, Miljan Milošević, Arturas Ziemys, 2023, 9780323884723, 65, 10.1016/B978-0-323-88472-3.00002-5
    14. Gabriella Bretti, Adele De Ninno, Roberto Natalini, Daniele Peri, Nicole Roselli, Estimation Algorithm for a Hybrid PDE–ODE Model Inspired by Immunocompetent Cancer-on-Chip Experiment, 2021, 10, 2075-1680, 243, 10.3390/axioms10040243
    15. Dimitrios G. Patsatzis, Algorithmic asymptotic analysis: Extending the arsenal of cancer immunology modeling, 2022, 534, 00225193, 110975, 10.1016/j.jtbi.2021.110975
    16. Joseph D. Butner, Prashant Dogra, Vittorio Cristini, Thomas S. Deisboeck, Zhihui Wang, 2023, 9780128216248, 251, 10.1016/B978-0-12-821618-7.00244-3
    17. Jonggul Lee, Donggu Lee, Yangjin Kim, Mathematical model of STAT signalling pathways in cancer development and optimal control approaches, 2021, 8, 2054-5703, 10.1098/rsos.210594
    18. Junho Lee, Jin Su Kim, Yangjin Kim, Stacey Finley, Atorvastatin-mediated rescue of cancer-related cognitive changes in combined anticancer therapies, 2021, 17, 1553-7358, e1009457, 10.1371/journal.pcbi.1009457
    19. Aurelio A. de los Reyes, Yangjin Kim, Optimal regulation of tumour-associated neutrophils in cancer progression, 2022, 9, 2054-5703, 10.1098/rsos.210705
    20. Min-Jhe Lu, Wenrui Hao, Chun Liu, John Lowengrub, Shuwang Li, Nonlinear simulation of vascular tumor growth with chemotaxis and the control of necrosis, 2022, 459, 00219991, 111153, 10.1016/j.jcp.2022.111153
    21. Tingzhe Sun, Multi-scale modeling of hippo signaling identifies homeostatic control by YAP-LATS negative feedback, 2021, 208, 03032647, 104475, 10.1016/j.biosystems.2021.104475
    22. Yangjin Kim, Junho Lee, Chaeyoung Lee, Sean Lawler, Role of senescent tumor cells in building a cytokine shield in the tumor microenvironment: mathematical modeling, 2023, 86, 0303-6812, 10.1007/s00285-022-01850-z
    23. Rebecca M. Crossley, Philip K. Maini, Tommaso Lorenzi, Ruth E. Baker, Traveling waves in a coarse‐grained model of volume‐filling cell invasion: Simulations and comparisons, 2023, 0022-2526, 10.1111/sapm.12635
    24. Anneke S.K. Verbruggen, Elan C. McCarthy, Roisin M. Dwyer, Laoise M. McNamara, Mechanobiological cues to bone cells during early metastasis drive later osteolysis: a computational mechanoregulation framework prediction, 2024, 29499070, 100100, 10.1016/j.mbm.2024.100100
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2243) PDF downloads(483) Cited by(24)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog