Loading [MathJax]/jax/output/SVG/jax.js

The ratio of hidden HIV infection in Cuba

  • Received: 01 August 2012 Accepted: 29 June 2018 Published: 01 June 2013
  • MSC : Primary: 34D20, 93E12; Secondary: 92D30.

  • In this work we propose the definition of the ratio of hidden infection of HIV/AIDS epidemics, as the division of the unknown infected population by the known one. The merit of the definition lies in allowing for an indirect estimation of the whole of the infected population. A dynamical model for the ratio is derived from a previous HIV/AIDS model, which was proposed for the Cuban case, where active search for infected individuals is carried out through a contact tracing program. The stability analysis proves that the model for the ratio possesses a single positive equilibrium, which turns out to be globally asymptotically stable. The sensitivity analysis provides an insight into the relative performance of various methods for detection of infected individuals. An exponential regression has been performed to fit the known infected population, owing to actual epidemiological data of HIV/AIDS epidemics in Cuba. The goodness of the obtained fit provides additional support to the proposed model.

    Citation: Miguel Atencia, Esther García-Garaluz, Gonzalo Joya. The ratio of hidden HIV infection in Cuba[J]. Mathematical Biosciences and Engineering, 2013, 10(4): 959-977. doi: 10.3934/mbe.2013.10.959

    Related Papers:

    [1] Mathieu F. M. Cellier . Evolutionary analysis of Slc11 mechanism of proton-coupled metal-ion transmembrane import. AIMS Biophysics, 2016, 3(2): 286-318. doi: 10.3934/biophy.2016.2.286
    [2] Ken Takahashi, Takayuki Oda, Keiji Naruse . Coarse-grained molecular dynamics simulations of biomolecules. AIMS Biophysics, 2014, 1(1): 1-15. doi: 10.3934/biophy.2014.1.1
    [3] Stephanie H. DeLuca, Samuel L. DeLuca, Andrew Leaver-Fay, Jens Meiler . RosettaTMH: a method for membrane protein structure elucidation combining EPR distance restraints with assembly of transmembrane helices. AIMS Biophysics, 2016, 3(1): 1-26. doi: 10.3934/biophy.2016.1.1
    [4] Arjun Acharya, Madan Khanal, Rajesh Maharjan, Kalpana Gyawali, Bhoj Raj Luitel, Rameshwar Adhikari, Deependra Das Mulmi, Tika Ram Lamichhane, Hari Prasad Lamichhane . Quantum chemical calculations on calcium oxalate and dolichin A and their binding efficacy to lactoferrin: An in silico study using DFT, molecular docking, and molecular dynamics simulations. AIMS Biophysics, 2024, 11(2): 142-165. doi: 10.3934/biophy.2024010
    [5] Sebastian Kube, Petra Wendler . Structural comparison of contractile nanomachines. AIMS Biophysics, 2015, 2(2): 88-115. doi: 10.3934/biophy.2015.2.88
    [6] Tika Ram Lamichhane, Hari Prasad Lamichhane . Structural changes in thyroid hormone receptor-beta by T3 binding and L330S mutational interactions. AIMS Biophysics, 2020, 7(1): 27-40. doi: 10.3934/biophy.2020003
    [7] Ashwani Kumar Vashishtha, William H. Konigsberg . The effect of different divalent cations on the kinetics and fidelity of Bacillus stearothermophilus DNA polymerase. AIMS Biophysics, 2018, 5(2): 125-143. doi: 10.3934/biophy.2018.2.125
    [8] Juliet Lee . Insights into cell motility provided by the iterative use of mathematical modeling and experimentation. AIMS Biophysics, 2018, 5(2): 97-124. doi: 10.3934/biophy.2018.2.97
    [9] Chia-Wen Wang, Meng-Han Lin, Wolfgang B. Fischer . Cholesterol affected dynamics of lipids in tailor-made vesicles by ArcVes software during multi micro second coarse grained molecular dynamics simulations. AIMS Biophysics, 2023, 10(4): 482-502. doi: 10.3934/biophy.2023027
    [10] Yohei Matsunaga, Tsuyoshi Kawano . The C. elegans insulin-like peptides (ILPs). AIMS Biophysics, 2018, 5(4): 217-230. doi: 10.3934/biophy.2018.4.217
  • In this work we propose the definition of the ratio of hidden infection of HIV/AIDS epidemics, as the division of the unknown infected population by the known one. The merit of the definition lies in allowing for an indirect estimation of the whole of the infected population. A dynamical model for the ratio is derived from a previous HIV/AIDS model, which was proposed for the Cuban case, where active search for infected individuals is carried out through a contact tracing program. The stability analysis proves that the model for the ratio possesses a single positive equilibrium, which turns out to be globally asymptotically stable. The sensitivity analysis provides an insight into the relative performance of various methods for detection of infected individuals. An exponential regression has been performed to fit the known infected population, owing to actual epidemiological data of HIV/AIDS epidemics in Cuba. The goodness of the obtained fit provides additional support to the proposed model.


    The main goal of this paper is to study one class of optimal control problems (OCPs) for a viscous Boussinesq system arising in the study of the dynamics of cardiovascular networks. We consider the boundary control problem for a $1D$ system of coupled PDEs with the Robin-type boundary conditions, describing the dynamics of pressure and flow in the arterial segment. We discuss in this part of paper the existence of optimal solutions and provide a substantial analysis of the first-order optimality conditions. Namely, we deal with the following minimization problem:

    $ Minimize    J(g,h,η,u):=12ΩαΩ(u(T)uΩ)2 dx+ν2T0Ω(ηxx)2 dxdt+12T0|ΩαQ(η(t)+r0uxt(t)ηQ) dx|2 dt+12T0(βg|g|2+βh|h|2) dt $ (1)

    subject to the constraints

    $ \left\{ ηt+ηxu+ηux+12r0uxνηxx=0     in  Q,[u(δux)x]t+12(u2)x+μηx=f    in  Q, \right. $ (2)
    $ \left\{ η(0,)=η0    in  Ω,u(0,)(δ()ux(0,))x=u0    in  Ω, \right. $ (3)
    $ \left\{ η(,0)=η(,L)=η      in  (0,T),δ(0)˙ux(,0)+σ0u(,0)=g,  in  (0,T),δ(L)˙ux(,L)+σ1u(,L)=h,      in  (0,T),δ(L)ux(0,L)=δ(0)ux(0,0)=0 \right. $ (4)

    and

    $ \label{2.6} (g,h)\in G_{ad}\times H_{ad}\subset L^2(0,T)\times L^2(0,T). $ (5)

    Here, $\beta_g$, $\beta_h$, and $\eta^\ast$ are positive constants, and $G_{ad}$ and $H_{ad}$ are the sets of admissible boundary controls. These sets and the rest of notations will be specified in the next section.

    Optimal control problem (1)-(5) comes from the fluid dynamic models of blood flows in arterial systems. It is well known that the cardiovascular system consists of a pump that propels a viscous liquid (the blood) through a network of flexible tubes. The heart is one key component in the complex control mechanism of maintaining pressure in the vascular system. The aorta is the main artery originating from the left ventricle and then bifurcates to other arteries, and it is identified by several segments (ascending, thoracic, abdominal). The functionality of the aorta, considered as a single segment, is worth exploring from a modeling perspective, in particular in relationship to the presence of the aortic valve.

    In the first part of our investigation (see [5]) we make use of the standard viscous hyperbolic system (see [2,21]) which models cross-section area $S(x,t)$ and average velocity $u(x,t)$ in the spatial domain:

    $ \frac{\partial S}{\partial t}+\frac{\partial (Su)}{\partial x}-\nu \frac{{{\partial }^{2}}S}{\partial {{x}^{2}}} = 0, $ (6)
    $ \frac{\partial u}{\partial t}+u\frac{\partial u}{\partial x}+\frac{1}{\rho }\frac{\partial P}{\partial x} = f, $ (7)

    where $(t,x)\in Q = (0,L)\times(0,T)$, $f = f(x,t)$ is a friction force, usually taken to be $f = -22\mu \pi u/S $, $\mu$ is the fluid viscosity, $P(x,t)$ is the hydrodynamic pressure, $L$ is the length of an arterial segment, and $T = T_{pulse} = 60/(Hart Rate)$ is the duration of an entire heartbeat. Here we include the inertial effects of the wall motion, described by the wall displacement $\eta = \eta (x,t)$:

    $ \label{3.F2} \eta = r-r_{0} = \frac{1}{\sqrt{\pi} }(\sqrt{S}-\sqrt{S_{0}})\simeq \frac{S-S_{0}}{2\sqrt{\pi S_{0}}}, $ (8)

    where $r(x,t)$ is the radius, $r_{0} = r(x,0),$ $S_{0} = S(x,0)$.

    The fluid structure interaction is modeled using inertial forces, which gives the pressure law

    $ P=Pext+βr20η+ρωh2ηt2. $ (9)

    Here, $P_{ext}$ is the external pressure, $\beta = \frac{E}{1-\sigma ^{2}}h$, $\sigma $ is the Poisson ratio (usually $\sigma^2 = \frac{1}{2}$), $E$ is Young modulus, $h$ is the wall thickness, $m = \frac{\rho_{\omega }h}{2\sqrt{\pi S_{0}}}$, $\rho _{\omega }$ is the density of the wall.

    This leads to the following Boussinesq system:

    $ \label{3.F4} \left\{ ηt+ηxu+ηux+12r0uxνηxx=0,ut+uux+2Ehρr20ηx+ρωhρηxtt=f, \right. $

    where $\rho $ is the blood density. Considering the relation $\eta_{t} = -\frac 12 r_0 u_{x}$ and rearranging terms in $u$ we get the system in the form (2)-(3). It remains to furnish the system by corresponding initial and boundary conditions which we propose to take in the form (3)-(4).

    As for the OCP that is related with the arterial system, we are interested in finding the optimal heart rate (HR) which leads to the minimization of the following cost functional

    $ J=t0+Tpulset0|Pavg(t)Pref|2dt=t0+Tpulset0|1LL0P(x,t)dxPref|2dt. $ (10)

    The systolic period is taken to be consistently one quarter of $T_{pulse}$, and $P_{ref} = 100$ mmHg.

    It is easy to note that relations (8)-(9) lead to the following representation for the cost functional (10)

    $ \label{3.F9} J = \int_{t_0}^{t_0+T_{pulse}} \left| \frac{1}{L}\int_0^L P(x,t)\, dx-P_{ref}\right|^2\, dt\\ = \frac{1}{L^2} \int_{t_0}^{t_0+T_{pulse}} \left| \int_0^L \left(P_{ext}(t)+\frac{2Eh}{r_{0}^{2}}\eta(t,x) + \rho _{\omega }h\,\eta_{tt}(t,x) -L\,P_{ref}\right)\, dx\right|^2\, dt. $ (11)

    Since $\eta_t\approx -\frac{1}{2}r_0 u_x$ (see [3]) and we suppose that $\nu\eta_{xx}$ should be small enough, it easily follows from (11) that the given cost functional (10) can be reduced to the tracking type (1).

    The research in the field of the cardiovascular system is very active (see, for instance the literature describing the dynamics of the vascular network coupled with a heart model, [2,9,10,12,15,16,17,18,19,20,21]). However, there seems to be no studies that focus on both aspects at the same time: a detailed description of the four chambers of the heart and on the spatial dynamics in the aorta. Some numerical aspects of optimizing the dynamics of the pressure and flow in the aorta as well as the heart rate variability, taking into account the elasticity of the aorta together with an aortic valve model at the inflow and a peripheral resistance model at the outflow, based on the discontinuous Galerkin method and a two-step time integration scheme of Adam-Bashfort, were recently treated in [3] for the Boussinesq system like (2). More broadly, theory and applications of optimization and control in spatial networks, basing on the different types of conservation laws have been extensively developed in literature, have been successfully applied to telecommunications, transportation or supply networks ([6,7]).

    From mathematical point of view, the characteristic feature of the Boussinesq system (2) is the fact that it involves a pseudo-parabolic operator with unbounded coefficient in its principle part. In the first part of this paper it was shown that for any pair of boundary controls $g\in G_{ad}$ and $h\in H_{ad}$, and for given $f\in L^\infty(0,T;L^2(\Omega))$, $\mu\in L^\infty(0,T;L^2(\Omega))$, $\sigma_0\in L^\infty(0,T)$, $\sigma_1\in L^\infty(0,T)$, $u_0\in V_\delta$, $\eta_0\in H_0^1(\Omega)$, $r_0\in H^1(\Omega)$, and $\delta\in L^1(\Omega)$, the set of feasible solutions to optimal control problem (1)-(5) is non-empty and the corresponding weak solution $(\eta(t),u(t))$ of the viscous Boussinesq system (2)-(4) possesses the extra regularity properties $\eta_{xx}, u_{xt}\in L^2(0,T;L^2(\Omega))$, which play a crucial role in the proof of solvability of OCP (1)-(5). In this paper we deal with the existence of optimal solutions and derive the corresponding optimality conditions for the problem (1)-(5). It should be mentioned, that application of Lagrange principle requires even higher smoothness of solutions to the initial Boussinesq system (2)-(4). In order to avoid such limitations, we deal with a simplified version of the initial optimal control problem (2)-(4) (see (39), argumentation above and [3,5] for physical description of the considered model). Also, in the second part of the paper, in order to provide the thorough substantiation of the first-order optimality conditions to the considered OCP, we make the special assumption for $\delta$ to be an element of the class $H^1(\Omega)$. Since the coefficient $\delta$ depends on such indicators as wall thickness, density of the wall and blood density, i.e. indicators varying slowly and smoothly, such assumption seems justified.

    Let $T>0$ and $L>0$ be given values. We set $\Omega = (0,L)$, $Q = (0,T)\times\Omega$, and $\Sigma = (0,T)\times \partial\Omega$. Let $\delta\in H^1(\Omega)$ be a given function such that $\delta(x)\ge \delta_0>0$ for a.e. $x\in \Omega$. We use the standard notion $L^2(\Omega,\delta\,dx)$ for the set of measurable functions $u$ on $\Omega$ such that

    $ \|u{{\|}_{{{L}^{2}}(\Omega ,\delta\ dx)}} = {{\left( \int_{\Omega }{{{u}^{2}}}\delta\ dx \right)}^{1/2}} < +\infty . $

    We set $H = L^2(\Omega)$, $V_0 = H^1_0(\Omega)$, $V = H^1(\Omega)$, and identify the Hilbert space $H$ with its dual $H^\ast$. On $H$ we use the common natural inner product $(\cdot,\cdot)_H$, and endow the Hilbert spaces $V_0$ and $V$ with the inner products

    $ (\varphi,\psi)_{V_0} = \left(\varphi^\prime,\psi^\prime\right)_H\ \forall\,\varphi, \psi\in V_0 $

    and

    $ (\varphi,\psi)_{V} = (\varphi,\psi)_H+\left(\varphi^\prime,\psi^\prime\right)_H\ \forall\, \varphi, \psi\in V, $

    respectively.

    We also make use of the weighted Sobolev space $V_\delta$ as the set of functions $u\in V$ for which the norm

    $ \|u\|_{V_\delta} = \left(\int_\Omega \left(u^2+\delta(u^\prime)^2\right)\,dx\right)^{1/2} $

    is finite. Note that due to the following estimate, $V_\delta$ is complete with respect to the norm $\|\cdot\|_{V,\delta}$:

    $ u2V:=Ω(u2+(u)2)dxmax{1,δ10}Ω(u2+δ(u)2)dx=max{1,δ10}u2Vδ. $ (12)

    Recall that $V_0$, $V$, and, hence, $V_\delta$ are continuously embedded into $C(\overline{\Omega})$, see [1,14] for instance. Since $\delta,\delta^{-1}\in L^1(\Omega)$, it follows that $V_\delta$ is a uniformly convex separable Banach space [14]. Moreover, in view of the estimate (12), the embedding $V_\delta\hookrightarrow H$ is continuous and dense. Hence, $H = H^\ast$ is densely and continuously embedded in $V^\ast_\delta$, and, therefore, $V_\delta\hookrightarrow H\hookrightarrow V^\ast_\delta$ is a Hilbert triplet (see [11] for the details).

    Let us recall some well-known inequalities, that will be useful in the sequel (see [5]).

    $\|u\|_{L^\infty(\Omega)}\le \sqrt{2\max\left\{L,L^{-1}\right\}} \|u\|_{V}$, $\forall\, u\in V$ and $\|u\|_{L^\infty(\Omega)}\le 2\sqrt{L}\,\|u\|_{V_0}$, $\forall\, u\in V_0$.

    ● (Friedrich's Inequality) For any $u\in V_0$, we have

    $ \label{4.F} \|u\|_H\le L\|u_x\|_H = L\|u\|_{V_0}. $ (13)

    By $L^2(0,T;V_0)$ we denote the space of measurable abstract functions (equivalence classes) $u:[0,T]\rightarrow V$ such that

    $ \|u\|_{L^2(0,T;V_0)}: = \left(\int_0^T \|u(t)\|^2_{V_0}\,dt \right)^{1/2} < +\infty. $

    By analogy we can define the spaces $L^2(0,T;V_\delta)$, $L^\infty(0,T;H)$, $L^\infty(0,T;V_\delta)$, and $C([0,T];H)$ (for the details, we refer to [8]). In what follows, when $t$ is fixed, the expression $u(t)$ stands for the function $u(t,\cdot)$ considered as a function in $\Omega$ with values into a suitable functional space. When we adopt this convention, we write $u(t)$ instead of $u(t,x)$ and $\dot{u}$ instead of $u_t$ for the weak derivative of $u$ in the sense of distribution

    $ \int_0^T\varphi(t)\left < \dot{u}(t),v\right > _{V^\ast;V}\,dt = -\int_0^T\dot{\varphi}(t)\left < u(t),v\right > _{V^\ast;V}\,dt,\ \ \ \ \forall\,v\in V, $

    where $\left<\cdot,\cdot\right>_{V^\ast;V}$ denotes the pairing between $V^\ast$ and $V$.

    We also make use of the following Hilbert spaces

    $ W0(0,T)={uL2(0,T;V0): ˙uL2(0,T;V0)},Wδ(0,T)={uL2(0,T;Vδ): ˙uL2(0,T;Vδ)}, $

    supplied with their common inner product, see [8,p. 473], for instance.

    Remark 1. The following result is fundamental (see [8]): Let $(V,H,V^\ast)$ be a Hilbert triplet, $V\hookrightarrow H\hookrightarrow V^\ast$, with $V$ separable, and let $u\in L^2(0,T;V)$ and $\dot{u}\in L^2(0,T;V^\ast)$. Then

    (ⅰ) $u\in C([0,T];H)$ and $\exists\,C_E>0$ such that

    $ \max\limits_{1\le t\le T} \|u(t)\|_H\le C_E\left(\|u\|_{L^2(0,T;V)}+\|\dot{u}\|_{L^2(0,T;V^\ast)}\right); $

    (ⅱ) if $v\in L^2(0,T;V)$ and $\dot{v}\in L^2(0,T;V^\ast)$, then the following integration by parts formula holds:

    $ \label{1.3} \int_s^t\left(\left < \dot{u}(\gamma),v(\gamma)\right > _{V^\ast;V}+\left < u(\gamma),\dot{v}(\gamma)\right > _{V^\ast;V}\right)\,d\gamma = \left(u(t),v(t)\right)_H-\left(u(s),v(s)\right)_H $ (14)

    for all $s,t\in[0,T]$.

    The similar assertions are valid for the Hilbert triplet $V_\delta\hookrightarrow H\hookrightarrow V^\ast_\delta$.

    Let $\nu>0$ be a viscosity parameter, and let

    $ f\in {{L}^{\infty }}(0,T;H),\ \ \mu \in {{L}^{\infty }}(0,T;V),\ \ {{\sigma }_{0}}\in {{L}^{\infty }}(0,T),\ \ {{\sigma }_{1}}\in {{L}^{\infty }}(0,T), $ (15)
    $ {{\alpha }_{\Omega }}\in {{L}^{\infty }}(\Omega ),\ \ {{\alpha }_{Q}}\in {{L}^{\infty }}(Q),\ \ {{u}_{\Omega }}\in {{L}^{2}}(\Omega ),\ \ {{\eta }_{Q}}\in {{L}^{2}}(0,T;H), $ (16)
    $ {{u}_{0}}\in {{V}_{\delta }},\ \ {{\eta }_{0}}\in H_{0}^{1}(\Omega ),\ \ {{r}_{0}}\in {{H}^{1}}(\Omega ), $ (17)

    be given distributions. In particular, $f$ stands for a fixed forcing term, $u_\Omega$ and $\eta_Q$ are given desired states for the wall displacement and average velocity, respectively, $\alpha_\Omega$ and $\alpha_Q$ are non-negative weights (without loss of generality we suppose that $\alpha_Q$ is a nonnegative constant function on $[0,T]\times[0,L]$), $u_0$ and $\eta_0$ are given initial states, and $\delta$ is a singular (possibly locally unbounded) weight function such that $\delta(x)\ge \delta_0>0$ for a.e. $x\in \Omega$.

    We assume that the sets of admissible boundary controls $G_{ad}$ and $H_{ad}$ are given as follows

    $ Gad={gL2(0,T):  g0gg1  a.e.  in (0,T)},Had={hL2(0,T):  h0hh1  a.e. in (0,T)}, $ (18)

    where $g_0,h_0,g_1,h_1\in L^\infty(0,T)$ with $g_0(t)\le g_1(t)$ and $h_0(t)\le h_1(t)$ almost everywhere in $(0,T)$.

    The optimal control problem we consider in this paper is to minimize the discrepancy between the given distributions $(u_\Omega,\eta_Q)\in L^2(\Omega)\times L^2(Q)$ and the pair of distributions $\left(u(T),\eta(t)+\eta_{tt}(t)\right)$ (see, for instance, [5] for the physical interpretation), where $(\eta(t),u(t))$ is the solution of a viscous Boussinesq system, by an appropriate choice of boundary controls $g\in G_{ad}$ and $h\in H_{ad}$. Namely, we deal with the minimization problem (1)-(5).

    Definition 3.1. We say that, for given boundary controls $g\in G_{ad}$ and $h\in H_{ad}$, a couple of functions $(\eta(t),u(t))$ is a weak solution to the initial-boundary value problem (2)-(4) if

    $ \eta (t) = w(t)+{{\eta }^{*}},\ \ \ \ w(\cdot )\in {{W}_{0}}(0,T),\ \ \ \ u(\cdot )\in {{W}_{\delta }}(0,T), $ (19)
    $ \delta (L){{u}_{x}}(0,L) = 0,\ \ \ \ \ \ \ \ \delta (0){{u}_{x}}(0,0) = 0, $ (20)
    $ {{\left( w(0),\chi \right)}_{H}} = {{\left( {{\eta }_{0}}-{{\eta }^{*}},\chi \right)}_{H}}\ \ \ \ \ \ \ \text{for all }\chi \in H, $ (21)
    $ {{\left( u(0)-{{(\delta {{u}_{x}}(0))}_{x}},\chi \right)}_{{{V}_{\delta }}}} = {{\left( {{u}_{0}},\chi \right)}_{{{V}_{\delta }}}}\ \ \ \ \ \ \ \text{for all }\chi \in {{V}_{\delta }}, $ (22)

    and the following relations

    $ ˙w(t),φV0;V0+((w(t)u(t))x,φ)H+ν(wx(t),φx)H                 +12(r0ux(t)+2ηux(t),φ)H=0, $ (23)
    $ ˙u(t),ψVδ;Vδ+Ωδ˙ux(t)ψxdx+(u(t)ux(t),ψ)H+(μ(t)wx(t),ψ)H                +σ1(t)u(t,L)ψ(L)σ0(t)u(t,0)ψ(0)                =(f(t),ψ)H+h(t)ψ(L)g(t)ψ(0) $ (24)

    hold true for all $\varphi\in V_0$ and $\psi\in V_\delta$ and a.e. $t\in[0,T]$.

    Remark 2. Let us mention that if we multiply the left- and right-hand sides of equations (23)-(24) by function $\chi\in L^2(0,T)$ and integrate the result over the interval $(0,T)$, all integrals are finite. Moreover, closely following the arguments of Korpusov and Sveshnikov (see [13]), it can be shown that the weak solution to (2)-(4) in the sense of Definition 3.1 is equivalent to the following one: $(\eta(t),u(t))$ is a weak solution to the initial-boundary value problem (2)-(4) if the conditions (19)-(22) hold true and

    $ \int_{0}^{T}{{{\left\langle {{A}_{1}}(w(t),u(t)),\varphi (t) \right\rangle }_{V_{0}^{*};{{V}_{0}}}}dt = 0,\ \ \ \ \ \ \forall \varphi (\cdot )\in {{L}^{2}}(0,T;{{V}_{0}}),} $ (25)
    $ \int_{0}^{T}{{{\left\langle {{A}_{2}}(w(t),u(t)),\psi (t) \right\rangle }_{V_{\delta }^{*};{{V}_{\delta }}}}dt = 0,\ \ \ \ \ \ \forall \psi (\cdot )\in {{L}^{2}}(0,T;{{V}_{\delta }}),} $ (26)

    where

    $ {{A}_{1}}(w,u) = \frac{\partial w}{\partial t}-\nu {{w}_{xx}}+{{w}_{x}}u+w{{u}_{x}}+\frac{1}{2}{{r}_{0}}{{u}_{x}}+{{\eta }^{*}}{{u}_{x}}\in V_{0}^{*}, $ (27)
    $ {{A}_{2}}(w,u) = \left[ t(u(δux)x)+12(u2)x+μwxfδ(0)˙ux(,0)+σ0u(,0)gδ(L)˙ux(,L)+σ1u(,L)h \right]\in V_{\delta }^{*}. $ (28)

    Lemma 3.2 ([5]). Assume that the conditions (15)-(17) hold true. Let $g\in G_{ad}$ and $h\in H_{ad}$ be an arbitrary pair of admissible boundary controls. Then there exists a unique solution $(\eta(\cdot),u(\cdot))$ of the system (2)-(4) in the sense of Definition 3.1 such that

    $ (η(),u())(W0(0,T)+η)×Wδ(0,T),wL(0,T;H)L2(0,T;H2(Ω)V0),˙wL2(0,T;H), uW1,(0,T;Vδ) $ (29)

    and there exists a constant $D_\ast>0$ depending only on initial data (15), (17) and control constrains $h_1, g_1$, satisfying the estimates

    $ \|w\|_{{{L}^{2}}(0,T;{{H}^{2}}(\Omega ))}^{2}+\|w\|_{{{L}^{\infty }}(0,T;H)}^{2}+\|\dot{w}\|_{{{L}^{2}}(0,T;H)}^{2}\le {{D}_{*}}, $ (30)
    $ \|u\|_{{{L}^{\infty }}(0,T;{{V}_{\delta }})}^{2}+\|\dot{u}\|_{{{L}^{\infty }}(0,T;{{V}_{\delta }})}^{2}\le {{D}_{*}}. $ (31)

    We also define the feasible set to the problem (1)-(5), (18) as follows:

    $ \Xi = \left\{ (g,h,\eta ,u)\ \left| gGad,     hHad,η(t)=w(t)+η,     wW0(0,T),     uWδ(0,T),(w(t),u(t)) satisfies relations (19)-(24)for  all φV0,  ψVδ,      and      a.e.  t[0,T],J(g,h,η,u)<+. \right. \right\} $ (32)

    We say that a tuple $\left(g^0,h^0,\eta^0,u^0\right)\in \Xi$ is an optimal solution to the problem (1)-(5), (18) if

    $ J\left(g^0,h^0,\eta^0,u^0\right) = \inf\limits_{(g,h,\eta,u)\in\Xi}J(g,h,\eta,u). $

    In [5] it was shown that $\Xi\ne \emptyset$ and $ \Xi_\lambda = \left\{(g,h,\eta,u)\in\Xi:J(g,h,\eta,u)\le\lambda\right\} $ is a bounded set in $L^2(0,T)\times L^2(0,T)\times\left(W_0(0,T)+\eta^\ast\right)\times W_\delta(0,T)$ for every $\lambda>0$.

    While proving these hypotheses, the authors in [5] obtained a series of useful estimates for the weak solutions to initial-boundary value problem (2)-(4).

    Lemma 3.3. [5,Lemmas 6.3 and 6.5 along with Remark 6.5] Let $g\in G_{ad}$ and $h\in H_{ad}$ be an arbitrary pair of admissible boundary controls. Let $(\eta(\cdot),u(\cdot)) = (w(\cdot)+\eta^\ast,u(\cdot))$ be the corresponding weak solution to the system (2)-(4) in the sense of Definition 3.1. Under assumptions (15)-(17), there exist positive constants $C_1$, $C_2$, $C_3$ depending on the initial data only such that for a.a. $t\in [0,T]$

    $ \label{5.8} \|w(t)\|_H^2+\|u(t)\|^2_{V_\delta}\le C_1,\ \ \ \|\dot{w}(t)\|_{V_0^\ast}\le C_2,\ \ \ \|\dot{u}(t)\|_{V_\delta}\le C_3. $ (33)

    In the context of solvability of OCP (18)-(5), the regularity of the solutions of the corresponding initial-boundary value problem (2)-(4) plays a crucial role.

    Theorem 3.4 ([5]). The set of feasible solutions $\Xi$ to the problem (1)-(5), (18) is nonempty provided the initial data satisfy the conditions (15)-(17).

    Now we proceed with the result concerning existence of optimal solutions to OCP (1)-(5), (18).

    Theorem 3.5. For each

    $ fL(0,T;L2(Ω)),  μL(0,T;V),  σ0L(0,T),  σ1L(0,T),αΩL(Ω),  αQR+,  uΩL2(Ω),  ηQW(0,T;H),u0Vδ,  η0V0, r0H1(Ω),  δL1(Ω) $

    the optimal control problem (1)-(5), (18) admits at least one solution $(g^0,h^0,\eta^0,u^0)$.

    Proof. We apply for the proof the direct method of the calculus of variations. Let us take $\lambda \in\mathbb{R}_+$ large enough, such that

    $ {{\Xi }_{\lambda }} = \left\{ (g,h,\eta ,u)\in \Xi \ \ :\ \ J(g,h,\eta ,u)\le \lambda \right\}\ne \varnothing . $

    Since the cost functional (1) is bounded below on $\Xi$, this implies the existence of a minimizing sequence $\{(g_n,h_n,\eta_n,u_n)\}_{n\ge \mathbb{N}}\subset \Xi_\lambda$, where $\eta_n = w_n+\eta^\ast$. In [5], the authors have proved that this sequence is bounded in $L^2(0,T)\times L^2(0,T)\times \left(W_0(0,T)+\eta^\ast\right)\times W_\delta(0,T)$. Moreover, using (30)-(31), we get

    $ ηxx2L2(0,T;L2(Ω))=wxx2L2(0,T;L2(Ω))w2L2(0,T;H2(Ω))D,uxt2L2(0,T;H)max{1,δ10}˙u2L(0,T;Vδ)D. $

    Therefore, within a subsequence, still denoted by the same index, we can suppose that

    $ gng0  in  L2(0,T),  hnh0  in  L2(0,T),unu0  strongly  in  L2(0,T;H),unu0 weakly-  in  L(0,T;Vδ),˙unv  weakly  in  L2(0,T;Vδ)     and      weakly-  in  L(0,T;Vδ), $

    where $v = \dot{u}^0$ in the sense of distributions $\mathcal{D}^\prime(0,T;V_\delta)$. Also, by Lemma 3.3 (see relation (33)), we get

    $ \|{{u}_{n}}(t)\|_{{{V}_{\delta }}}^{2}\le {{C}_{1}}\ \ \ \ \text{for}\ \text{all}\ n\in \mathbb{N}\ \ \text{and}\ \ \text{for}\ \ \text{all}\ \ t\in [0,T], $

    whence, passing to a subsequence, if necessary, we obtain

    $ un(T,)u0(T,) in  Vδ,un(T,)u0(T,)  strongly  in H $

    due to the continuity of embedding $V_\delta\hookrightarrow V$ and the compactness of embedding $V\hookrightarrow H$. In view of this, lower semicontinuity of norms in $L^2(0,T)$, $L^2(\Omega)$ with respect to the weak convergence and the fact that

    $ ηn(t,x)η0(t,x) in V0, ˙u(t,x)˙u0(t,x) in  Vδ for a.e. t[0,T],(ηn(t,x)+r0(x)un xt(t,x)ηQ)(η0(t,x)+r0(x)u0xt(t,x)-ηQ)) in L1(Ω)for a.e. t[0,T],ΩaQ(ηn(t,x)+r0(x)un xt(t,x)ηQ)dxΩaQ(η0(t,x)+r0(x)un xt(t,x)ηQ))dx for a.e. t[0,T],limnT0(ΩaQ(ηn(t,x)+r0(x)un xt(t,x)ηQ)dx)2 dt = T0(ΩaQ(η0(t,x)+r0(x)un xt(t,x)ηQ)))2 dt, $

    we have $J(g^0,h^0,\eta^0,u^0)\le\inf_{n\in\mathbb{N}}J(g_n,h_n,\eta_n,u_n)$.

    This section aims to prove a range of auxiliary results that will be used in the sequel. Throughout this section the tuple $ (g^0,h^0,\eta^0,u^0) $, where $ \eta^0 = w^0+\eta^\ast $ denotes an optimal solution to initial OCP problem (1)-(5).

    The following proposition aims to prove rather technical result, however it is useful for substantiation of the first-order optimality conditions to the initial OCP (1)-(5).

    Proposition 1. Let $ \delta\in H^1(\Omega) $. Then, for the initial data (15)-(17), the following inclusions take place

    $ u0[u0xxη0+2u0xη0x+η0xxu0](αQ)2Ω(η0ηQ)dxL2(0,T;V),η0[u0xxη0+2u0xη0x+η0xxu0]L2(0,T;V). $

    Proof. To begin with, let us prove that

    $\eta^0\big[u^0_{xx}\eta^0+2u^0_x \eta^0_x+\eta^0_{xx}u^0\big]\in L^2(0,T;V^\ast).$

    Obviously, in order to show that

    $ u^0\big[u^0_{xx}\eta^0+2u^0_x \eta^0_x+\eta^0_{xx}u^0\big]- (\alpha_Q)^2\int_\Omega \left(\eta^0-\eta_Q\right)\,dx\in L^2(0,T;V^\ast) $

    it would be enough to apply the similar arguments. Since $\eta^0\in W(0,T;V)\hookrightarrow C(Q)$, it is enough to show that there exists $\widetilde{C}$ such that

    $ \left\|u^0_{xx}\eta^0+2u^0_x \eta^0_x+\eta^0_{xx}u^0\right\|_{V^\ast}\le \widetilde{C}\text{ for a.a. }t\in[0,T]. $

    It should be noticed that as far as

    $ u_{x}^{0}\in {{L}^{2}}(\Omega ;\delta \ dx) \hookrightarrow {{L}^{2}}(\Omega )\ \ \ \ \text{for}\ \text{a}.\text{a}.\ t\in [0;T], $

    then $u^0_{xx}\in (H^1(\Omega))^\ast = V^\ast$.

    Also the fact that $\eta^0\in H^2(\Omega)$ gives $\eta^0_{xx}\in L^2(\Omega)$ and $\eta^0_x\in H^1(\Omega)\hookrightarrow C(\overline{\Omega})$ for a.a. $t\in[0;T]$. Therefore, we have

    $u0xx(t)η0(t)+2u0x(t)η0x(t)+η0xx(t)u0(t)V=supvV1u0xx(t)η0(t)+2u0x(t)η0x(t)+η0xx(t)u0(t),vV;V=Ωu0xx(t)η0(t)vdx+2Ωu0x(t)η0x(t)vdx+Ωη0xx(t)u0(t)vdxη0(t)C(¯Ω)vVu0xx(t)V+η0x(t)L(Ω)u0x(t)HvH+u0C(¯Ω)ηxx(t)HvHvV×(η0(t)C(¯Ω)u0xxV+η0x(t)L(Ω)u0x(t)L2(Ω)+u0C(¯Ω)ηxx(t)L2(Ω))C(t).$

    It is clear that if only $\eta^0\in \left(W_0(0,T)+\eta^\ast\right)\cap L^2(0,T;H^2(\Omega)\cap V)$, then we have $\eta^0\in C(0,T;V)$, $\eta^0\in C(\overline{\Omega})$, and $\eta^0_x\in L^2(0,T;V)$. Moreover, from $(\delta u_x^0)_x = \delta_xu^0_x+\delta u^0_{xx}$ we can deduce that

    $ \|u^0_{xx}\|_{V^\ast} = \left\|\frac{1}{\delta}\left((\delta u_x^0)_x-\delta_x u^0_x\right)\right\|_{V^\ast} \le \frac{1}{\delta_0}\left(\|(\delta u_x^0)_x\|_{V^\ast}+\|\delta_x u^0_x\|_{V^\ast}\right) $ (34)

    and

    $ C(t)2L2(0;T)2δ20η02C(0,T;H)T0((δu0x)x2V+δxu0x2V)dt+2max{L,L1}δ0T0η0x2Vu02Vδdt+u02C(0,T;H)T0η0xx2Hdt2δ20η02C(0,T;H)T0((δu0x)x2V+δxu0x2V)dt+2max{L,L1}δ0u02W1,(0,T;Vδ)η02L2(0,T;H2)+u02C(0,T;H)η02L2(0,T;H2). $ (35)

    Let us show that the integrals $ \int_0^T\|\delta_x u^0_x\|^2_{V^\ast}\,dt$ and $\int_0^T \|(\delta u_x^0)_x\|^2_{V^\ast}\,dt$ are finite. We take into account the continuous embedding $V\hookrightarrow C(\overline{\Omega})$. Then $\exists\, c(E)$ such that $\|v\|_{C(\overline{\Omega})}\le c(E)\|v\|_{V}$, for all $v\in V$. As for the first integral, we have

    $T0δxu0x(t)2Vdt=T0(supvV1Ω|δx||u0x(t)||v|dx)2dtT0(supvV1vC(¯Ω)δVu(t)V)2dtc2(E)δ0v2Vδ2Vu2L2(0,T;Vδ)c2(E)Tδ0δ2Vu2L(0,T;Vδ).$

    Now, to estimate the second integral, we make use of the equation (2)$_2$ and the well known inequality $(a+b+c)^2\le 3(a^2+b^2+c^2)$.

    $T0(δu0x)x2Vdt=T0(supvV1Ω|(δu0x)xv|dx)2dt=T0(supvV1Ω|[t0(f(s)u0(s)u0x(s)μ(s)η0x(s))ds+u0(t)+u0+(δ(u0)x)x]v|dx)2dtT02(supvV1Ω|t0(f(s)vu0(s)u0x(s)vμ(s)η0x(s)v)ds|dx)2dt+T02(supvV1Ω|(u0(t)+u0+(δ(u0)x)x)v|dx)2dtT02(supvV1ΩT0|f(s)vu0(s)u0x(s)vμ(s)η0x(s)v)|dsdx)2dt+T02(supvV1[u0(t)VvV+u0VvV+(δ(u0)x)xVvV])2dtT02(supvV1T0Ω[|f(s)v|+|u0(s)u0x(s)v|+|μ(s)η0x(s)v|]dxds)2dt+T06([u0(t)2V+u02V+(δ(u0)x)x2V])2dtT02(supvV1T0(f(t)HvV+u0(t)C(¯Ω)u0(t)VvV+μ(t)Hη0(t)VvC(¯Ω))ds)2dt+6Tδ0u02L(0,T;Vδ)+6Tu02V+6T(δ(u0)x)x2V6T[Tf2L2(0,T;H)+(c(E))2max{1,δ10}Tu04L(0,T;Vδ)+(c(E))2μ2L2(0,T;H)η02L2(0,T;V)]+6Tδ0u02L(0,T;Vδ)+6Tu02V+6T(δ(u0)x)x2V<+.$

    It is worth to mention here that, in fact, $(\delta (u_0)_x)_x\in (H^1(\Omega))^\ast$ because the element $\delta (u_0)_x$ belongs to $L^2(\Omega)$. Indeed,

    $ \int_\Omega (\delta (u_0)_x)^2\,dx\le \|\delta\|_{C(\overline{\Omega})}\int_\Omega \delta((u_0)_x)^2\,dx\le c(E)\|\delta\|_V\|u_0\|_{V_\delta}. $

    It remains to note that the property $\int_0^T\left(\int_\Omega \left(\eta^0-\eta_Q\right)\,dx\right)^2 \,dt<\infty$ can be rewritten as follows $\int_\Omega \left(\eta^0-\eta_Q\right)\,dx\in L^2(0,T)$.

    Let us consider two operators $\gamma_1$ and $\gamma_2$ that define the restriction of the functions from $V = H^1(\Omega)$ to the boundary $\partial\Omega = \left\{x = L,x = 0\right\}$, respectively (i.e. $\gamma_1[u(t,\cdot)] = u(t,L)$ and $\gamma_2[u(t,\cdot)] = u(t,0)$). Also we put into consideration two operators

    $ A, B:L^2(0,T;V_0)\times L^2(0,T;V_\delta)\to \left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2, $

    defined on the set of vector functions ${\bf{p}} = (p,q)^t\in L^2(0,T;V_0)\times L^2(0,T;V_\delta)$ by the rule

    $ (A{\bf{p}})(t): = A(t){\bf{p}}(t) = \left( p(t)q(t)(δqx(t))xγ1[δqx(t)]γ2[δqx(t)] \right), $ (36)
    $ (B{\bf{p}})(t): = B(t){\bf{p}}(t) = \left( u0px(t)+νpxx(t)+(μq)x(t)(η0+12r0)px(t)+12(r0)xp(t)+u0qx(t)(σ1(t)+γ1[u0])γ1[q(t)](σ0(t)+γ2[u0])γ2[q(t)] \right). $ (37)

    Here, we use the fact that $V_\delta^\ast = V_0^\ast\oplus H^{-1/2}(\partial\Omega)$, which in one-dimensional case obviously turns to $V^\ast = V_0^\ast\oplus \mathbb{R}\oplus \mathbb{R}$ and, hence, $L^2(0,T;V_\delta^\ast) = L^2(0,T;V_0)\oplus L^2(0,T)\oplus L^2(0,T)$. Then the following result holds true.

    Lemma 4.1. The operator $A(t):V_0\times V_\delta\to \left[V_0^\ast\right]^2\times\mathbb{R}\times\mathbb{R}$, defined by (36), satisfies the following conditions:

    $A(t)$ is radially continuous, i.e. for any fixed ${\bf{v}}_1,\,{\bf{v}}_2\in V_0\times V_\delta: = \widetilde{V}$ and almost each $t\in(0,T)$ the real-valued function $ s\rightarrow \langle A(t)({\bf{v}}_1+s {\bf{v}}_2),{\bf{v}}_2\rangle_{\widetilde{V}^\ast;\widetilde{V}} $ is continuous in $[0,1]$;

    for some constant $C$ and some function $g\in L^2(0,T)$

    $\|A(t){\bf{v}}\|_{\widetilde{V}^\ast}\le C\|{\bf{v}}\|_{\widetilde{V}}+g(t),\ \ \ for \ a.e.\ \ \ t\in[0,T],\ \forall\,{\bf{v}}\in \widetilde{V};$

    it is strictly monotone uniformly with respect to $t\in [0,T]$ in the following sense: there exists a constant $m>0$, independent of $t$, such that

    $ A(t)v1A(t)v2,v1v2˜V;˜Vv11v122H+mv21v222Vδ,v1,v2˜V and for a.e. t[0,T]. $

    Moreover, the operator $B:L^2(0,T;V_0)\times L^2(0,t;V_\delta)\to \left[L^2(0,T;V_0^\ast)\right]^2\times L^2(0,T)\times L^2(0,T)$ possesses the Lipschitz property, i.e. there exists a constant $L>0$ such that

    $ \|B{\bf{v}}_1-B{\bf{v}}_2\|_{L^2(0,T;\widetilde{V}^\ast)}\le L\|{\bf{v}}_1-{\bf{v}}_2\|_{L^2(0,T;\widetilde{V})}, \ for \ all\ {\bf{v}}_1,\,{\bf{v}}_2\in L^2(0,T;\widetilde{V}). $

    Proof. Since the radial continuity of operator $A$ is obvious, we begin with the proof of the second property. Let ${\bf{v}} = (v,w),\,{\bf{z}} = (z,y)\in \widetilde{V}$ be arbitrary elements. Then

    $A(t)v˜V=supz˜V1|A(t)v,z˜V;˜V|=supzV0+yVδ1|Ω(vz+wy)dxΩ(δwx)xydx+δ(L)wx(L)y(L)δ(0)wx(0)y(0)|=supz˜V1|Ω(vz+wy)dx+Ωδwxyxdx|supz˜V1(vHzH+wHyH+wVδyVδ)2(vV0+yVδ)=2v˜V.$

    As for the monotonicity property, for every ${\bf{p}}_1,{\bf{p}}_2\in V_0\times V_\delta$, we have

    $A(t)p1A(t)p2,p1p2˜V;˜V=Ω(p1p2)2dx+Ω(q1q2)2dxΩ[(δ(q1)x)x(δ(q2)x)x](q1q2)dx+[δ(L)(q1(,L))xδ(L)(q2(,L))x](q1(,L)q2(,L))[δ(0)(q1(,0))xδ(0)(q2(,0))x](q1(,0)q2(,0))=p1p2H+q1q2H+q1q22L2(Ω,δdx).$

    It remains to show the Lipschitz continuity of operator $B(t)$. With that in mind we consider three vector-valued functions ${\bf{v}} = (v_1,v_2)^t$, ${\bf{w}} = (w_1,w_2)^t$ and ${\bf{z}} = (z_1,z_2)^t$. Then

    $BvBwL2(0,T;˜V)=supz˜V1|BvBw,z˜V;˜V|=T0[|(u0(t)(v1x(t)w1x(t)),z1(t))H|+ν|(v1x(t)w1x(t),z1x(t))H|+|(μx(v2(t)w2(t)),z1(t))H|+|(μ(v2x(t)w2x(t)),z1(t))H|+12|((r0+2η0)(v1x(t)w1x(t)),z2(t))H|+12|((r0)x(v1(t)w1(t)),z2(t))H|+|(u0(t)(v2x(t)w2x(t)),z2(t))H|+|(σ1(t)+u0(t,L))(v2(t,L)w2(t,L))z2(t,L)|+|(σ0(t)+u0(t,0))(v2(t,0)w2(t,0))z2(t,0)|]dtu0C(Q)v1w1L2(0,T;V0)z1L2(0,T;V0)+νv1w1L2(0,T;V0)z1L2(0,T;V0)+T0(2zC(¯Ω)δ1/20μVv2w2Vδ+12(r0+2η0H+r0V)v1w1Vz2C(¯Ω))dt+u0C(Q)δ10v2w2Vδz2Vδ+T0(|σ1(t)|+|σ0(t)|+2u0(t)C(¯Ω))v2(t)w2(t)C(¯Ω)dt.$

    Taking into account the continuous embedding $V_\delta,V_0\hookrightarrow C(\overline{\Omega})$ and the corresponding inequality

    $ \|v\|_{C(\overline{\Omega})}\le c(E)\|v\|_V\le c(E)\delta_0^{-1/2}\|v\|_{V_\delta}, $

    we finally have

    $ \|B{\bf{v}}-B{\bf{w}}{{\|}_{{{L}^{2}}(0,T;{{\widetilde{V}}^{*}})}}\le L\|{\bf{v}}-{\bf{w}}{{\|}_{{{L}^{2}}(0,T;\widetilde{V})}}, $

    where $L = \max\{C_1;C_2\}$ and

    $C1=u0C(Q)+ν+c(E)(r0V+η0C(0,T;H)),C2=2c(E)δ10μL(0,T;V)+u0C(Q)δ10+c(E)(σ1L2(0,T)+σ2L2(0,T)+2u0C(Q)).$

    This concludes the proof.

    Lemma 4.2. Operator

    $A:L^2(0,T;V_0)\times L^2(0,T;V_\delta)\to \left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2,$

    which is defined by (36), is radially continuous, strictly monotone and there exists an inverse Lipschitz-continuous operator

    $ A^{-1}:\left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2\to L^2(0,T;V_0)\times L^2(0,T;V_\delta) $

    such that

    $ (A1f)(t)=A1(t)f(t)  for a.e.  t[0,T]and for all f[L2(0,T;V0)]2×[L2(0,T)]2, $

    where $A^{-1}(t): \left[V_0^\ast\right]^2\times\mathbb{R}\times\mathbb{R}\to V_0\times V_\delta$ is an inverse operator to

    $A(t):V_0\times V_\delta\to \left[V_0^\ast\right]^2\times\mathbb{R}\times\mathbb{R}.$

    Proof. It is easy to see that the action of operator $A(t)$ on element ${\bf{p}} = (p,q)^t$ can be also given by the rule:

    $A(t)p(t)=(A1(t)p(t)A2(t)q(t)),A1:L2(0,T;V0)L2(0,T;V0),A2:L2(0,T;Vδ)L2(0,T;V0)×L2(0,T)×L2(0,T),$

    where

    $ A_1(t)p(t) = p(t) \text{ and }A_2(t) q(t) = \left(q(t)(δqx(t))xγ1[δqx(t)]γ2[δqx(t)]\right).$

    It is easy to see, that $A_1(t)$ is the identity operator. Therefore, $A_1^{-1}(t)\equiv A_1(t)$. As for the operator $A_2(t)$, it is strongly monotone for all $t\in [0,T]$ because

    $\langle (A_2 q_1)(t)-(A_2q_2)(t),q_1(t)-q_2(t)\rangle_{V_\delta^\ast;V_\delta} = \|q_1-q_2\|_{V_\delta}.$

    Moreover, $A_2(t)$ satisfies all preconditions of [11,Lemma 2.2] that establishes the existence of a Lipschitz continuous inverse operator

    $A_2^{-1}:L^2(0,T;V_0^\ast)\times L^2(0,T)\times L^2(0,T)\to L^2(0,T;V_\delta)$

    such that

    $ (A_2^{-1}f)(t) = A_2^{-1}(t)f(t)\ \text{for a.e. }\ t\in [0,T]\ \text{ and }\ \forall\,f\in \left[L^2(0,T;V_0^\ast)\right]\times \left[L^2(0,T)\right]^2, $

    where $A_2^{-1}(t): \left[V_0^\ast\right]\times\mathbb{R}\times\mathbb{R}\to V_\delta$ is an inverse operator to $A_2(t): V_\delta\to V_0^\ast\times\mathbb{R}\times\mathbb{R}$. The proof is complete.

    Before proceeding further, we make use of the following result concerning the solvability of Cauchy problems for pseudoparabolic equations (for the proof we refer to [11,Theorem 2.4]).

    Theorem 4.3. For operators

    $A, B:L^2(0,T;V_0)\times L^2(0,T;V_\delta)\to \left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2$

    defined in (36), (37), and for any

    $ F\in \left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2\ \ \ and\ \ \ \ b\in V_0^\ast\times V_\delta^\ast, $

    the Cauchy problem

    $ (A(t)p)t+B(t)p=F(t),A(T)p(T)=b $

    admits a unique solution.

    In this section we focus on the derivation of the first-order optimality conditions for optimization problem (1)-(5). The Lagrange functional

    $L:(W0(0,T)L2(0,T;H2(Ω)V0))×W1,(0,T;Vδ)×L2(0,T)×L2(0,T)×R×(W0(0,T)L2(0,T;H2(Ω)V0))×W1,(0,T;Vδ)R,$

    associated to problem (1)-(5) (see also Remark 2) is defined by

    $L(w,u,g,h,λ,p,q)=λJ(g,h,w,u)T0[A1(w,u),pV0;V0+A2(w,u),qVδ;Vδ]dt=λJ(g,h,w,u)T0[˙w,pV0;V0νwxx,pV0;V0+((wu)x,p)H+12((r0+2η)ux,p)H]dtT0[˙u(δ˙ux)x,qVδ;Vδ+12((u2)x,q)H+(μwx,q)H(f,q)H]dtT0[(δ(L)˙ux(t,L)+σ1(t)u(t,L)h)q(t,L)(δ(0)˙ux(t,0)+σ0(t)u(t,0)g)q(t,0)]dt=λJ(g,h,w,u)T0[˙w,pV0;V0νwxx,pV0;V0+((wu)x,p)H+12((r0+2η)ux,p)H]dtT0[˙u,qVδ;Vδ+Ωδ˙uxqxdx+12((u2)x,q)H+(μwx,q)H(f,q)H]dtT0[σ1(t)u(t,L)q(t,L)h(t)q(t,L)σ0(t)u(t,0)q(t,0)+g(t)q(t,0)]dt.$

    Let us shift the correspondent derivatives from $w$ and $u$ to Lagrange multipliers $p$ and $q$, taking into account the initial and boundary conditions (3)-(4):

    $L(w,u,g,h,λ,p,q)=λJ(g,h,w,u)+T0[w,˙pV0;V0+νw,pxxV0;V0+(wu,px)H+12(u,((r0+2η)p)x)H]dtΩp(T)w(T)dx+Ωp(0)w(0)dx+T0[u,˙qVδ;Vδ+Ωδux˙qxdx+12(u2,qx)H+(w,(μq)x)H+(f,q)H]dtu(T,),q(T,)Vδ;VδΩδux(T)qx(T)dx+u(0,),q(0,)Vδ;Vδ+Ωδux(0)qx(0)dxT0[σ1(t)u(t,L)q(t,L)h(t)q(t,L)σ0(t)u(t,0)q(t,0)+g(t)q(t,0)]dt=λJ(g,h,w,u)+T0[w,˙pV0;V0+νw,pxxV0;V0+(wu,px)H+12(u,((r0+2η)p)x)H]dtΩp(T)w(T)dx+Ωp(0)w(0)dx+T0[u,˙qVδ;Vδ+Ωδux˙qxdx+12(u2,qx)H+(w,(μq)x)H+(f,q)H]dtu(T,),q(T,)(δqx(T,))xVδ;Vδδ(L)u(T,L)qx(T,L)+δ(0)u(T,0)qx(T,0)+u(0,)(δux(0,))x,q(0,)Vδ;VδT0[σ1(t)u(t,L)q(t,L)h(t)q(t,L)σ0(t)u(t,0)q(t,0)+g(t)q(t,0)]dt12T0(u2(t,L)q(t,L)u2(t,0)q(t,0))dt=λJ(g,h,w,u)+T0[w,˙pV0;V0+νw,pxxV0;V0+(wu,px)H+12(u,((r0+2η)p)x)H]dtΩp(T)w(T)dx+Ωp(0)w(0)dx+T0[u,˙q(δ˙qx)xVδ;Vδ+12(u2,qx)H+(w,(μq)x)H+(f,q)H]dtu(T,),q(T,)(δqx(T,))xVδ;VδT0[(σ1(t)q(t,L)(δ(L)˙qx(t,L))u(t,L)h(t)q(t,L)]dtT0[σ0(t)(q(t,0)(δ(0)˙qx(t,0))u(t,0)g(t)q(t,0)]dt12T0(u2(t,L)q(t,L)u2(t,0)q(t,0))dt.$

    For each fixed $(p,q)\in \Big(W_0(0,T)\cap L^2(0,T;H^2(\Omega)\cap V_0)\Big)\times W^{1,\infty}(0,T;V_\delta)$ the Lagrangian is continuously Frechet-differentiable with respect to

    $ (w,u,g,h)\in \Big(W_0(0,T)\cap L^2(0,T;H^2(\Omega)\cap V_0)\Big)\times W^{1,\infty}(0,T;V_\delta)\times L^2(0,T)\times L^2(0,T). $

    Notice that, for a fixed $t$, we have $u\in V\subset C(\overline{\Omega})$ and $w\in V_0\subset C(\overline{\Omega})$, hence, the inner products $(w_x(t)u(t)+w(t)u_x(t),p(t))_{H}$ and $(u(t) u_x(t),q(t))_H$ are correctly defined almost everywhere in $[0,T]$.

    Further we make use of the following relation $\eta_t = -\frac{1}{2}r_0 u_x$ that was introduced in [3]. Substituting this one to (2), we have $\nu\eta_{xx} = (\eta u)_x = \eta_x u+u_x\eta$.

    Also, to simplify the deduction and in order to avoid the demanding of the increased smoothness on solutions of the initial Boussinesq system (2)-(5), we use (see [4] and [5]) elastic model for the hydrodynamic pressure

    $ P(t,x) = P_{ext}+\frac{\beta }{r_{0}^{2}}\eta $

    instead of the inertial one

    $ P=Pext+βr20η+ρωh2ηt2=Pext+βr20η12ρωhr0uxt. $ (38)

    Indeed, if we suppose the wall thickness $h$ to be small enough, the last term in the inertial model (38) appears negligible.

    As a result, the cost functional $J(g,h,w,u)$, where $\eta = w+\eta^\ast$, takes the form

    $ J(g,h,w,u)=12ΩαΩ(u(T)uΩ)2dx+12T0Ω((w(t)u(t))x+ux(t)η)2dxdt+12T0|ΩαQ(w(t)+ηηQ)dx|2dt+12T0(βg|g|2+βh|h|2)dt. $ (39)

    In order to formulate the conjugate system for an optimal solution $(g^0,h^0,\eta^0,u^0)$, where $\eta^0 = w^0+\eta^\ast$, we have to find the Fréchet differentials $\mathcal{L}_w z$ and $\mathcal{L}_u v$, where

    $ z\in W_0(0,T)\cap L^2(0,T;H^2(\Omega)\cap V_0)\ \ \ \ \text{and}\ \ \ \ v\in W^{1,\infty}(0,T;V_\delta)\times L^2(0,T). $

    With that in mind we emphasize the following point. Since the elements

    $ w+z\in W_0(0,T)\cap L^2(0,T;H^2(\Omega)\cap V_0)\ \ \ \ \text{and}\ \ \ \ u+v\in W^{1,\infty}(0,T;V_\delta)\times L^2(0,T) $

    are some admissible solutions to OCP (39), (2)-(5), it follows that the increments $z$ and $v$ satisfy the homogeneous initial and boundary conditions, i.e.

    $ \left\{ z(0,)=0    in  Ω,v(0,)(δ()vx(0,))x=0    in  Ω, \right. $ (40)
    $ \left\{ z(,0)=z(,L)=0     in  (0,T),δ(0)˙vx(,0)+σ0v(,0)=0,     in  (0,T),δ(L)˙vx(,L)+σ1v(,L)=0,     in  (0,T),δ(L)vx(0,L)=δ(0)vx(0,0)=0. \right. $ (41)

    Taking into account the definition of the Fréchet derivative of nonlinear mappings, we get

    $ J(g,h,w+z,u) = J(g,h,w,u)+{{J}_{w}}z+{{R}_{0}}(w,z), $

    where $R_0(w,z)$ stands for the remainder, which takes the form

    $ R0(w,z)=12T0Ω((zu)x)2dxdt+T0|ΩaQz(t)|2dt, $ (42)

    and

    $Jwz=J(g,h,w+z,u)J(g,h,w,u)R0(w,z)=12T0Ω(((w(t)+z(t))u(t))x+ux(t)η)2dxdt12T0Ω((w(t)u(t))x+ux(t)η)2dxdt+12T0|ΩαQ(w(t)+z(t)+ηηQ)dx|2dt12T0|ΩαQ(w(t)+ηηQ)dx|2dt=T0Ω((w(t)u(t))x+ux(t)η)((z(t)u(t))x)dxdt+T0(ΩαQ(w(t)+ηηQ)dx)(ΩαQz(t)dx)dt=T0Ω(wxu+uxw+uxη)(uxz+zxu)dxdt+α2QT0Ω(Ω(w(t)+ηηQ)dx)z(t)dxdt=T0Ω[(wxuxu+(ux)2w+(ux)2η)(wxu2+uxuw+uxuη)x]z(t)dxdt+α2QT0Ω(Ω(w(t)+ηηQ)dx)z(t)dxdt.$

    It is obviously follows from (42) that

    $ \frac{|R_0(w,x)|}{\|z\|_{L^2(0,T;H^2(\Omega)\cap V_0)}}\rightarrow 0\ \ \ \ \text{as}\ \ \ \ \|z\|_{L^2(0,T;H^2(\Omega)\cap V_0)}\to 0. $

    Hence, after some transformations, we have

    $ Jwz=T0Ω(u[uxx(w+η)+2uxwx+wxxu]+α2QΩ(w(t)+ηηQ)dx)z(t)dxdt. $ (43)

    Treating similarly to the other derivative, we obtain

    $ J(g,h,w,u+v) = J(g,h,w,u)+J_u v+\widetilde{\mathcal{R}}_0(u,v), $

    where the remainder $\widetilde{\mathcal{R}}_0(u,v)$ takes the form

    $ ˜R0(u,v)=12ΩaΩv2(T)dx+12T0Ω((wv)x+vxη)2dxdt,|˜R0(u,v)|/vW1,(0,T;Vδ)0   as   vW1,(0,T;Vδ)0, $ (44)

    and

    $ Juv=J(g,h,w,u+v)J(g,h,w,u)˜R0(u,v)=12ΩαΩ(u(T)+v(T)uΩ)2dx12ΩαΩ(u(T)uΩ)2dx+12T0Ω((w(t)(u(t)+v(t)))x+(ux(t)+vx(t))η)2dxdt12T0Ω((w(t)u(t))x+ux(t)η)2dxdt=ΩαΩ(u(T)uΩ)v(T)dxT0Ω(w+η)[uxx(w+η)+2uxwx+wxxu]dxdt+T0η((w0(t,L)u0(t,L))x+u0xη)v(t,L)dtT0η((w0(t,0)u0(t,0))x+u0x(t,0)η)v(t,0)dt. $ (45)

    We are now in a position to identify the Fréchet derivatives $\mathcal{L}_w$ and $\mathcal{L}_v$ of the Lagrangian. Following in a similar manner, we have

    $Lwz=λJwz+T0[z,˙pV0;V0+νz,pxxV0;V0+(zu,px)H+(z,(μq)x)H]dtz(T),p(T)V0;V0$

    and

    $Luv=λJuv+T0[(wv,px)H+12(v,((r0+2η)p)x)H]dt+T0[v,˙qδ(˙qx)xVδ;Vδ+(uv,qx)H]dtv(T,),q(T,)(δqx(T,))xVδ;VδT0[(σ1(t)q(t,L)δ(L)˙qx(t,L))v(t,L)(σ0(t)q(t,0)δ(0)˙qx(t,0))v(t,0)]dtT0(u(t,L)v(t,L)q(t,L)u(t,0)v(t,0)q(t,0))dtδ(L)v(T,L)qx(T,L)+δ(0)v(T,0)qx(T,0).$

    As for the Fréchet derivatives $\mathcal{L}_g$ and $\mathcal{L}_h$, direct calculations leads us to the following representation:

    $Lgk(t)=L(w,u,g+k,h,p,q)L(w,u,g,h,p,q)R(g,k)=T0βgg(t)k(t)dtT0k(t)q(t,0)dtR(g,k),Lhl(t)=L(w,u,g,h+l,p,q)L(w,u,g,h,p,q)R(h,l)=T0βhh(t)l(t)dt+T0l(t)q(t,L)dtR2(h,l),$

    where

    $ R1(g,k)=12T0βgk2(t)dt,    R2(h,l)=12T0βhl2(t)dt,|R1(g,k)|/kL2(0,T)0  as  kL2(0,T)0, and  |R2(h,l)|/lL2(0,T)0  as  lL2(0,T)0. $

    Taking into account the calculations given above, we arrive at the following representation of the first-order optimality conditions for OCP (2)-(5), (39).

    Theorem 5.1. Let $(g^0,h^0,\eta^0,u^0)$, where $\eta^0 = w^0+\eta^\ast$, be an optimal solution to the optimal control problem (1)-(5). Then there exists a unique pair

    $ (p,q)\in \Big[W_0(0,T)\cap L^2(0,T;H^2(\Omega)\cap V_0)\Big]\times W^{1,\infty}(0,T;V_\delta) $

    such that the following system

    $ T0[˙w0(t),φV0;V0+((w0(t)u0(t))x,φ)H+ν(w0x(t),φx)H+12(r0u0x(t)+2ηu0x(t),φ)H]dt=0, $ (46)
    $ T0[˙u0(t),ψVδ;Vδ+Ωδ˙u0x(t)ψxdx+(u0(t)u0x(t),ψ)H+(μ(t)w0x(t),ψ)H+σ1(t)u0(t,L)ψ(L)σ0(t)u0(t,0)ψ(0)]dt=T0[(f(t),ψ)H+h0(t)ψ(L)g0(t)ψ(0)]dt, $ (47)
    $ T0[˙p(t),φ(t)V0;V0+νpxx(t),φ(t)V0;V0+(px(t)u0(t),φ(t))H+((μq(t))x,φ(t))H]dt(p(T),φ(T))H=T0Ω(u0[u0xxη0+2u0xη0x+η0xxu0])φ(t)dxdtT0Ω(α2QΩ(η0(t)ηQ(t))dx)φ(t)dxdt, $ (48)
    $ T0[˙q(t)(δ˙qx(t))x,ψ(t)Vδ;Vδ+(qx(t)u0(t),ψ(t))H]dt+T0[(px(t)η0(t),ψ(t)))H+12((r0p(t))x,ψ(t))H]dtT0[(σ1(t)+u0(t,L))q(t,L)δ(L)˙qx(t,L)]ψ(t,L)dt+T0[(σ0(t)+u0(t,0))q(t,0)δ(0)˙qx(t,0)]ψ(t,0)dtv(T,),q(T,)(δqx(T,))xVδ;Vδδ(L)qx(T,L)ψ(T,L)+δ(0)qx(T,0))ψ(T,0)=T0Ωη0[u0xx(t)η0(t))+2u0x(t)η0x(t)+η0xx(t)u0(t)]ψ(t)dxdtΩaΩ(u0(T)uΩ)ψ(T)dxT0η(η0x(t,L)u0(t,L)+ηu0x(t,L))ψ(t,L)dt+T0η(η0x(t,0)u0(t,0)+ηu0x(t,0))ψ(t,0)dt, $ (49)
    $ T0(βgg0(t)q(t,0))(g(t)g0(t))dt0,    gGad, $ (50)
    $ T0(βhh0(t)+q(t,L))(h(t)h0(t))dt0    hHad, $ (51)
    $ η0(t)=w0(t)+η, $ (52)
    $ δ(L)u0x(0,L)=0,    δ(0)u0x(0,0)=0,    δ(L)qx(T,L)=0,    δ(0)qx(T,0)=0, $ (53)
    $ w0(0)=η00η,    p(T)=0,    p(,0)=p(,L)=0, $ (54)
    $ u0(0)(δu0x(0))x=u0,    q(T)(δqx(T))x=λaΩ(u0(T)uΩ) $ (55)

    holds true for all

    $\varphi\in W_0(0,T)\cap L^2(0,T;H^2(\Omega)\cap V_0),\ \psi\in W^{1,\infty}(0,T;V_\delta),\ \varphi\in V_0, \ \psi\in V_\delta,$

    and a.e. $t\in[0,T]$.

    Proof. Since the derived optimality conditions (46)-(55) are the direct consequence of the Lagrange principle, we focus on the solvability of the variational problems (48)-(49) for the adjoint variables $p$ and $q$. To do so, we represent the system (48)-(49) as the corresponding equalities in the sense of distributions, namely,

    $ pt+νpxx+pxu0+(μq)x=λu0[u0xxη0+2u0xη0x+η0xxu0]λ(αQ)2Ω(η0ηQ)dx, $ (56)
    $ [q(δqx)x]t+qxu0+pxη0+12(r0p)x=λη0[u0xxη0+2u0xη0x+η0xxu0], $ (57)
    $ δ(L)˙qx(,L)(σ1+u0(,L))q(,L)=λη(η0x(,L)u0(,L)+u0x(,L)η), $ (58)
    $ δ(0)˙qx(,0)(σ0+u0(,0))q(,0)=λη(η0x(,0)u0(,0)+u0x(,0)η), $ (59)
    $ q(T)(δqx(T))x=λaΩ(u0(T)uΩ), $ (60)
    $ δ(L)qx(T,L)=δ(0)qx(T,0)=0, $ (61)
    $ p(T)=0,    p(,0)=p(,L)=0. $ (62)

    In the operator presentation, the system (56)-(62) takes the form (see [11]):

    $ (A(t)p)t+B(t)p=F(t),    A(T)p(T)=b, $

    where the operators

    $A(t), B(t): L^2(0,T;V_0)\times L^2(0,T;V_\delta)\to \left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2$

    are defined in (36)-(37), and

    $b=(0,λaΩ(u0(T)uΩ),0,0)V0×V0×R×R,F(t)=(f1,f2,ϕ1,ϕ2)t[L2(0,T;V0)]2×[L2(0,T)]2,f1(t)=λu0[u0xxη0+2u0xη0x+η0xxu0]λ(αQ)2Ω(η0ηQ)dx,f2(t)=λη0[u0xxη0+2u0xη0x+η0xxu0],ϕ1(t)=λη(η0x(t,L)u0(t,L)+u0x(t,L)η),ϕ2(t)=λη(η0x(t,0)u0(t,0)+u0x(t,0)η).$

    As a result, the existence of a unique pair $(p(t),q(t))$ satisfying the system (48)-(51) is a mere consequence of Theorem 5.1. Moreover, since the Cauchy problem has a solution for any

    $ F\in \left[L^2(0,T;V_0^\ast)\right]^2\times \left[L^2(0,T)\right]^2\ \text{ and }\ {\bf{b}}\in V_0^\ast\times V_0^\ast\times\mathbb{R}\times\mathbb{R}, $

    the Lagrange multiplier $\lambda$ in the definition of the Lagrange functional

    $\mathcal{L} = \mathcal{L}(w,u,g,h,\lambda,p,q)$

    can be taken equal to $1$.

    [1] World Health Organization, Geneva, 2007.
    [2] Oxford University Press, 1991.
    [3] in "Computational and Ambient Intelligence" (eds. F. Sandoval, A. Prieto, J. Cabestany and M. Graña), 4507 of Lecture Notes in Computer Science, 948-955. Springer, (2007).
    [4] in "Artificial Neural Nets Problem Solving Methods" (eds. J. Mira and J. Álvarez), 2687 of Lecture Notes in Computer Science, 1053-1053. Springer, (2003).
    [5] in "Advances in Computational Intelligence" (eds. J. Cabestany, I. Rojas and G. Joya), Springer, 6692 (2011), 516-523.
    [6] Oxford University Press, 1975.
    [7] Mathematical Biosciences and Engineering, 2 (2005), 133-152.
    [8] Mathematical Medicine and Biology, 19 (2002), 221-234.
    [9] Revista Cubana de Medicina Tropical, 55 (2003), 30-37.
    [10] Journal of Computational Physics, 21 (1976), 123-143.
    [11] John Wiley, 2000.
    [12] Neurocomputing, 74 (2011), 2691-2697.
    [13] Journal of Biological Systems, 11 (2003), 377-405.
    [14] Springer, 1993.
    [15] Academic Press, 1974.
    [16] in "Deterministic and Stochastic Models of AIDS Epidemics and HIV Infections with Intervention," 77-92. World Scientific, (2005).
    [17] Journal of Biological Systems, 13 (2005), 441-454.
    [18] Prentice-Hall, 1996.
    [19] Springer, 2011.
    [20] Macmillan Publishing Company, New York, 1992.
    [21] Prentice Hall, 1999.
    [22] Springer, 2002.
    [23] Applied Mathematics and Computation, 217 (2011), 9575-9591.
    [24] Mathematical Biosciences and Engineering, 3 (2006), 545-556.
    [25] Kluwer Academic Publishers, 2002.
    [26] Society for Industrial and Applied Mathematics, 2002.
  • This article has been cited by:

    1. Davide Sala, Ugo Cosentino, Anna Ranaudo, Claudio Greco, Giorgio Moro, Dynamical Behavior and Conformational Selection Mechanism of the Intrinsically Disordered Sic1 Kinase-Inhibitor Domain, 2020, 10, 2075-1729, 110, 10.3390/life10070110
    2. Marzieh Gharouni, Hamid Mosaddeghi, Jamshid Mehrzad, Ali Es-haghi, Alireza Motavalizadehkakhky, In silico profiling and structural insights of zinc metal ion on O6-methylguanine methyl transferase and its interactions using molecular dynamics approach, 2021, 27, 1610-2940, 10.1007/s00894-020-04631-x
    3. Xiaojuan Hu, Maja-Olivia Lenz-Himmer, Carsten Baldauf, Better force fields start with better data: A data set of cation dipeptide interactions, 2022, 9, 2052-4463, 10.1038/s41597-022-01297-3
    4. Christina Eleftheria Tzeliou, Markella Aliki Mermigki, Demeter Tzeli, Review on the QM/MM Methodologies and Their Application to Metalloproteins, 2022, 27, 1420-3049, 2660, 10.3390/molecules27092660
    5. Francis E. Jenney, Hongxin Wang, Simon J. George, Jin Xiong, Yisong Guo, Leland B. Gee, Juan José Marizcurrena, Susana Castro-Sowinski, Anna Staskiewicz, Yoshitaka Yoda, Michael Y. Hu, Kenji Tamasaku, Nobumoto Nagasawa, Lei Li, Hiroaki Matsuura, Tzanko Doukov, Stephen P. Cramer, Temperature-dependent iron motion in extremophile rubredoxins – no need for ‘corresponding states’, 2024, 14, 2045-2322, 10.1038/s41598-024-62261-2
    6. Karuna Anna Sajeevan, Bibek Acharya, Sakib Ferdous, Dan M. Park, Joseph A. Cotruvo, Ratul Chowdhury, Computationally Derived Structural Insights into Rare Earth Selectivity in Lanmodulin and its Variants, 2025, 20010370, 10.1016/j.csbj.2025.02.005
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2839) PDF downloads(499) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog