Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679.

Primary: 92-08; Secondary: 92B05.

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme

1. Department of Mathematics, University of Louisiana at Lafayette, Lafayette, Louisiana 70504-1010
2. Department of Mathematics, University of Louisiana at Lafayette, Lafayette, LA 70504-1010
3. Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504-2451

We develop a finite difference scheme to approximate the solution of a novel size-structured mathematical model of the transmission dynamics of Mycobacterium marinum (Mm) in an aquatic environment. The model consists of a system of nonlinear hyperbolic partial differential equations coupled with three nonlinear ordinary differential equations. Existence and uniqueness results are established and convergence of the finite difference approximation to the unique bounded variation weak solution of the model is obtained. Numerical simulations demonstrating the accuracy of the method are presented. We also conducted preliminary studies on the key features of this model, such as various forms of growth rates (indicative of possible theories of development), and conditions for competitive exclusion or coexistence as determined by reproductive fitness and genetic spread in the population.
  Figure/Table
  Supplementary
  Article Metrics

Keywords existence-uniqueness; behavior of solutions.; finite difference approximation; mycobacterial infections; convergence; Structured models

Citation: Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, Don G. Ennis. A structured model for the spread of Mycobacterium marinum: Foundations for a numerical approximation scheme. Mathematical Biosciences and Engineering, 2014, 11(4): 679-721. doi: 10.3934/mbe.2014.11.679

References

  • 1. Mathematical and Computer Modelling, 50 (2009), 653-664.
  • 2. Discrete and Continuous Dynamical Systems - Series B, 4 (2004), 1203-1222.
  • 3. Journal of Biological Systems, 5 (1997), 1-16.
  • 4. Mathematical Biosciences, 245 (2013), 2-11.
  • 5. Applied Mathematics and Computation, 108 (2000), 103-113.
  • 6. Mathematical Biosciences and Engineering, 204 (2006), 21-48.
  • 7. Numerical Functional Analysis and Optimization, 18 (1997), 865-884.
  • 8. Contemporary Mathematics, 513 (2010), 1-23.
  • 9. Journal of Biological Systems, doi:10.1142/S0218339014500028.
  • 10. Mathematical Biosciences and Engineering, 5 (2008), 601-616.
  • 11. Mathematical Biosciences, 157 (1999), 169-188.
  • 12. Applied Numerical Mathematics, 50 (2004), 291-327.
  • 13. SIAM Journal of Numerical Analysis, 26 (1989), 1474-1486.
  • 14. Mathematical Biosciences and Engineering, 1 (2004), 15-48.
  • 15. International Series of Numerical Mathematics, 118 (1994), 1-19.
  • 16. Current Opinion in Pulmonary Medicine, 6 (2000), 174-179.
  • 17. Comparative Biochemistry and Physiology, Part C, 145 (2007), 45-54.
  • 18. Comparative Biochemistry and Physiology, Part C, 149 (2009), 152-160.
  • 19. Annual Review of Microbiology 57 (2003), 641-676.
  • 20. Immunity, 17 (2002), 693-702.
  • 21. Infection and Immunity, 69 (2001), 7310-7317.
  • 22. Nature, 435 (2005), 1046.
  • 23. Journal of Computational Physics, 49 (1983), 357-393.
  • 24. Journal of Wildlife Diseases, 23 (1987), 391-395.
  • 25. Journal of Mathematical Analysis and Applications, 181 (1994), 716-754.
  • 26. Numerical Methods for Partial Differential Equations, 25 (2009), 918-930.
  • 27. Zoological Science, 11 (1994), 825-839.
  • 28. Journal of Fish Diseases, 32 (2009), 119-130.
  • 29. Numerical Methods for Partial Differential Equations, 19 (2003), 1-21.
  • 30. Microbial Pathogenesis, 40 (2006), 139-151.
  • 31. Infection and Immunity, 73 (2005), 4214-4221.
  • 32. International Journal for Numerical Methods in Engineering, 46 (1999), 131-150.
  • 33. Ph.D. Dissertation, University of Louisiana at Lafayette, 2011.
  • 34. Comparative Biochemistry and Physiology,Part C, 155 (2012), 39-48.
  • 35. Mathematical Biosciences, 157 (1999), 169-188.
  • 36. FEMS Microbiology Letters, 225 (2003), 177-182.
  • 37. Journal of the American Medical Association, 40 (1996), 220-226.
  • 38. SIAM Journal on Numerical Analysis, 45 (2007), 352-370.
  • 39. Journal of Scientific Computing, 33 (2007), 279-291.
  • 40. 2nd edition, Springer-Verlag, New York, 1994.
  • 41. Genome Research, 18 (2008), 729-741.
  • 42. Infection and Immunity, 66 (1998), 2938-2942.
  • 43. Mathematical Biosciences, 225 (2010), 59-67.
  • 44. Cellular Microbiology, 10 (2008), 1027-1039.
  • 45. Springer, New York, 1998.
  • 46. Journal of Computational and Applied Mathematics, 236 (2011), 937-949.

 

This article has been cited by

  • 1. Azmy S. Ackleh, Mark L. Delcambre, Karyn L. Sutton, A second-order high-resolution finite difference scheme for a size-structured model for the spread ofMycobacterium marinum, Journal of Biological Dynamics, 2015, 9, sup1, 156, 10.1080/17513758.2014.962998
  • 2. O. Angulo, J.C. López-Marcos, M.A. López-Marcos, Study on the efficiency in the numerical integration of size-structured population models: Error and computational cost, Journal of Computational and Applied Mathematics, 2016, 291, 391, 10.1016/j.cam.2015.03.022
  • 3. Azmy S. Ackleh, Baoling Ma, Tingting Tang, A high resolution finite difference method for a model of structured susceptible-infected populations coupled with the environment, Numerical Methods for Partial Differential Equations, 2017, 33, 5, 1420, 10.1002/num.22139

Reader Comments

your name: *   your email: *  

Copyright Info: 2014, Azmy S. Ackleh, et al., licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Copyright © AIMS Press All Rights Reserved