Mathematical model and its fast numerical method for the tumor growth

  • Received: 01 October 2014 Accepted: 29 June 2018 Published: 01 August 2015
  • MSC : Primary: 65M06; Secondary: 92B05.

  • In this paper, we reformulate the diffuse interface model of the tumor growth (S.M. Wise et al.,Three-dimensional multispecies nonlinear tumor growth-I: model and numerical method, J. Theor.Biol. 253 (2008) 524--543). In the new proposed model, we use the conservative second-orderAllen--Cahn equation with a space--time dependent Lagrange multiplier instead of using thefourth-order Cahn--Hilliard equation in the original model. To numerically solve the new model, weapply a recently developed hybrid numerical method. We perform various numerical experiments. Thecomputational results demonstrate that the new model is not only fast but also has a good featuresuch as distributing excess mass from the inside of tumor to its boundary regions.

    Citation: Hyun Geun Lee, Yangjin Kim, Junseok Kim. Mathematical model and its fast numerical method for the tumor growth[J]. Mathematical Biosciences and Engineering, 2015, 12(6): 1173-1187. doi: 10.3934/mbe.2015.12.1173

    Related Papers:

  • In this paper, we reformulate the diffuse interface model of the tumor growth (S.M. Wise et al.,Three-dimensional multispecies nonlinear tumor growth-I: model and numerical method, J. Theor.Biol. 253 (2008) 524--543). In the new proposed model, we use the conservative second-orderAllen--Cahn equation with a space--time dependent Lagrange multiplier instead of using thefourth-order Cahn--Hilliard equation in the original model. To numerically solve the new model, weapply a recently developed hybrid numerical method. We perform various numerical experiments. Thecomputational results demonstrate that the new model is not only fast but also has a good featuresuch as distributing excess mass from the inside of tumor to its boundary regions.


    加载中
    [1] Arch. Rational Mech. Anal., 128 (1994), 165-205.
    [2] J. Theor. Biol., 225 (2003), 257-274.
    [3] $5^{th}$ edition, Garland Science, New York, 2007.
    [4] Acta Mater., 27 (1979), 1085-1095.
    [5] Bull. Math. Biol., 60 (1998), 857-899.
    [6] Nat. Rev. Cancer, 8 (2008), 227-234.
    [7] J. Theor. Biol., 233 (2005), 469-481.
    [8] Comment. Math. Helv., 72 (1997), 52-66.
    [9] J. Theor. Biol., 241 (2006), 903-918.
    [10] Math. Models Methods Appl. Sci., 18 (2008), 593-646.
    [11] Math. Meth. Appl. Sci., 34 (2011), 1157-1180.
    [12] SIAM, Philadelphia, 1987.
    [13] SIAM J. Math. Anal., 28 (1997), 769-807.
    [14] J. Math. Biol., 39 (1999), 59-89.
    [15] Phil. Trans. R. Soc. A, 364 (2006), 1563-1578.
    [16] Math. Biosci., 130 (1995), 151-181.
    [17] Math. Biosci., 135 (1996), 187-216.
    [18] Math. Comput. Model., 24 (1996), 1-17.
    [19] Math. Med. Biol., 19 (2002), 1-29.
    [20] Eur. J. Appl. Math., 7 (1996), 287-301.
    [21] J. Chem. Phys., 28 (1958), 258-267.
    [22] Arch. Rational Mech. Anal., 178 (2005), 1-55.
    [23] Arch. Rational Mech. Anal., 123 (1993), 117-151.
    [24] Int. J. Numer. Meth. Biomed. Engng., 30 (2014), 726-754.
    [25] in Selected Topics in Cancer Modeling: Genesis, Evolution, Immune Competition, and Therapy (eds. N. Bellomo, M. Chaplain and E. de Angelis), Birkhäuser, (2008), 113-181.
    [26] Cambridge University Press, Cambridge, 2010.
    [27] J. Math. Biol., 46 (2003), 191-224.
    [28] SIAM J. Appl. Math., 72 (2012), 1818-1841.
    [29] Nat. Clin. Pract. Oncol., 6 (2009), 34-42.
    [30] In Silico Biol., 2 (2002), 393-406.
    [31] J. Stat. Phys., 128 (2007), 287-345.
    [32] SIAM J. Math. Anal., 29 (1998), 1419-1433.
    [33] Adv. Differ. Equ., 2 (1997), 619-642.
    [34] in Complex Systems in Biomedicine (eds. A. Quarteroni, L. Formaggia and A. Veneziani), Springer, (2006), 71-108.
    [35] J. Theor. Biol., 264 (2010), 1254-1278.
    [36] Math. Models Methods Appl. Sci., 17 (2007), 1751-1772.
    [37] Phys. Rev. E, 75 (2007), 051911.
    [38] in Modeling of Biological Materials (eds. F. Mollica, L. Preziosi and K.R. Rajagopal), Birkhäuser, (2007), 263-321.
    [39] J. Theor. Biol., 56 (1976), 229-242.
    [40] J. Neuropath. Exp. Neur., 66 (2007), 1-9.
    [41] Math. Models Methods Appl. Sci., 15 (2005), 1779-1794.
    [42] J. Reine Angew. Math., 382 (1987), 35-48.
    [43] Biophys. J., 89 (2005), 3884-3894.
    [44] J. Theor. Biol., 203 (2000), 367-382.
    [45] Int. J. Eng. Sci., 84 (2014), 11-17.
    [46] Phys. Rev. Lett., 96 (2006), 058104.
    [47] World J. Gastroentero., 13 (2007), 1399-1407.
    [48] Discrete Cont. Dyn-B, 7 (2007), 581-604.
    [49] Nonlinearity, 23 (2010), R1-R91.
    [50] J. Theor. Biol., 219 (2002), 343-370.
    [51] Differ. Integral Equ., 13 (2000), 1189-1199.
    [52] Math. Biosci. Eng., 2 (2005), 381-418.
    [53] Proc. R. Soc. Lond. A, 422 (1989), 261-278.
    [54] Clin. Chim. Acta, 357 (2005), 173-179.
    [55] in Cellular Automata (eds. P.M.A. Sloot, B. Chopard and A.G. Hoekstra), Springer, 3305 (2004), 444-453.
    [56] SIAM Rev., 49 (2007), 179-208.
    [57] IMA J. Appl. Math., 48 (1992), 249-264.
    [58] J. Sci. Comput., 19 (2003), 373-384.
    [59] Neurolmage, 37 (2007), S120-S134.
    [60] Cambridge University Press, Cambridge, 1996.
    [61] Academic Press, London, 2001.
    [62] J. Theor. Biol., 216 (2002), 85-100.
    [63] Math. Comput. Model., 53 (2011), 1-20.
    [64] J. Theor. Biol., 253 (2008), 524-543.
    [65] Bull. Math. Biol., 67 (2005), 211-259.
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1505) PDF downloads(470) Cited by(18)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog