Citation: Zhifeng Dai, Huiting Zhou, Xiaodi Dong. Forecasting stock market volatility: the role of gold and exchange rate[J]. AIMS Mathematics, 2020, 5(5): 5094-5105. doi: 10.3934/math.2020327
[1] | G. Schwert, Why does stock market volatility change over time? J. Finance, 44 (1989), 1115-1153. |
[2] | F. X. Diebold, K. Yilmaz, Macroeconomic Volatility and Stock Market Volatility, Worldwide. (No. w14269). National Bureau of Economic Research, 2008. |
[3] | C. Christiansen, M. Schmeling, A. Schrimpf, A comprehensive look at financial volatility prediction by economic variables, J. Appl. Econom., 27 (2012), 956-977. doi: 10.1002/jae.2298 |
[4] | B. S. Paye, Déjavol: predictive regressions for aggregate stock market volatility using macroeconomic variables, J. Financ. Econ., 106 (2012), 527-546. doi: 10.1016/j.jfineco.2012.06.005 |
[5] | R. F. Engle, E. Ghysels, B. Sohn, Stock market volatility and macroeconomic fundamentals, Rev. Econ. Stat., 95 (2013), 776-797. doi: 10.1162/REST_a_00300 |
[6] | C. Conrad, K. Loch, D. Rittler, On the macroeconomic determinants of long-term volatilities and correlations in US stock and crude oil markets, J. Empir. Financ., 29 (2014), 26-40. doi: 10.1016/j.jempfin.2014.03.009 |
[7] | N. Nonejad, Forecasting aggregate stock market volatility using financial and macroeconomic predictors: Which models forecast best, when and why? J. Empir. Financ., 42 (2017), 131-154. |
[8] | Y. Wang, F. Ma, Y. Wei, et al. Forecasting realized volatility in a changing world: A dynamic model averaging approach, J. Bank. Financ., 64 (2016), 136-149. doi: 10.1016/j.jbankfin.2015.12.010 |
[9] | Y. Wang, Z. Pan, C. Wu, Time-Varying Parameter Realized Volatility Models, J. Forecasting, 36 (2017), 566-580. doi: 10.1002/for.2454 |
[10] | Y. Zhang, Y. Wei, F. Ma, et al. Economic constraints and stock return predictability: A new approach, Int. Rev. Financ. Anal., 63 (2019), 1-9. |
[11] | J. Feng, Y. Wang, L. Yin, Oil volatility risk and stock market volatility predictability: Evidence from G7 countries, Energ. Econ., 68 (2017), 240-254. doi: 10.1016/j.eneco.2017.09.023 |
[12] | Y. Wang, Y. Wei, C. Wu, et al. Oil and the short-term predictability of stock return volatility, J. Empir. Financ., 47 (2018), 90-104. doi: 10.1016/j.jempfin.2018.03.002 |
[13] | Z. Dai, H. Zhou, F. Wen, et al. Efficient predictability of stock return volatility: the role of stock market implied volatility, N. Am. J. Econ. Finance, 52 (2020), 101174. |
[14] | D. G. Baur, B. M. Lucey, Is gold a hedge or a safe haven? An analysis of stocks, bonds and gold, Financ. Rev., 45 (2010) 217-229, |
[15] | D. G. Baur, T. K. McDermott, Is gold a safe haven? International evidence, J. Bank. Financ., 34 (2010), 1886-1898. doi: 10.1016/j.jbankfin.2009.12.008 |
[16] | M. Hood, F. Malik, Is gold the best hedge and a safe haven under changing stock market volatility? Rev. Financ. Econ., 22 (2013), 47-52. |
[17] | J. D. Hamilton, Oil and the macroeconomy since World War II, J. Pol. Econ., 91 (1983), 228-248. doi: 10.1086/261140 |
[18] | D. Roubaud. M. Arouri, Oil prices, exchange rates and stock markets under uncertainty and regime-switching, Financ. Res. Lett., 27 (2018), 28-33. doi: 10.1016/j.frl.2018.02.032 |
[19] | A. Salisu, H. Mobolaji, Modeling returns and volatility transmission between oil price and US-Nigeria exchange rate, Energy Economics, 39 (2013), 169-176. doi: 10.1016/j.eneco.2013.05.003 |
[20] | R. Aloui, M. S. Ben Aïssa, D. K. Nguyen, Conditional dependence structure between oil prices and exchange rates: a copula-GARCH approach, J. Int. Money Fin., 32 (2013), 719-738. doi: 10.1016/j.jimonfin.2012.06.006 |
[21] | M. Pal, P. M. Rao, P. Manimaran, Multifractal detrended cross correlation analysis on gold, crude oil and foreign exchangerate time series, Physica A, 416 (2014), 452-460. doi: 10.1016/j.physa.2014.09.004 |
[22] | A. Jain, P. C. Biswal, Dynamic linkages among oil price, gold price, exchange rate, and stock market in India, Resources Policy, 49 (2016), 179-185. |
[23] | J. F. Li, X. S. Lu, Y. Zhou, Cross-correlations between crude oil and exchange markets for selected oil rich economies, Physica A, 453 (2016), 131-143. doi: 10.1016/j.physa.2016.02.039 |
[24] | A. K. Mishra, N. Swain, D. K. Malhotra, Volatility spillover between stock and foreign exchange markets: Indian evidence, Int. J. Business, 12 (2007), 343-359. |
[25] | D. Choi, V. Fang, T. Fu, Volatility spillovers between New Zealand stock market returns and exchange rate changes before and after the 1997 Asian financial crisis, Asian journal of Finance and Accounting, 1 (2009), 106-117. |
[26] | C. Walid, A. Chaker, O. Masood, et al. Stock market volatility and exchange rates in emerging countries: a Markov switching approach, Emerg. Mark. Rev., 12 (2011), 272-292. doi: 10.1016/j.ememar.2011.04.003 |
[27] | K. Grobys, Are volatility spillovers between currency and equity market driven by economic states? Evidence from the US economy, Econ. Lett., 127 (2015), 72-75. doi: 10.1016/j.econlet.2014.12.034 |
[28] | N. Oberholzer, S. T. von Boetticher, Volatility Spill-over between the JSE/FTSE Indices and the South African Rand, Proc. Econ. Finan., 24 (2015), 501-510. doi: 10.1016/S2212-5671(15)00618-8 |
[29] | W. Mensi, M. Beljid, A. Boubaker, et al. Correlations and volatility spillovers across commodity and stock markets: linking energies, food and gold, Econ. Model., 32 (2013), 15-22. doi: 10.1016/j.econmod.2013.01.023 |
[30] | Z. Dai, X. Chen, F. Wen, A modified Perry's conjugate gradient method-based derivative-free method for solving large-scale nonlinear monotone equations, Appl. Math. Comput., 270 (2015), 378-386. |
[31] | T. Choudry, S. Hassan, S. Shabi, Relationship between gold and stock markets during the global financial crisis: evidence from nonlinear causality tests, Int. Rev. Financ. Anal., 41 (2015), 247-256. doi: 10.1016/j.irfa.2015.03.011 |
[32] | A. I. Maghyereh, T. Awartani, Volatility spillovers and cross-hedging between gold, oil and equities: evidence from the Gulf Cooperation Council countries, Energy Economics, 68 (2017), 440-453. doi: 10.1016/j.eneco.2017.10.025 |
[33] | S. J. Taylor, Modeling Financial Time Series. John Wiley and Sons, Ltd., 1986. |
[34] | Z. F, Dai, H. Zhu, Forecasting stock market returns by combining sum-of-the-parts and ensemble empirical mode decomposition, Appl. Econ., 52 (2020), 2309-2323. doi: 10.1080/00036846.2019.1688244 |
[35] | T. G. Andersen, T. Bollerslev, Heterogeneous information arrivals and return volatility dynamics: Uncovering the long-run in high frequency returns, J. Finance, 52 (1997), 975-1005. doi: 10.1111/j.1540-6261.1997.tb02722.x |
[36] | T. G. Andersen, T. Bollerslev, F. X. Diebold, et al. The distribution of realized stock return volatility, J. Financ. Econ., 61 (2001), 43-76. doi: 10.1016/S0304-405X(01)00055-1 |
[37] | T. G. Andersen, T. Bollerslev, F. X. Diebold, et al. Modeling and forecasting realized volatility, Econometrica, 71 (2003), 529-626. |
[38] | J. Y. Campbell, S. B. Thompson, Predicting excess stock returns out of sample: can anything beat the historical average? Rev. Financ. Stud., 21 (2008), 1509-1531. |
[39] | C. J. Neely, D. E. Rapach, J. Tu, et al. Forecasting the equity risk premium: the role of technical indicators, Manag. Sci., 60 (2014), 1772-1791. doi: 10.1287/mnsc.2013.1838 |
[40] | D. E. Rapach, J. K. Strauss, G. Zhou, Out-of-sample equity premium prediction: combination forecasts and links to the real economy, Rev. Financ. Stud., 23 (2010), 821-862. doi: 10.1093/rfs/hhp063 |
[41] | Z. F. Dai, H. T. Zhou, Prediction of stock returns: sum-of-the-parts method and economic constraint method, Sustainability, 12 (2020), 541. |
[42] | Z. F. Dai, H. Zhu, Stock return predictability from a mixed model perspective, Pac-Basin. Finac. J., 60 (2020), 101267. |
[43] | F. Wang, W. Zhao, S. Jiang, Detecting asynchrony of two series using multiscale cross-trend sample entropy, Nonlinear Dynam., 99 (2020), 1451-1465. doi: 10.1007/s11071-019-05366-y |
[44] | Z. F, Dai. H. Zhu, F. Wen, Two nonparametric approaches to mean absolute deviation portfolio selection model, J. Ind. Manag. Optim., 13 (2019), 1. |
[45] | Z. F. Dai, X. Dong, J. Kang, et al. Forecasting stock market returns: new technical indicators and two-step economic constraint method, N. Am. J. Econ. Finance, 53 (2020), 101216. |
[46] | Z. F. Dai, F. H. Wen, Some improved sparse and stable portfolio optimization problems, Financ. Res. Lett., 27 (2018), 46-52. doi: 10.1016/j.frl.2018.02.026 |
[47] | F. Wen, Y. Zhao, M. Zhang, et al. Forecasting realized volatility of crude oil futures with equity market uncertainty, Appl. Econ., 51 (2019), 6411-6427. doi: 10.1080/00036846.2019.1619023 |
[48] | F. Wen, L. Xu, G. Ouyang, et al. Retail investor attention and stock price crash risk: Evidence from China, Int. Rev. Financ. Anal., 65 (2019), 101376. |
[49] | Z. F. Dai, H. Zhu, A modified Hestenes-Stiefel-type derivative-free method for large-scale nonlinear monotone equations, Mathematics, 8 (2020), 168. |
[50] | T. E. Clark, K. D. West, Approximately normal tests for equal predictive accuracy in nested models, J. Econometrics, 138 (2007), 291-311. |
[51] | A. Inoue, L. Kilian, In-sample or out-of-sample tests of predictability: Which one should we use? Economet. Rev., 23 (2004), 371-402. |
[52] | Y. Zhang, F. Ma, T. Wang, et al. Out-of-sample volatility prediction: A new mixed-frequency approach, J. Forecasting, 38 (2019), 669-680 doi: 10.1002/for.2590 |
[53] | Y. Zhang, F. Ma, Y. Liao, Forecasting global equity market volatilities, Int. J. Forecasting, 2020. |
[54] | T. Choudhry, F. I. Papadimitriou, S. Shabi, Stock market volatility and business cycle: evidence from linear and nonlinear causality tests, J. Bank. Financ., 66 (2016), 89-101. doi: 10.1016/j.jbankfin.2016.02.005 |
[55] | J. Chen, F. Jiang, Y. Liu, et al. International volatility risk and Chinese stock return predictability, J. Int. Money Financ., 70 (2016), 183-203. |