Mathematical Biosciences and Engineering, 2015, 12(6): 1157-1172. doi: 10.3934/mbe.2015.12.1157.

Primary: 92C50, 35C07; Secondary: 35K57.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A data-motivated density-dependent diffusion model of in vitro glioblastoma growth

1. School of Mathematical & Statistical Sciences, Arizona State University, Tempe, AZ 85287-1804
2. School of Mathematics and Statistical Sciences, Arizona State University, Tempe, AZ 85281

Glioblastoma multiforme is an aggressive brain cancer that is extremely fatal. It is characterized by both proliferation and large amounts of migration, which contributes to the difficulty of treatment. Previous models of this type of cancer growth often include two separate equations to model proliferation or migration. We propose a single equation which uses density-dependent diffusion to capture the behavior of both proliferation and migration. We analyze the model to determine the existence of traveling wave solutions. To prove the viability of the density-dependent diffusion function chosen, we compare our model with well-known in vitro experimental data.
  Figure/Table
  Supplementary
  Article Metrics

Keywords traveling waves; glioblastoma; Biomathematical modeling; tumor growth simulation.

Citation: Tracy L. Stepien, Erica M. Rutter, Yang Kuang. A data-motivated density-dependent diffusion model of in vitro glioblastoma growth. Mathematical Biosciences and Engineering, 2015, 12(6): 1157-1172. doi: 10.3934/mbe.2015.12.1157

References

  • 1. J. Theor. Biol., 243 (2006), 98-113.
  • 2. SIAM J. Math. Anal., 12 (1981), 880-892.
  • 3. Physics in Medicine and Biology, 53 (2008), p879.
  • 4. J. Theor. Biol., 245 (2007), 576-594.
  • 5. 2nd edition, Springer, 2006.
  • 6. http://www.mathworks.com/matlabcentral/fileexchange/7173-grabit, (2005), Retrieved July 1, 2014.
  • 7. J. Phys. A-Math. Gen., 38 (2005), 3367-3379.
  • 8. Math. Biosci. Eng., 12 (2015), 41-69.
  • 9. J. Phys. A-Math. Gen., 37 (2004), 6267-6268.
  • 10. Magnetic Resonance in Medicine, 54 (2005), 616-624.
  • 11. Eur. Phys. J. Plus, 128 (2013), p136.
  • 12. SIAM J. Optimiz., 9 (1999), 112-147.
  • 13. Discrete Cont. Dyn.-B, 6 (2006), 1175-1189.
  • 14. Math. Nachr., 242 (2002), 148-164.
  • 15. Commun. Pur. Appl. Anal., 9 (2010), 1083-1098.
  • 16. Abstr. Appl. Anal., 2011 (2011), 1-22.
  • 17. Math. Biosci. Eng., 12 (2015), 879-905.
  • 18. 3rd edition, Springer, 2002.
  • 19. Phys. Rev. E, 85 (2012), 066120.
  • 20. Neurologist, 12 (2006), 279-292.
  • 21. J. Theor. Biol., 323 (2013), 25-39.
  • 22. J. Math. Biol., 50 (2005), 683-698.
  • 23. Phys. Rev. E, 84 (2011), 021921.
  • 24. J. Differ. Equations, 117 (1995), 281-319.
  • 25. Discrete Cont. Dyn.-B, 138 (2010), 455-487.
  • 26. SIAM J. Sci. Stat. Comp., 11 (1990), 1-32.
  • 27. Biophy. J., 92 (2007), 356-365.
  • 28. in Mathematical Modeling of Biological Systems (eds. A. Deutsch, L. Brusch, H. Byrne, G. Vries and H. Herzel), vol. I of Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, 2007, 217-224.
  • 29. J. Neurol. Sci., 216 (2003), 1-10.
  • 30. Cell Proliferat., 28 (1995), 17-31.
  • 31. J. Math. Biol., 33 (1994), 1-16.

 

This article has been cited by

  • 1. E. M. Rutter, H. T. Banks, K. B. Flores, Estimating intratumoral heterogeneity from spatiotemporal data, Journal of Mathematical Biology, 2018, 10.1007/s00285-018-1238-6
  • 2. L. Shangerganesh, N. Nyamoradi, V.N. Deiva Mani, S. Karthikeyan, On the existence of weak solutions of nonlinear degenerate parabolic system with variable exponents, Computers & Mathematics with Applications, 2018, 75, 1, 322, 10.1016/j.camwa.2017.09.019
  • 3. Tracy L. Stepien, Erica M. Rutter, Yang Kuang, Traveling Waves of a Go-or-Grow Model of Glioma Growth, SIAM Journal on Applied Mathematics, 2018, 78, 3, 1778, 10.1137/17M1146257
  • 4. Erica M. Rutter, Tracy L. Stepien, Barrett J. Anderies, Jonathan D. Plasencia, Eric C. Woolf, Adrienne C. Scheck, Gregory H. Turner, Qingwei Liu, David Frakes, Vikram Kodibagkar, Yang Kuang, Mark C. Preul, Eric J. Kostelich, Mathematical Analysis of Glioma Growth in a Murine Model, Scientific Reports, 2017, 7, 1, 10.1038/s41598-017-02462-0
  • 5. Sashikumaar Ganesan, Shangerganesh Lingeshwaran, A biophysical model of tumor invasion, Communications in Nonlinear Science and Numerical Simulation, 2017, 46, 135, 10.1016/j.cnsns.2016.10.013
  • 6. Mohamed M. El-Dessoky, Ebraheem O. Alzahrani, Asim M. Asiri, Meng Fan, Zijuan Wen, Yang Kuang, Global existence and uniqueness of classical solutions for a generalized quasilinear parabolic equation with application to a glioblastoma growth model, Mathematical Biosciences and Engineering, 2016, 13, 6, 3, 10.3934/mbe.2017025
  • 7. John T. Nardini, D. M. Bortz, Investigation of a Structured Fisher's Equation with Applications in Biochemistry, SIAM Journal on Applied Mathematics, 2018, 78, 3, 1712, 10.1137/16M1108546
  • 8. Victor Lopez de Rioja, Neus Isern, Joaquim Fort, A mathematical approach to virus therapy of glioblastomas, Biology Direct, 2016, 11, 1, 10.1186/s13062-015-0100-7
  • 9. Lingeshwaran Shangerganesh, Govindharaju Sathishkumar, Shanmugasundaram Karthikeyan, Lower bounds for the finite-time blow-up of solutions of a cancer invasion model, Electronic Journal of Qualitative Theory of Differential Equations, 2019, 12, 1, 10.14232/ejqtde.2019.1.12
  • 10. Ramray Bhat, Tilmann Glimm, Marta Linde-Medina, Cheng Cui, Stuart A. Newman, Synchronization of Hes1 oscillations coordinate and refine condensation formation and patterning of the avian limb skeleton, Mechanisms of Development, 2019, 10.1016/j.mod.2019.03.001

Reader Comments

your name: *   your email: *  

Copyright Info: 2015, Tracy L. Stepien, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved