Mathematical model and its fast numerical method for the tumor growth

  • Received: 01 October 2014 Accepted: 29 June 2018 Published: 01 August 2015
  • MSC : Primary: 65M06; Secondary: 92B05.

  • In this paper, we reformulate the diffuse interface model of the tumor growth (S.M. Wise et al.,Three-dimensional multispecies nonlinear tumor growth-I: model and numerical method, J. Theor.Biol. 253 (2008) 524--543). In the new proposed model, we use the conservative second-orderAllen--Cahn equation with a space--time dependent Lagrange multiplier instead of using thefourth-order Cahn--Hilliard equation in the original model. To numerically solve the new model, weapply a recently developed hybrid numerical method. We perform various numerical experiments. Thecomputational results demonstrate that the new model is not only fast but also has a good featuresuch as distributing excess mass from the inside of tumor to its boundary regions.

    Citation: Hyun Geun Lee, Yangjin Kim, Junseok Kim. Mathematical model and its fast numerical method for the tumor growth[J]. Mathematical Biosciences and Engineering, 2015, 12(6): 1173-1187. doi: 10.3934/mbe.2015.12.1173

    Related Papers:

    [1] Alexandra Shyntar, Thomas Hillen . Mathematical modeling of microtube-driven regrowth of gliomas after local resection. Mathematical Biosciences and Engineering, 2025, 22(1): 52-72. doi: 10.3934/mbe.2025003
    [2] Maria Vittoria Barbarossa, Christina Kuttler, Jonathan Zinsl . Delay equations modeling the effects of phase-specific drugs and immunotherapy on proliferating tumor cells. Mathematical Biosciences and Engineering, 2012, 9(2): 241-257. doi: 10.3934/mbe.2012.9.241
    [3] Andreas Wagner, Pirmin Schlicke, Marvin Fritz, Christina Kuttler, J. Tinsley Oden, Christian Schumann, Barbara Wohlmuth . A phase-field model for non-small cell lung cancer under the effects of immunotherapy. Mathematical Biosciences and Engineering, 2023, 20(10): 18670-18694. doi: 10.3934/mbe.2023828
    [4] Avner Friedman, Yangjin Kim . Tumor cells proliferation and migration under the influence of their microenvironment. Mathematical Biosciences and Engineering, 2011, 8(2): 371-383. doi: 10.3934/mbe.2011.8.371
    [5] Rafael Martínez-Fonseca, Cruz Vargas-De-León, Ramón Reyes-Carreto, Flaviano Godínez-Jaimes . Bayesian analysis of the effect of exosomes in a mouse xenograft model of chronic myeloid leukemia. Mathematical Biosciences and Engineering, 2023, 20(11): 19504-19526. doi: 10.3934/mbe.2023864
    [6] Krzysztof Fujarewicz, Krzysztof Łakomiec . Adjoint sensitivity analysis of a tumor growth model and its application to spatiotemporal radiotherapy optimization. Mathematical Biosciences and Engineering, 2016, 13(6): 1131-1142. doi: 10.3934/mbe.2016034
    [7] Elena Izquierdo-Kulich, Margarita Amigó de Quesada, Carlos Manuel Pérez-Amor, Magda Lopes Texeira, José Manuel Nieto-Villar . The dynamics of tumor growth and cells pattern morphology. Mathematical Biosciences and Engineering, 2009, 6(3): 547-559. doi: 10.3934/mbe.2009.6.547
    [8] Ana Isabel Muñoz, J. Ignacio Tello . On a mathematical model of bone marrow metastatic niche. Mathematical Biosciences and Engineering, 2017, 14(1): 289-304. doi: 10.3934/mbe.2017019
    [9] Yuyang Xiao, Juan Shen, Xiufen Zou . Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. Mathematical Biosciences and Engineering, 2022, 19(4): 4120-4144. doi: 10.3934/mbe.2022190
    [10] Hsiu-Chuan Wei . Mathematical modeling of tumor growth: the MCF-7 breast cancer cell line. Mathematical Biosciences and Engineering, 2019, 16(6): 6512-6535. doi: 10.3934/mbe.2019325
  • In this paper, we reformulate the diffuse interface model of the tumor growth (S.M. Wise et al.,Three-dimensional multispecies nonlinear tumor growth-I: model and numerical method, J. Theor.Biol. 253 (2008) 524--543). In the new proposed model, we use the conservative second-orderAllen--Cahn equation with a space--time dependent Lagrange multiplier instead of using thefourth-order Cahn--Hilliard equation in the original model. To numerically solve the new model, weapply a recently developed hybrid numerical method. We perform various numerical experiments. Thecomputational results demonstrate that the new model is not only fast but also has a good featuresuch as distributing excess mass from the inside of tumor to its boundary regions.


    [1] Arch. Rational Mech. Anal., 128 (1994), 165-205.
    [2] J. Theor. Biol., 225 (2003), 257-274.
    [3] $5^{th}$ edition, Garland Science, New York, 2007.
    [4] Acta Mater., 27 (1979), 1085-1095.
    [5] Bull. Math. Biol., 60 (1998), 857-899.
    [6] Nat. Rev. Cancer, 8 (2008), 227-234.
    [7] J. Theor. Biol., 233 (2005), 469-481.
    [8] Comment. Math. Helv., 72 (1997), 52-66.
    [9] J. Theor. Biol., 241 (2006), 903-918.
    [10] Math. Models Methods Appl. Sci., 18 (2008), 593-646.
    [11] Math. Meth. Appl. Sci., 34 (2011), 1157-1180.
    [12] SIAM, Philadelphia, 1987.
    [13] SIAM J. Math. Anal., 28 (1997), 769-807.
    [14] J. Math. Biol., 39 (1999), 59-89.
    [15] Phil. Trans. R. Soc. A, 364 (2006), 1563-1578.
    [16] Math. Biosci., 130 (1995), 151-181.
    [17] Math. Biosci., 135 (1996), 187-216.
    [18] Math. Comput. Model., 24 (1996), 1-17.
    [19] Math. Med. Biol., 19 (2002), 1-29.
    [20] Eur. J. Appl. Math., 7 (1996), 287-301.
    [21] J. Chem. Phys., 28 (1958), 258-267.
    [22] Arch. Rational Mech. Anal., 178 (2005), 1-55.
    [23] Arch. Rational Mech. Anal., 123 (1993), 117-151.
    [24] Int. J. Numer. Meth. Biomed. Engng., 30 (2014), 726-754.
    [25] in Selected Topics in Cancer Modeling: Genesis, Evolution, Immune Competition, and Therapy (eds. N. Bellomo, M. Chaplain and E. de Angelis), Birkhäuser, (2008), 113-181.
    [26] Cambridge University Press, Cambridge, 2010.
    [27] J. Math. Biol., 46 (2003), 191-224.
    [28] SIAM J. Appl. Math., 72 (2012), 1818-1841.
    [29] Nat. Clin. Pract. Oncol., 6 (2009), 34-42.
    [30] In Silico Biol., 2 (2002), 393-406.
    [31] J. Stat. Phys., 128 (2007), 287-345.
    [32] SIAM J. Math. Anal., 29 (1998), 1419-1433.
    [33] Adv. Differ. Equ., 2 (1997), 619-642.
    [34] in Complex Systems in Biomedicine (eds. A. Quarteroni, L. Formaggia and A. Veneziani), Springer, (2006), 71-108.
    [35] J. Theor. Biol., 264 (2010), 1254-1278.
    [36] Math. Models Methods Appl. Sci., 17 (2007), 1751-1772.
    [37] Phys. Rev. E, 75 (2007), 051911.
    [38] in Modeling of Biological Materials (eds. F. Mollica, L. Preziosi and K.R. Rajagopal), Birkhäuser, (2007), 263-321.
    [39] J. Theor. Biol., 56 (1976), 229-242.
    [40] J. Neuropath. Exp. Neur., 66 (2007), 1-9.
    [41] Math. Models Methods Appl. Sci., 15 (2005), 1779-1794.
    [42] J. Reine Angew. Math., 382 (1987), 35-48.
    [43] Biophys. J., 89 (2005), 3884-3894.
    [44] J. Theor. Biol., 203 (2000), 367-382.
    [45] Int. J. Eng. Sci., 84 (2014), 11-17.
    [46] Phys. Rev. Lett., 96 (2006), 058104.
    [47] World J. Gastroentero., 13 (2007), 1399-1407.
    [48] Discrete Cont. Dyn-B, 7 (2007), 581-604.
    [49] Nonlinearity, 23 (2010), R1-R91.
    [50] J. Theor. Biol., 219 (2002), 343-370.
    [51] Differ. Integral Equ., 13 (2000), 1189-1199.
    [52] Math. Biosci. Eng., 2 (2005), 381-418.
    [53] Proc. R. Soc. Lond. A, 422 (1989), 261-278.
    [54] Clin. Chim. Acta, 357 (2005), 173-179.
    [55] in Cellular Automata (eds. P.M.A. Sloot, B. Chopard and A.G. Hoekstra), Springer, 3305 (2004), 444-453.
    [56] SIAM Rev., 49 (2007), 179-208.
    [57] IMA J. Appl. Math., 48 (1992), 249-264.
    [58] J. Sci. Comput., 19 (2003), 373-384.
    [59] Neurolmage, 37 (2007), S120-S134.
    [60] Cambridge University Press, Cambridge, 1996.
    [61] Academic Press, London, 2001.
    [62] J. Theor. Biol., 216 (2002), 85-100.
    [63] Math. Comput. Model., 53 (2011), 1-20.
    [64] J. Theor. Biol., 253 (2008), 524-543.
    [65] Bull. Math. Biol., 67 (2005), 211-259.
  • This article has been cited by:

    1. Akhtar Ali, Majid Hussain, Abdul Ghaffar, Zafar Ali, Kottakkaran Sooppy Nisar, M.R. Alharthi, Wasim Jamshed, Numerical simulations and analysis for mathematical model of avascular tumor growth using Gompertz growth rate function, 2021, 60, 11100168, 3731, 10.1016/j.aej.2021.02.040
    2. Ahmed M. Makhlouf, Lamiaa El-Shennawy, Hesham A. Elkaranshawy, Mathematical Modelling for the Role of CD4+T Cells in Tumor-Immune Interactions, 2020, 2020, 1748-670X, 1, 10.1155/2020/7187602
    3. Vahid Mohammadi, Mehdi Dehghan, Stefano De Marchi, Numerical simulation of a prostate tumor growth model by the RBF-FD scheme and a semi-implicit time discretization, 2021, 388, 03770427, 113314, 10.1016/j.cam.2020.113314
    4. Yangjin Kim, Junho Lee, Donggu Lee, Hans Othmer, Synergistic Effects of Bortezomib-OV Therapy and Anti-Invasive Strategies in Glioblastoma: A Mathematical Model, 2019, 11, 2072-6694, 215, 10.3390/cancers11020215
    5. J.E. Macías-Díaz, Conciliating efficiency and dynamical consistency in the simulation of the effects of proliferation and motility of transforming growth factor β on cancer cells, 2016, 40, 10075704, 173, 10.1016/j.cnsns.2016.03.018
    6. Sakine Esmaili, M. R. Eslahchi, Application of collocation method for solving a parabolic-hyperbolic free boundary problem which models the growth of tumor with drug application, 2017, 40, 01704214, 1711, 10.1002/mma.4092
    7. Jorge E. Macías-Díaz, Armando Gallegos, A structure-preserving computational method in the simulation of the dynamics of cancer growth with radiotherapy, 2018, 56, 0259-9791, 1985, 10.1007/s10910-017-0818-9
    8. Vahid Mohammadi, Mehdi Dehghan, Simulation of the phase field Cahn–Hilliard and tumor growth models via a numerical scheme: Element-free Galerkin method, 2019, 345, 00457825, 919, 10.1016/j.cma.2018.11.019
    9. Vahid Mohammadi, Mehdi Dehghan, Generalized moving least squares approximation for the solution of local and non-local models of cancer cell invasion of tissue under the effect of adhesion in one- and two-dimensional spaces, 2020, 124, 00104825, 103803, 10.1016/j.compbiomed.2020.103803
    10. Vahid Mohammadi, Mehdi Dehghan, Amirreza Khodadadian, Nima Noii, Thomas Wick, An asymptotic analysis and numerical simulation of a prostate tumor growth model via the generalized moving least squares approximation combined with semi-implicit time integration, 2022, 104, 0307904X, 826, 10.1016/j.apm.2021.12.011
    11. Niusha Narimani, Mehdi Dehghan, Predicting the effect of a combination drug therapy on the prostate tumor growth via an improvement of a direct radial basis function partition of unity technique for a diffuse-interface model, 2023, 00104825, 106708, 10.1016/j.compbiomed.2023.106708
    12. Muhammad Sajid Iqbal, Nauman Ahmed, Rishi Naeem, Ali Akgül, Abdul Razzaque, Mustafa Inc, Hina Khurshid, Dynamical behavior of cancer cell densities in two dimensional domain by the representation theory of solitons, 2023, 463, 03759601, 128670, 10.1016/j.physleta.2023.128670
    13. Yongho Kim, Yongho Choi, Learning finite difference methods for reaction-diffusion type equations with FCNN, 2022, 123, 08981221, 115, 10.1016/j.camwa.2022.08.006
    14. Muhammad Abaid Ur Rehman, Jamshad Ahmad, Ali Hassan, Jan Awrejcewicz, Witold Pawlowski, Hanen Karamti, Fahad M. Alharbi, The Dynamics of a Fractional-Order Mathematical Model of Cancer Tumor Disease, 2022, 14, 2073-8994, 1694, 10.3390/sym14081694
    15. Hesham A. Elkaranshawy, Ahmed M. Makhlouf, Parameter estimation and sensitivity analysis for a model of tumor–immune interaction in the presence of immunotherapy and chemotherapy, 2022, 30, 2090-9128, 10.1186/s42787-022-00143-0
    16. O. Ragb, Mohamed Salah, M. S. Matbuly, H. Ersoy, O. Civalek, Modeling and Solution of Reaction–Diffusion Equations by Using the Quadrature and Singular Convolution Methods, 2023, 48, 2193-567X, 4045, 10.1007/s13369-022-07367-3
    17. Jinjing Huang, Yang Xu, Jingjun Zhao, Tao Jiang, A highly efficient semi-implicit corrective SPH scheme for 2D/3D tumor growth model, 2023, 155, 09557997, 839, 10.1016/j.enganabound.2023.07.010
    18. Andreas Wagner, Pirmin Schlicke, Marvin Fritz, Christina Kuttler, J. Tinsley Oden, Christian Schumann, Barbara Wohlmuth, A phase-field model for non-small cell lung cancer under the effects of immunotherapy, 2023, 20, 1551-0018, 18670, 10.3934/mbe.2023828
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2395) PDF downloads(482) Cited by(18)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog