
We present a novel digital twin model that implements advanced artificial intelligence techniques to robustly link news and stock market uncertainty. On the basis of central results in financial economics, our model efficiently identifies, quantifies, and forecasts the uncertainty encapsulated in the news by mirroring the human mind's information processing mechanisms. After obtaining full statistical descriptions of the timeline and contextual patterns of the appearances of specific words, the applied data mining techniques lead to the definition of regions of homogeneous knowledge. The absence of a clear assignment of informative elements to specific knowledge regions is regarded as uncertainty, which is then measured and quantified using Shannon Entropy. As compared with standard models, the empirical analyses demonstrate the effectiveness of this approach in anticipating stock market uncertainty, thus showcasing a meaningful integration of natural language processing, artificial intelligence, and information theory to comprehend the perception of uncertainty encapsulated in the news by market agents and its subsequent impact on stock markets.
Citation: Pedro J. Gutiérrez-Diez, Jorge Alves-Antunes. Stock market uncertainty determination with news headlines: A digital twin approach[J]. AIMS Mathematics, 2024, 9(1): 1683-1717. doi: 10.3934/math.2024083
[1] | Dong-Mei Li, Bing Chai . A dynamic model of hepatitis B virus with drug-resistant treatment. AIMS Mathematics, 2020, 5(5): 4734-4753. doi: 10.3934/math.2020303 |
[2] | Naveed Shahid, Muhammad Aziz-ur Rehman, Nauman Ahmed, Dumitru Baleanu, Muhammad Sajid Iqbal, Muhammad Rafiq . Numerical investigation for the nonlinear model of hepatitis-B virus with the existence of optimal solution. AIMS Mathematics, 2021, 6(8): 8294-8314. doi: 10.3934/math.2021480 |
[3] | Abdul Qadeer Khan, Fakhra Bibi, Saud Fahad Aldosary . Bifurcation analysis and chaos in a discrete Hepatitis B virus model. AIMS Mathematics, 2024, 9(7): 19597-19625. doi: 10.3934/math.2024956 |
[4] | Nauman Ahmed, Ali Raza, Ali Akgül, Zafar Iqbal, Muhammad Rafiq, Muhammad Ozair Ahmad, Fahd Jarad . New applications related to hepatitis C model. AIMS Mathematics, 2022, 7(6): 11362-11381. doi: 10.3934/math.2022634 |
[5] | Hui Miao . Global stability of a diffusive humoral immunity viral infection model with time delays and two modes of transmission. AIMS Mathematics, 2025, 10(6): 14122-14139. doi: 10.3934/math.2025636 |
[6] | Muhammad Farman, Ali Akgül, J. Alberto Conejero, Aamir Shehzad, Kottakkaran Sooppy Nisar, Dumitru Baleanu . Analytical study of a Hepatitis B epidemic model using a discrete generalized nonsingular kernel. AIMS Mathematics, 2024, 9(7): 16966-16997. doi: 10.3934/math.2024824 |
[7] | Zeeshan Afzal, Mansoor Alshehri . A comparative study of disease transmission in hearing-impaired populations using the SIR model. AIMS Mathematics, 2025, 10(5): 11290-11304. doi: 10.3934/math.2025512 |
[8] | Alireza Sayyidmousavi, Katrin Rohlf . Stochastic simulations of the Schnakenberg model with spatial inhomogeneities using reactive multiparticle collision dynamics. AIMS Mathematics, 2019, 4(6): 1805-1823. doi: 10.3934/math.2019.6.1805 |
[9] | Liping Wang, Peng Wu, Mingshan Li, Lei Shi . Global dynamics analysis of a Zika transmission model with environment transmission route and spatial heterogeneity. AIMS Mathematics, 2022, 7(3): 4803-4832. doi: 10.3934/math.2022268 |
[10] | Ishtiaq Ali, Saeed Islam . Stability analysis of fractional two-dimensional reaction-diffusion model with applications in biological processes. AIMS Mathematics, 2025, 10(5): 11732-11756. doi: 10.3934/math.2025531 |
We present a novel digital twin model that implements advanced artificial intelligence techniques to robustly link news and stock market uncertainty. On the basis of central results in financial economics, our model efficiently identifies, quantifies, and forecasts the uncertainty encapsulated in the news by mirroring the human mind's information processing mechanisms. After obtaining full statistical descriptions of the timeline and contextual patterns of the appearances of specific words, the applied data mining techniques lead to the definition of regions of homogeneous knowledge. The absence of a clear assignment of informative elements to specific knowledge regions is regarded as uncertainty, which is then measured and quantified using Shannon Entropy. As compared with standard models, the empirical analyses demonstrate the effectiveness of this approach in anticipating stock market uncertainty, thus showcasing a meaningful integration of natural language processing, artificial intelligence, and information theory to comprehend the perception of uncertainty encapsulated in the news by market agents and its subsequent impact on stock markets.
Assume that A represents the family of analytic functions in the open unit disc
U={z:z∈C and |z|<1}. |
For f1, f2∈A, we say that f1 subordinate to f2 in U, indicated by
f1(z)≺f2(z), z∈U, |
if there exists a Schwarz function w, defined by
w∈B={w:w∈A, |w(z)|<1 and w(0)=0, z∈U}, |
that satisfies the condition
f1(z)=f2(w(z)), z∈U. |
Indeed, it is known that
f1(z)≺f2(z)⟹f1(0)=f2(0) and f1(U)⊂f2(U). |
Moreover, if the function f2 is univalent in U then
f1(z)≺f2(z)⇔f1(0)=f2(0) and f1(U)⊂f2(U). |
Let the class P be defined by
P={h∈A:h(0)=1 and Re(h(z)>0}. |
The class of all functions in the normalized analytic function class A that are univalent in U is also denoted by the symbol S. The maximization of the non-linear functional |a3−μa22| or other classes and subclasses of univalent functions has been the subject of a number of established results and these results are known as Fekete-Szegö problems, see [1]. If f∈S and of the form (1.1), then
|a3−μa22|≤{3−4μ, if μ≤0,1+2exp(2μμ−1), if 0≤μ<1,4μ−3, if μ≥1,} |
and the result |a3−μa22| are sharp (see [1]). The Fekete-Szegö problems have a rich history in literature and for complex number μ.
In the area of geometric function theory (GFT), the q-calculus and fractional q-calculus have been extensively employed by scholars who have developed and investigated a number of novel subclasses of analytic, univalent and bi-univalent functions. Jackson [2,3] first proposed the concept of the q-calculus operator and gave the definition of the q -difference operator Dq in 1909. In instance, Ismail et al. were the first to define a class of q-starlike functions in open unit disc U using Dq in [4]. The most significant usages of q -calculus in the perspective of GFT was basically furnished and the basic (or q-) hypergeometric functions were first used in GFT in a book chapter by Srivastava (see, for details, [5]). See the following articles [6,7,8,9,10] for more information about q-calculus operator theory in GFT.
Now we review some fundamental definitions and ideas of the q -calculus, we utilize them to create some new subclasses in this paper.
For a non-negative integer l, the q-number [l]q, (0<q<1), is defined by
[l]q=1−ql1−q and [0]=0, |
and the q-number shift factorial is given by
[l]q!=[1]q[2]q[3]q⋯[l]q,[0]q!=1. |
For q→1−, then [l]! reduces to l!.
The q-generalized Pochhammer symbol is defined by
[l]k=Γq(l+k)Γq(l), k∈N, l∈C. |
The q-gamma function Γq is defined by
Γq(l)=(1−q)l∞∏j=01−qj+11−qj+l. |
The q-generalized Pochhammer symbol is defined by
[l]k=Γq(l+k)Γq(l), k∈N, l∈C. |
Remark 1. For q→1−, then [l]q,k reduces to (l)k=Γ(l+k)Γ(l).
Definition 1. Jackson [3] defined the q-integral of function f(z) as follows:
∫f(z)dq(z)=∞∑n=0z(1−q)f(qn(z))qn. |
Jackson [2] introduced the q-difference operator for analytic functions as follows:
Definition 2. [2] For f∈A, the q-difference operator is defined as:
Dqf(z)=f(qz)−f(z)z(q−1), z∈U. |
Note that, for n∈N, z∈U and
Dq(zn)=[n]qzn−1, Dq(∞∑n=1anzn)=∞∑n=1[n]qanzn−1. |
Let Ap stand for the class of analytic functions with the form
f(z)=zp+∞∑n=1an+pzn+p, p∈N,z∈U | (1.1) |
in the open unit disk U. More specifically, A1=A and
f(z)=z+∞∑n=1an+1zn+1, z∈U. | (1.2) |
Consider the q-difference operator for f∈Ap as follows:
Definition 3. [11] For f∈Ap, the q-difference operator is defined as:
Dqf(z)=f(qz)−f(z)z(q−1), z∈U. |
Note that, for n∈N, z∈U and
Dq(zn+p)=[n+p]qzn+p−1, Dq(∞∑n=1an+pzn+p)=∞∑n=1[n+p]qan+pzn+p−1. |
Let S∗(p) represents the class of p-valent starlike functions and every f∈S∗(p), if
Re(zf′(z)pf(z))>0, z∈U, |
and K(p) represents the class of p-valent convex functions and every f∈K(p), if
1p(1+Re(zf′′(z)f′(z)))>0, z∈U. |
These conditions are equivalent in terms of subordination as follows:
S∗(p)={f∈Ap:zf′(z)pf(z)≺1+z1−z} |
and
K(p)={f∈Ap:1p(1+zf′′(z)f′(z))≺1+z1−z}. |
The aforementioned two classes can be generalized as follows:
S∗(p,φ)={f∈Ap:zf′(z)pf(z)≺φ(z)} |
and
K(p,φ)={f∈Ap:1p(1+zf′′(z)f′(z))≺φ(z)}, |
where φ(z) is a real part function that is positive and is normalized by the rule
φ(0)=1 and φ′(0)>0, |
and φ maps U onto a space that is symmetric with regard to the real axis and starlike with respect to 1. If p=1, then
S∗(p,φ)=S∗(φ) |
and
K(p,φ)=K(φ). |
These two classes S∗(φ) and K(φ) defined by Ma [12].
A function f∈Ap, is called p-valently starlike of order α (0≤α<1) with complex order b∈C∖{0}, if it satisfies the inequality
Re{1+1b(zf′(z)pf(z)−1)>α, z∈U}. |
The class S∗p(α,b) denotes the collection of all f∈Ap functions that satisfy the aforementioned condition.
A function f∈Ap, is called p-valently convex function of order α (0≤α<1) with complex order b∈C∖{0}, if it satisfies the inequality
Re{1−1b+1bp(1+zf′′(z)f′(z))>α, z∈U}. |
The class Kp(α,b) denotes the collection of all functions f∈Ap that satisfy the aforementioned condition.
Note that
f∈Kp(α,b)⇔1pzf′∈S∗p(α,b). |
Kargar et al. [13] investigated the classes Sp(α,β) for f∈Ap and defined as follows:
f∈Sp(α,β)⇔α<Re(1pzf′(z)f(z))<β, (0≤α<1<β, z∈U). |
For 0≤α<1<β and b∈C∖{0}, then the function f∈Ap belongs to the class Kb,p(α,β) if it satisfies the inequality
α<Re(1−1b+1bp(1+zf′′(z)f′(z)))<β, (0≤α<1<β, z∈U). |
If p=1, then Kb,p(α,β)=Kb(α,β), studied by Kargar et al. in [13] and if β→∞ in above definition, Kb,p(α,β)=Kb,p(α,b).
Recently, Bult [14] used the definition of subordination and defined new subclasses of p-valent starlike and convex functions associated with vertical strip domain as follows:
S∗p,b(α,β)={f∈Ap:1+1b(1pzf′(z)f(z)−1)≺f(α,β;z)} |
and
Kp,b(α,β)={f∈Ap:1−1b+1bp(1+zf′′(z)f′(z))≺f(α,β;z)}, |
where
f(α,β;z)=1+β−απilog(1−e2πi1−αβ−αz1−z) |
and
0≤α<1<β,b∈C∖{0}, z∈U. |
Bult [14] determined the coefficient bounds for functions belonging to these new classes.
On the basis of the geometrical interpretation of their image domains, numerous subclasses of analytic functions have established using the concept of subordination. Right half plane [15], circular disc [16], oval and petal type domains [17], conic domain [18,19], leaf-like domain [20], generalized conic domains [21], and the most important one is shell-like curve [22,23,24,25] are some fascinating geometrical classes we obtain with this domain. The function
h(z)=1+τ2z21−τz−τ2z2 | (1.3) |
is essential for the shell-like shape, where
τ=1−√52. |
The image of unit circle under the function h gives the conchoid of Maclaurin's, due to the function
h(eiφ)=√52(3−2cosφ)+isinφ(4cosφ−1)2(3−2cosφ)(1+cosφ), 0≤φ<2π. |
The function given in (1.3) has the following series representation:
h(z)=1+∞∑n=1(un−1+un+1)τnzn, |
where
un=(1−τ)n−τn√5, |
and un produces a Fibonacci series of coefficient constants that are more closely related to the Fibonacci numbers.
Taking motivation from the idea of circular disc and shell-like curves, Malik et al. [26] defined new domain for analytic functions which is named as cardioid domain. A new class of analytic functions is defined associated with cardioid domain, for more detail, see [26].
Definition 4. [26] Assume that CP(L,N) represents the class of functions p that are defined as
p(z)≺¯p(L,N,z), |
where ¯p(L,N,z) is defined by
¯p(L,N,z)=2Lτ2z2+(L−1)τz+22Nτ2z2+(N−1)τz+2 | (1.4) |
with −1<N<L≤1, τ=1−√52 and z∈U.
To understand the class CP(L,N), an explanation of the function ¯p(L,N,z) in geometric terms might be helpful in this instance. If we denote
R¯p(L,N;eiθ)=u |
and
I¯p(L,N;eiθ)=v, |
then the image ¯p(L,N,eiθ) of the unit circle is a cardioid like curve defined by
{u=4+(L−1)(N−1)τ2+4LNτ4+2λcosθ+4(L+N)τ2cos2θ4+(N−1)2τ2+4N2τ4+4(N−1)(τ+Nτ3)cosθ+8Nτ2cos2θ,v=(L−N)(τ−τ3)sinθ+2τ2sin2θ4+(N−1)2τ2+4N2τ4+4(N−1)(τ+Nτ3)cosθ+8Nτ2cos2θ,} | (1.5) |
where
λ=(L+N−2)τ+(2LN−L−N)τ3, −1<N<L≤1, τ=1−√52, |
and
0≤θ≤2π. |
Moreover, we observe that
¯p(L,N,0)=1, |
and
¯p(L,N,1)=LN+9(L+N)+1+4(N−L)√5N2+18N+1. |
According to (1.5), the cusp of the cardioid-like curve is provided by
γ(L,N)=¯p(L,N;e±iarccos(14))=2LN−3(L+N)+2+(L−N)√52(N2−3N+1). |
The image of each inner circle is a nested cardioid-like curve if the open unit disc U is considered a collection of concentric circles with origin at the center. As a result, the open unit disc U is mapped onto a cardioid region by the function ¯p(L,N,z). This means that ¯p(L,N;U) is a cardioid domain. The above discussed cardioid like curve with different values of parameters can be seen in Figures 1 and 2.
The relationship N<L links the parameters L and N. The cardioid-like curve is flipped by its voilation, as seen in the figures below.
See Figure 3, if collection of concentric circles having origin as center. Thus, the function ¯p(L,N,z) maps the open unit disk U onto a cardioid region. See [26] for more details about cardioid region.
The operator theory of quantum calculus is the primary result of this research. Using standard uses in quantum calculus operator theory and the q -difference operator, we develop numerous novel q-analogous of the differential and integral operators. We construct a large number of new classes of q-starlike and q-convex functions using these operators and study some interesting characteristics of the corresponding analytic functions. In this paper, we gain inspiration from recent research by [14,26,27] and define two new classes of p-valent starlike, convex functions connected with the cardioid domain using the q-difference operator.
Influenced by recent studies [14,26,27], we defined two new classes of p-valent starlike, convex functions related with cardioid domain.
Definition 5. The function f of the form (1.1) related with cardioid domain, represented by S∗p(L,N,q,b), is defined to be the functions f such that
1+1b(1[p]qzDqf(z)f(z)−1)≺¯p(L,N;z), |
where, b∈C∖{0} and ¯p(L,N;z) is given by (1.4).
Definition 6. The function f of the form (1.1) related with cardioid domain, represented by Kp(L,N,q,b), is defined to be the functions f such that
1−1b+1b[p]q(1+zD2qf(z)Dqf(z))≺¯p(L,N;z), |
where b∈C∖{0} and ¯p(L,N;z) is given by (1.4) and Kp(L,N,q,b) is the class of convex functions of order b related with cardioid domain.
Special cases:
(i) For q→1−,b=1 and p=1, in Definition 5, we have known class S∗(L,N) of starlike functions associated with cardioid domain proved by Zainab et al. in [27].
(ii) For q→1−,L=1,N=−1, b=1 and p=1 in Definition 5, then class S∗p(L,N,q,b)=SL and this class is defined on starlike functions associated with Fibonacci numbers, introduced and studied by Sokół in [28].
(iii) For q→1−, L=1, N=−1, b=1 and p=1 in Definition 6 then class Kp(L,N,q,b)=K, and this family is referred to as a class of convex functions connected with Fibonacci numbers.
There are four parts to this article. In Section 1, we briefly reviewed some basic concepts from geometric function theory, quantum calculus, and cardioid domain, studied the q-difference operator, and finally discussed this operator to define two new subclasses of multivalent q-starlike and q-convex functions. The established lemmas are presented in Section 2. Our main results and some known corollaries will be presented in Section 3, then some concluding remarks in Section 4.
By utilizing the following lemmas, we will determine our main results.
Lemma 1. [26] Let the function ¯p(L,N;z), defined by (1.4). Then,
(i) For the disc |z|<τ2, the function ¯p(L,N;z) is univalent.
(ii) If h(z)≺¯p(L,N;z), then Reh(z)>α, where
α=2(L+N−2)τ+2(2LN−L−N)τ3+16(L+N)τ2η4(N−1)(τ+Nτ3)+32Nτ2η, |
where
η=4+τ2−N2τ2−4N2τ4−(1−Nτ2)χ(N)4τ(1+N2τ2), |
χ(N)=√5(2Nτ2−(N−1)τ+2)(2Nτ2+(N−1)τ+2), |
−1<N<L≤1 |
and
τ=1−√52. |
(iii) If
¯p(L,N;z)=1+∞∑n=1¯Qnzn, |
then
¯Qn={(L−N)τ2,for n=1,(L−N)(5−N)τ222,for n=2,1−N2τpn−1−Nτ2pn−2,for n=3,4,5,⋯, | (2.1) |
where
−1<N<L≤1. |
(iv) Let h(z)≺¯p(L,N;z) and of the form h(z)=1+∞∑n=1hnzn. Then
|h2−vh21|≤(L−N)|τ|4max{2,|τ(v(L−N)+N−5)|}, v∈C. |
Lemma 2. [29] Let h∈P, such that h(z)=1+∞∑n=1cnzn. Then
|c2−v2c21|≤max{2,2|v−1|}={2,if 0≤v≤2,2|v−1|, elsewhere,} | (2.2) |
and
|cn|≤2 for n≥1. | (2.3) |
Lemma 3. [30] Let h∈P, such that
h(z)=1+∞∑n=1cnzn. |
Then for any complex number v
|c2−vc21|≤2max{1,|2v−1|} |
and the result is sharp for
h(z)=1+z21−z2andh(z)=1+z1−z. |
Lemma 4. [31] Let the function g given by
g(z)=∞∑k=1bkzk |
be convex in U. Also let the function f given by
f(z)=∞∑k=1akzk |
be analytic in U. If
f(z)≺g(z), |
then
|ak|<|b1|, k=1,2,3,⋯. |
For the recently described classes of multivalent q-starlike (S∗p(L,N,q,b)) and multivalent q-convex (Kp(L,N,q,b)) functions, we get sharp estimates for the coefficients of Taylor series, Fekete-Szegő problems and coefficient inequalities.
In the following theorems, we investigate the functions f(z) which can be used to find the sharpness of the results of this article.
Theorem 5. A function f∈Ap given by (1.1) is in the class S∗p(L,N,q,b) if and only if there exists an analytic function S,
S(z)≺¯p(L,N,z)=2Lτ2z2+(L−1)τz+22Nτ2z2+(N−1)τz+2, |
where, ¯p(L,N,0)=1, such that
f(z)=zpexp{b[p]qz∫0S(t)−1tdt}, z∈U. | (3.1) |
Proof. Let f∈S∗p(L,N,q,b) and
1+1b(1[p]qzDqf(z)f(z)−1)=h(z)≺¯p(L,N,z). |
Then by integrating this equation we obtain (3.1). Conversely, if given by (3.1) with an analytic function S(z) such that S(z)≺¯p(L,N,z), then by logarithmic differentiation of (3.1) we obtain
1+1b(1[p]qzDqf(z)f(z)−1)=S(z). |
Therefore we have
1+1b(1[p]qzDqf(z)f(z)−1)≺¯p(L,N,z) |
and f∈S∗p(L,N,q,b).
The initial coefficient bounds |ap+1| and |ap+2| for the functions f∈S∗p(L,N,b) are investigated in Theorem 6 using the Lemma 2.
Theorem 6. Let f∈S∗p(L,N,q,b) be given by (1.1), −1≤N<L≤1. Then
|ap+1|≤[p]q|b|(L−N)τ2,|ap+2|≤[p]q|b|(L−N)|τ|28(5−N+[p]qb(L−N)). |
These bounds are sharp.
Proof. Let f∈S∗p(L,N,q,b), and of the form (1.1). Then
1+1b(1[p]qzDqf(z)f(z)−1)≺¯p(L,N;z), | (3.2) |
where
¯p(L,N,z)=2Lτ2z2+(L−1)τz+22Nτ2z2+(N−1)τz+2. |
By applying the concept of subordination, there exists a function w with
w(0)=0 and |w(z)|<1, |
such that
1+1b(1[p]qzDqf(z)f(z)−1)=¯p(L,N;w(z)). | (3.3) |
Let
w(z)=h(z)−1h(z)+1=c1z+c2z2+c3z3+⋯2+c1z+c2z2+⋯=12c1z+12(c2−12c21)z2+12(c3−c1c2+14c31)z3+⋯. | (3.4) |
Since
¯p(L,N;z)=1+∞∑n=1¯Qnzn, |
then
¯p(L,N;w(z))=1+¯Q1{12c1z+12(c2−12c21)z2⋯}+¯Q2{12c1z+12(c2−12c21)z2⋯}2+⋯=1+¯Q1c12z+(12(c2−12c21)¯Q1+¯Q2c214)z2+⋯. | (3.5) |
Also consider the function
¯p(L,N;z)=2Lτ2z2+(L−1)τz+22Nτ2z2+(N−1)τz+2. |
Let τz=α0, then
¯p(L,N,z)=2Lα20+(L−1)α0+22Nα20+(N−1)α0+2=Lα20+(L−1)2α0+1Nα20+(N−1)2α0+1=(Lα20+(L−1)2α0+1)[1+12(1−N)α0+(N2−6N+14)α20+⋯]=1+12(L−N)α0+14(L−N)(5−N)α20+⋯. |
This implies that
¯p(L,N;z)=1+12(L−N)τz+14(L−N)(5−N)τ2z2+⋯. | (3.6) |
It is simple to observe from (3.5) that
¯p(L,N;w(z))=1+14(L−N)τc1z+(14(L−N)τ(c2−12c21)+(L−N)(5−N)τ2c2116)z2+⋯. | (3.7) |
Since f∈S∗p(L,N,b), then
1+1b(1[p]qzDqf(z)f(z)−1)=1+1b[p]qap+1z+1b[p]q(2ap+2−a2p+1)z2+⋯. | (3.8) |
It is simple to show that by utilizing (3.3) and comparing the coefficients from (3.7) and (3.8), we get
ap+1=b[p]q(L−N)τc14. | (3.9) |
Applying modulus on both side, we have
|ap+1|≤[p]q|b|(L−N)τ2. |
Now again comparing the coefficients from (3.7) and (3.8), we have
2b[p]qap+2=14(L−N)τ(c2−12c21)+(L−N)(5−N)τ2c2116+1[p]qba2p+1, |
|ap+2|=b[p]q(L−N)τ8|c2−v2c21|, | (3.10) |
where
v=1−τ2(5−N+[p]qb(L−N)). |
It shows that v>2 which is satisfied by the relation L>N. Hence, by applying Lemma 2, we obtain the required result.
Result is sharp for the function
f∗(z)=zpexp(b[p]qz∫0¯p(L,N,t)−1tdt)=zp+b[p]q(L−N)τ2zp+1+b[p]q(L−N)(5−N)τ28zp+2+⋯, | (3.11) |
where ¯p(L,N,) defined in (1.4).
Letting q→1−, b=1 and p=1 in Theorem 6, we get the known corollary proved in [32] for starlike functions connected with cardioid domain.
Corollary 1. [32] Let f∈S∗(L,N) be given by (1.2), −1≤N<L≤1. Then
|a2|≤(L−N)|τ|2,|a3|≤(L−N)|τ|28{L−2N+5}. |
Fekete-Szegö problem |ap+2−μa2p+1| for the functions f∈S∗p(L,N,b) are investigated in Theorem 7.
Theorem 7. Let f∈S∗p(L,N,q,b) and of the form (1.1). Then
|ap+2−μa2p+1|≤[p]q|b|(L−N)|τ|8max{2,|τ(−(L−N)[p]qb+N−5+2[p]qb(L−N)μ)|}. |
This result is sharp.
Proof. Since f∈S∗p(L,N,q,b), we have
1+1b(1[p]qzDqf(z)f(z)−1)=¯p(L,N;w(z)), z∈U, |
where w is Schwarz function such that w(0) and |w(z)|<1 in U. Therefore
1+1b(1[p]qzDqf(z)f(z)−1)=h(z),1+1[p]qbzDqf(z)f(z)=1b+(1+h1z+h2z2+⋯),zDqf(z)=[p]qbf(z)(1b+h1z+h2z2+⋯), |
and after some simple calculation, we have
[p]qzp+[p+1]qap+1zp+1+[p+2]qap+2zp+2+⋯=[p]qb{zp+ap+1zp+1+ap+2zp+2+⋯}(1b+h1z+h2z2+⋯)=[p]q{zp+ap+1zp+1+ap+2zp+2+⋯}(1+bh1z+bh2z2+⋯). |
Comparing the coefficients of both sides, we get
ap+1=[p]qbh1, 2ap+2=[p]qb(h1ap+1+h2). |
This implies that
|ap+2−μa2p+1|=[p]q|b|2|h2+(1−2μ)[p]qbh21|=[p]q|b|2|h2−vh21|, |
where
v=(2μ−1)[p]qb. |
By using (iv) of Lemma 1 for
v=(2μ−1)[p]qb, |
we have the required result. The equality
|ap+2−μa2p+1|=[p]q|b|(L−N)|τ|28|(L−N)[p]qb−N+5−2[p]qb(L−N)μ| |
holds for f∗ given in (3.11). Consider f0: U→C defined as:
f0(z)=zpexp([p]qbz∫0¯p(L,N;t2)−1tdt)=zp+[p]qbτ2(L−N)zp+2+⋯, | (3.12) |
where, ¯p(L,N;z) is defined in (1.4). Hence
1+1b(1[p]qzDqf(z)f(z)−1)=¯p(L,N;z2). |
This demonstrates f0∈S∗p(L,N,q,b). Hence the equality
|ap+2−μa2p+1|=[p]q|b|(L−N)|τ|2 |
holds for the function f0 given in (3.12).
Letting q→1−, b=1 and p=1 in Theorem 7, we get the known corollary proved in [32] for starlike functions associated with cardioid domain.
Corollary 2. [32] Let f∈S∗(L,N) and of the form (1.2). Then
|a3−μa22|≤(L−N)|τ|8max{2,|τ(−(L−2N+5)+2(L−N)μ)|}. |
This result is sharp.
Coefficient inequality for the class S∗p(L,N,b):
Theorem 8. For function f∈Ap, given by (1.1), if f∈S∗p(L,N,q,b), then
|ap+n|≤n+1∏k=2([k−2]q+[p]qqp|b((L−N)τ2)|)[n]q!, ( p,n∈N). |
Proof. Suppose f∈S∗p(L,N,q,b) and the function S(z) define by
S(z)=1+1b(1[p]qzDqf(z)f(z)−1). | (3.13) |
Then by Definition 5, we have
S(z)≺¯p(L,N;z), |
where, b∈C∖{0} and ¯p(L,N;z) is given by (1.4). Hence, applying the Lemma 4, we get
|S(m)(0)m!|=|cm|≤|¯Q1|, m∈N, | (3.14) |
where
S(z)=1+c1z+c2z2+⋯, |
and by (2.1), we have
|¯Q1|=|(L−N)τ2|. | (3.15) |
Also from (3.13), we find
zDqf(z)=[p]q{b[q(z)−1]+1}f(z). | (3.16) |
Since ap=1, in view of (3.16), we obtain
[n+p]q−[p]qap+n=[p]qb{cn+cn−1ap+1+⋯+c1ap+n−1}=b[p]qn∑i=1ciap+n−i. | (3.17) |
Applying (3.14) into (3.17), we get
qp[n]q|ap+n|≤[p]q|b||¯Q1|n∑i=1|ap+n−i|, p,n∈N. |
For n=1,2,3, we have
|ap+1|≤[p]qqp|b¯Q1|,|ap+2|≤[p]q|b¯Q1|qp[2]q(1+|ap+1|)≤[p]q|b¯Q1|qp[2]q(1+[p]qqp|b¯Q1|) |
and
|ap+3|≤[p]q|b¯Q1|qp[3]q(1+|ap+1|+|ap+2|)≤[p]q|b¯Q1|qp[3]q(1+[p]qqp|b¯Q1|+[p]q|b¯Q1|qp[2]q(1+[p]qqp|b¯Q1|))=[p]qqp|b¯Q1|((1+[p]qqp|b¯Q1|)([2]q+[p]qqp|b¯Q1|)[3]q[2]q), |
respectively. Applying the equality (3.15) and using the mathematical induction principle, we obtain
|ap+n|≤n+1∏k=2([k−2]q+[p]qqp|b¯Q1|)[n]q!=n+1∏k=2([k−2]q+[p]qqp|b((L−N)τ2)|)[n]q!. |
This evidently completes the proof of Theorem 8.
The initial coefficient bounds |ap+1| and |ap+2| for the functions f∈Kp(L,N,q,b) are investigated in Theorem 9 using the Lemma 2.
Theorem 9. Let f∈Kp(L,N,q,b) be given by (1.1), −1≤N<L≤1. Then
|ap+1|≤[p]2q|b|(L−N)τ2[p+1]q,|ap+2|≤b2[p]q(L−N)τ8[p+2]q(5−N+[p]qb2(L−N)). |
These bounds are sharp.
Proof. Let f∈Kp(L,N,q,b), and be of the form (1.1). Then
1−1b+1b[p]q(1+zD2qf(z)Dqf(z))≺¯p(L,N;z), | (3.18) |
where
¯p(L,N,z)=2Lτ2z2+(L−1)τz+22Nτ2z2+(N−1)τz+2. |
By applying the concepts of subordination, there exists a function w with
w(0)=0 and |w(z)|<1, |
such that
1−1b+1b[p]q(1+zD2qf(z)Dqf(z))=¯p(L,N;w(z)). | (3.19) |
Let
w(z)=h(z)−1h(z)+1=c1z+c2z2+c3z3+⋯2+c1z+c2z2+⋯=12c1z+12(c2−12c21)z2+12(c3−c1c2+14c31)z3+⋯. | (3.20) |
Since
¯p(L,N;z)=1+∞∑n=1¯Qnzn, |
then
¯p(L,N;w(z))=1+¯Q1{12c1z+12(c2−12c21)z2⋯}+¯Q2{12c1z+12(c2−12c21)z2⋯}2+⋯=1+¯Q1c12z+(12(c2−12c21)¯Q1+¯Q2c214)z2+⋯. | (3.21) |
Also consider the function
¯p(L,N;z)=2Lτ2z2+(L−1)τz+22Nτ2z2+(N−1)τz+2. |
Let τz=α0. Then
¯p(L,N,z)=2Lα20+(L−1)α0+22Nα20+(N−1)α0+2=Lα20+(L−1)2α0+1Nα20+(N−1)2α0+1=(Lα20+(L−1)2α0+1)[1+12(1−N)α0+(N2−6N+14)α20+⋯]=1+12(L−N)α0+14(L−N)(5−N)α20+⋯. |
This implies that
¯p(L,N;z)=1+12(L−N)τz+14(L−N)(5−N)τ2z2+⋯. | (3.22) |
It is simple to observe from (3.21) that
¯p(L,N;w(z))=1+14(L−N)τc1z+(14(L−N)τ(c2−12c21)+(L−N)(5−N)τ2c2116)z2+⋯. | (3.23) |
Since f∈Kp(L,N,q,b), then
1−1b+1b[p]q(1+zD2qf(z)Dqf(z))=1+[p+1]qb[p]qap+1z+1b[p]q(2[p+2]qap+2−[p+1]2q[p]qa2p+1)z2+⋯. | (3.24) |
It is simple to show that by utilizing (3.19) and comparing the coefficients from (3.23) and (3.24), we get
ap+1=b[p]2q(L−N)τc14[p+1]q. |
Applying modulus on both side, we have
|ap+1|≤[p]2q|b|(L−N)τ2[p+1]q. |
Now again comparing the coefficients from (3.7) and (3.8), we have
2[p+2]qb[p]qap+2=14(L−N)τ(c2−12c21)+(L−N)(5−N)τ2c2116+(p+1)2bp2a2p+1, |
|ap+2|=b[p]q(L−N)τ8[p+2]q|c2−v2c21|, |
where
v=1−τ2(5−N+[p]qb2(L−N)), |
it shows that v>2 which is satisfied by the relation L>N. Hence, by applying Lemma 2, we obtain the required result.
Result is sharp for the function
f∗(z)=zpexp(b[p]2qz∫0¯p(L,N,t)−1tdt)=zp+b[p]2q(L−N)τ2zp+1+b[p]2q(L−N)(5−N)τ28zp+2+⋯, | (3.25) |
where ¯p(L,N,) defined in (1.4).
Fekete-Szegö problem |ap+2−μa2p+1| for the functions f∈Kp(L,N,q,b) are investigated in Theorem 10.
Theorem 10. Let f∈Kp(L,N,q,b) and be of the form (1.1). Then
|ap+2−μa2p+1|≤[p]q|b|(L−N)|τ|4([p+1]q−[p]q+1)[p+2]q×max{2,|τ(−(L−N)[p]2qb+N−5+[p]3qb[p+2]q([p+1]q−[p]q+1)(L−N)[p+1]2qμ)|}. |
This result is sharp.
Proof. Since f∈Kp(L,N,b), we have
1−1b+1b[p]q(1+zD2qf(z)Dqf(z))=¯p(L,N;w(z)), z∈U, |
where w is Schwarz function such that w(0) and |w(z)|<1 in U. Therefore
1−1b+1b[p]q(1+zD2qf(z)Dqf(z))=h(z),1+zD2qf(z)Dqf(z)=(1b−1)b[p]q+b[p]q(1+h1z+h2z2+⋯),1+zD2qf(z)Dqf(z)=([p]q+b[p]qh1z+b[p]qh2z2+⋯),1+zD2qf(z)Dqf(z)=[p]q[1+bh1z+bh2z2+⋯], |
and after some simple calculation, we have
[p]q(1+[p−1]q)zp−1+([p+1]q([p]q+1)ap+1zp+[p+2]q([p+1]q+1)ap+2zp+1+⋯=[p]q{[p]qzp−1+[p+1]qap+1zp+[p+2]qap+2zp+1+⋯}(1+bh1z+bh2z2+⋯)=[p]2qzp−1+([p]q([p+1]qap+1+[p]2qbh1)zp+{[p]q[p+2]qap+2+[p]q[p+1]qbh1ap+1+[p]2qbh2}zp+1. |
Comparing the coefficients of both sides, we get
ap+1=[p]2qbh1[p+1]q, ap+2=[p]qb[p+2]q([p+1]q−[p]q+1)([p+1]qh1ap+1+h2). |
This implies that
ap+2−μa2p+1=[p]q|b|([p+1]q−[p]q+1)[p+2]q×(h2+(1−[p+2]q[p]q([p+1]q−[p]q+1)[p+1]2qμ)[p]2qbh21)=[p]q|b|([p+1]q−[p]q+1)[p+2]q(h2−vh21), |
where
v=([p+2]q[p]q([p+1]q−[p]q+1)[p+1]2qμ−1)[p]2qb. |
By using (iv) of Lemma 1 for
v=([p+2]q[p]q([p+1]q−[p]q+1)[p+1]2qμ−1)[p]2qb, |
we have the required result. The equality
|ap+2−μa2p+1|=[p]q|b|(L−N)|τ|24([p+1]q−[p]q+1)[p+2]q×|(L−N)[p]2qb−N+5−[p]3qb([p+1]q−[p]q+1)[p+2]q(L−N)[p+1]2qμ| |
holds for f∗ given in (3.25). Consider the function f0: U→C be defined as:
f0(z)=zpexp([p]2qbz∫0¯p(L,N;t2)−1tdt)=zp+τ[p]2qb2(L−N)zp+2+⋯, |
where, ¯p(L,N;z) is defined in (1.4). Hence and
1−1b+1b[p]q(1+zD2qf(z)Dqf(z))=¯p(L,N;z2). |
Theorem 11. Let f∈Ap, be given by (1.1). If f∈Kp(L,N,b), then
|ap+n|≤[p]qn+1∏k=2([k−2]q+[2]q[p]qqp|b((L−N)τ2)|)[n]q!([p+n]q), p,n∈N. |
Proof. We can obtain Theorem 11, by using the same technique of Theorem 8.
In this article, we have used the ideas of cardioid domain, multivalent analytic functions, and q-calculus operator theory to define the new subfamilies of multivalent q-starlike and q-convex functions. In Section 1, we discussed some basic concepts from geometric functions, analytic functions, multivalent functions, q-calculus operator theory, and the idea of the cardioid domain. We also define two new classes of p-valent starlike, convex functions connected with the cardioid domain using the q -difference operator. The already known lemmas are presented in Section 2. In Section 3, for the class S∗p(L,N,q,b), we investigated sharp coefficient bounds, Fekete-Szegö functional, and coefficient inequalities. Same type of results also studied for the class S∗p(L,N,q,b). The research also demonstrated how the parameters, including some new discoveries, expand and enhance the results.
For future studies, researchers can use a number of ordinary differential and q-analogous of difference and integral operators and can define a number of new subclasses of multivalent functions. By applying the ideas of this article, many new results can be found. The idea presented in this article can be implemented on papers [33,34,35], and researchers can discuss the new properties of multivalent functions associated with the cardioid domain.
The authors declare that they did not employ any artificial intelligence in the execution of this work.
The authors extend their appreciation to the Arab Open University for funding this work through research fund No. (AOURG-2023-007).
All the authors claim to have no conflicts of interest.
[1] | G. Cardano, Liber de ludo aleae, In: C. Sponius (ed.), Hieronymi Cardani Mediolanensis Opera Omnia, Lyons, 1663, 1564. |
[2] | B. Pascal, P. Fermat, Letters, In: Pascal Fermat Correspondence, 1654. Available from: http://www.york.ac.uk/depts/maths/histstat/pascal.pdf. |
[3] | J. Bernoulli, The art of conjecturing, together with letter to a friend on sets in court tennis, English translation by Edith Sylla, Baltimore: Johns Hopkins Univ Press, 2005, 1713. https://doi.org/10.1111/j.1600-0498.2008.00117.x |
[4] | F. P. Ramsey, Truth and probability, In: The Foundations of Mathematics and other Logical Essays, ed. R. B. Braithwaite, London: Routledge & Kegan Paul Ltd, 1926. https://doi.org/10.1007/978-3-319-20451-2_3 |
[5] | L. J. Savage, The foundations of statistics, New York: John Wiley & Sons, 1954. https://doi.org/10.1002/nav.3800010316 |
[6] | J. M. Keynes, A treatise on probability, Macmillan & Co., 1921. https://doi.org/10.2307/2178916 |
[7] | F. H. Knight, Risk, uncertainty and profit, Chicago University Press, 31 (1921). https://doi.org/10.1017/CBO9780511817410.005 |
[8] |
M. Kurz, M. Motolese, Endogenous uncertainty and market volatility, Econ. Theory, 17 (2001), 497–544. http://dx.doi.org/10.2139/ssrn.159608 doi: 10.2139/ssrn.159608
![]() |
[9] |
M. B. Beck, Water quality modeling: A review of the analysis of uncertainty, Water Resour. Res., 23 (1987), 1393–1442. https://doi.org/10.1029/WR023i008p01393 doi: 10.1029/WR023i008p01393
![]() |
[10] | S. O. Funtowicz, J. R. Ravetz, Uncertainty and quality in science for policy, Springer Science & Business Media, 1990. http://dx.doi.org/10.1007/978-94-009-0621-1 |
[11] |
M. B. A. van Asselt, J. Rotmans, Uncertainty in integrated assessment modelling, Climatic Change, 54 (2002), 75–105. https://doi.org/10.1023/A:1015783803445 doi: 10.1023/A:1015783803445
![]() |
[12] |
E. F. Fama, The behavior of stock-market prices, J. Bus., 38 (1965), 34–105. http://dx.doi.org/10.1086/294743 doi: 10.1086/294743
![]() |
[13] |
A. Alchian, Uncertainty, evolution and economic theory, J. Polit. Econ., 58 (1950), 211–221. http://dx.doi.org/10.1086/256940 doi: 10.1086/256940
![]() |
[14] |
A. Sandroni, Do Markets favor agents able to make accurate predictions? Econometrica, 68 (2000), 1303–1341. http://dx.doi.org/10.1111/1468-0262.00163 doi: 10.1111/1468-0262.00163
![]() |
[15] |
A. Sandroni, Efficient markets and Bayes' rule, Econ. Theory, 26 (2005) 741–764. http://dx.doi.org/10.1007/s00199-004-0567-4 doi: 10.1007/s00199-004-0567-4
![]() |
[16] |
L. Blume, D. Easley, Evolution and market behavior, J. Econ. Theory, 58 (1992), 9–40. http://dx.doi.org/10.1016/0022-0531(92)90099-4 doi: 10.1016/0022-0531(92)90099-4
![]() |
[17] |
L. Blume, D. Easley, If you're so smart, why aren't you rich? Belief selection in complete and incomplete markets, Econometrica, 74 (2006), 929–966. http://dx.doi.org/10.1111/j.1468-0262.2006.00691.x doi: 10.1111/j.1468-0262.2006.00691.x
![]() |
[18] |
O. San, The digital twin revolution, Nat. Comput. Sci., 1 (2021), 307–308. https://doi.org/10.1038/s43588-021-00077-0 doi: 10.1038/s43588-021-00077-0
![]() |
[19] |
G. Caldarelli, E. Arcaute, M. Barthelemy, M. Batty, C. Gershenson, D. Helbing, et al., The role of complexity for digital twins of cities, Nat. Comput. Sci., 3 (2023), 374–381. https://doi.org/10.1038/s43588-023-00431-4 doi: 10.1038/s43588-023-00431-4
![]() |
[20] |
H. M. Markowitz, Portfolio selection, J. Financ., 7 (1952) 77–91. http://dx.doi.org/10.2307/2975974 doi: 10.2307/2975974
![]() |
[21] |
Z. Y. Guo, Heavy-tailed distributions and risk management of equity market tail events, J. Risk Control, 4 (2017), 31–41. http://dx.doi.org/10.2139/ssrn.3013749 doi: 10.2139/ssrn.3013749
![]() |
[22] |
R. E. Lucas, Asset prices in an exchange economy, Econometrica, 46 (1978), 1429–1445. https://doi.org/10.2307/1913837 doi: 10.2307/1913837
![]() |
[23] | J. H. Cochrane, Asset pricing, Princeton University Press, 2005. https://doi.org/10.1016/j.jebo.2005.08.001 |
[24] |
D. Ellsberg, Risk, ambiguity, and the savage axioms, Quart. J. Econ., 75 (1961), 643–669. http://dx.doi.org/10.2307/1884324 doi: 10.2307/1884324
![]() |
[25] | H. R. Varian, Differences of opinion in financial markets, In: C. C. Stone, (eds) Financial Risk: Theory, Evidence and Implications, Springer, Dordrecht., 1989. https://doi.org/10.1007/978-94-009-2665-3_1 |
[26] | B. Liu, Uncertainty theory, In: Uncertainty Theory, Studies in Fuzziness and Soft Computing, Berlin: Springer, 154 (2007). https://doi.org/10.1007/978-3-540-73165-8_5 |
[27] | B. Liu, Fuzzy process, hybrid process and uncertain process, J. Uncertain Syst., 2 (2008), 3–16. |
[28] |
B. Liu, Toward uncertain finance theory, J. Uncertain. Anal. Appl., 1 (2013), 1–15. http://dx.doi.org/10.1186/2195-5468-1-1 doi: 10.1186/2195-5468-1-1
![]() |
[29] | M. Segoviano, C. A. Goodhart, Banking stability measures, International Monetary Fund, 2009. https://doi.org/10.5089/9781451871517.001 |
[30] |
L. Liu, T. Zhang, Economic policy uncertainty and stock market volatility, Financ. Res. Lett., 15 (2015), 99–105. https://doi.org/10.1016/j.frl.2015.08.009 doi: 10.1016/j.frl.2015.08.009
![]() |
[31] |
H. Asgharian, C. Christiansen, A. J. Hou, The effect of uncertainty on stock market volatility and correlation, J. Bank. Financ., 154 (2023), 106929. https://doi.org/10.1016/j.jbankfin.2023.106929 doi: 10.1016/j.jbankfin.2023.106929
![]() |
[32] |
T. Simin, The poor predictive performance of asset pricing models, J. Financ. Quant. Anal., 43 (2008), 355–380. http://dx.doi.org/10.1017/S0022109000003550 doi: 10.1017/S0022109000003550
![]() |
[33] |
J. H. Boyd, J. Hu, R. Jagannathan, The stock market's reaction to unemployment news: Why bad news is usually good for stocks, J. Financ., 60 (2005), 649–672. http://dx.doi.org/10.1111/j.1540-6261.2005.00742.x doi: 10.1111/j.1540-6261.2005.00742.x
![]() |
[34] |
R. P. Schumaker, H. Chen, Textual analysis of stock market prediction using breaking financial news: The AZFin text system, ACM Trans. Inform. Syst., 27 (2009), 1–19. https://doi.org/10.1145/1462198.1462204 doi: 10.1145/1462198.1462204
![]() |
[35] |
M. T. Suleman, Stock market reaction to good and bad political news, Asian J. Financ. Account., 4 (2012), 299–312. https://doi.org/10.5296/ajfa.v4i1.1705 doi: 10.5296/ajfa.v4i1.1705
![]() |
[36] |
C. O. Cepoi, Asymmetric dependence between stock market returns and news during COVID-19 financial turmoil, Financ. Res. Lett., 36 (2020), 101658. https://doi.org/10.1016/j.frl.2020.101658 doi: 10.1016/j.frl.2020.101658
![]() |
[37] |
A. Caruso, Macroeconomic news and market reaction: Surprise indexes meet nowcasting, Int. J. Forecasting, 35 (2019), 1725–1734. https://doi.org/10.1016/j.ijforecast.2018.12.005 doi: 10.1016/j.ijforecast.2018.12.005
![]() |
[38] |
E. F. Fama, Efficient capital markets: Ⅱ, J. Financ., 46 (1991), 1575–1617. https://doi.org/10.2307/2328565 doi: 10.2307/2328565
![]() |
[39] | J. D. Thomas, K. Sycara, Integrating genetic algorithms and text learning for financial prediction, In: Proceedings of GECCO '00 Workshop on Data Mining with Evolutionary Algorithms, 2000, 72–75. |
[40] |
P. C. Tetlock, Giving content to investor sentiment: The role of media in the stock market, J. Financ. Forthcoming, 62 (2007), 1139–1168. https://dx.doi.org/10.2139/ssrn.685145 doi: 10.2139/ssrn.685145
![]() |
[41] | S. Kogan, D. Levin, B. R. Routledge, J. S. Sagi, N. A. Smith, Predicting risk from financial reports with regression, In: Proceedings of Human Language Technologies: The 2009 Annual Conference of the North American Chapter of the Association for Computational Linguistics on - NAACL '09, 2009,272–280. http://dx.doi.org/10.3115/1620754.1620794 |
[42] |
J. L. Rogers, D. J. Skinner, A. Van Buskirk, Earnings guidance and market uncertainty, J. Account. Econ., 48 (2009), 90–109. https://doi.org/10.1016/j.jacceco.2009.07.001 doi: 10.1016/j.jacceco.2009.07.001
![]() |
[43] | J. Si, A. Mukherjee, B. Liu, Q. Li, H. Li, X. Deng, Exploiting topic based twitter sentiment for stock prediction, In: Proceedings of the 51st Annual Meeting of the Association for Computational Linguistics, 2 (2013), 24–29. |
[44] | X. Ding, Y. Zhang, T. Liu, J. Duan, Using structured events to predict stock price movement: An empirical investigation, In: Proceedings of the 2014 conference on empirical methods in natural language processing, 2014, 1415–1425. http://dx.doi.org/10.3115/v1/D14-1148 |
[45] | W. Y. Wang, Z. Hua, A semiparametric gaussian copula regression model for predicting financial risks from earnings calls, In: Proceedings of the 52nd Annual Meeting of the Association for Computational Linguistics, 1 (2014), 1155–1165. http://dx.doi.org/10.3115/v1/P14-1109 |
[46] |
R. Luss, A. d'Aspremont, Predicting abnormal returns from news using text classification, Quant. Financ., 15 (2015), 999–1012. https://doi.org/10.1080/14697688.2012.672762 doi: 10.1080/14697688.2012.672762
![]() |
[47] |
P. K. Narayan, D. Bannigidadmath, Does financial news predict stock returns? New evidence from Islamic and non-Islamic stocks, Pac.-Basin Financ. J., 42 (2017) 24–45. https://doi.org/10.1016/j.pacfin.2015.12.009 doi: 10.1016/j.pacfin.2015.12.009
![]() |
[48] | F. Larkin, C. Ryan, Good news: Using news feeds with genetic programming to predict stock prices, In: European Conference on Genetic Programming, 4971 (2008), 49–60. https://doi.org/10.1007/978-3-540-78671-9_5 |
[49] | Y. Kim, S. R. Jeong, I. Ghani, Text opinion mining to analyze news for stock market prediction, Int. J. Adv. Soft Comput. Appl., 6 (2014), 2074–8523. |
[50] |
A. E. Khedr, S. E. Salama, N. Yaseen, Predicting stock market behavior using data mining technique and news sentiment analysis, Int. J. Adv. Soft Comput. Appl., 9 (2017), 22–30. https://doi.org/10.5815/ijisa.2017.07.03 doi: 10.5815/ijisa.2017.07.03
![]() |
[51] |
X. Zhou, H. Zhou, H. Long, Forecasting the equity premium: Do deep neural network models work? Mod. Financ., 1 (2023), 1–11. https://doi.org/10.61351/mf.v1i1.2 doi: 10.61351/mf.v1i1.2
![]() |
[52] |
X. Dong, Y. Li, D. E. Rapach, G. Zhou, Anomalies and the expected market return, J. Financ., 77 (2022), 639–681. https://doi.org/10.1111/jofi.13099 doi: 10.1111/jofi.13099
![]() |
[53] |
N. Cakici, C. Fieberg, D. Metko, A. Zaremba, Do anomalies really predict market returns? New data and new evidence, Rev. Financ., 2023, rfad025. https://doi.org/10.1093/rof/rfad025 doi: 10.1093/rof/rfad025
![]() |
[54] |
W. Shengli, Is human digital twin possible? Comput. Method. Prog. Biomed. Update, 1 (2021), 100014. https://doi.org/10.1016/j.cmpbup.2021.100014 doi: 10.1016/j.cmpbup.2021.100014
![]() |
[55] |
M. Singh, E. Fuenmayor, E. P. Hinchy, Y. Qiao, N. Murray, D. Devine, Digital twin: Origin to future, Appl. Syst. Inno., 4 (2021), 36. https://doi.org/10.3390/asi4020036 doi: 10.3390/asi4020036
![]() |
[56] |
H. D. Critchley, C. J. Mathias, R. J. Dolan, Neural activity in the human brain relating to uncertainty and arousal during anticipation, Neuron, 29 (2001), 537–545. https://doi.org/10.1016/s0896-6273(01)00225-2 doi: 10.1016/s0896-6273(01)00225-2
![]() |
[57] | H. A. Simon, Rational decision-making in business organizations, Am. Econ. Rev., 69 (1979), 493–513. |
[58] |
R. M. Hogarth, N. Karelaia, Regions of rationality: Maps for bounded agents, Decis. Anal., 3 (2006), 124–144. http://dx.doi.org/10.1287/deca.1060.0063 doi: 10.1287/deca.1060.0063
![]() |
[59] |
Y. Wang, N. Zhang, Uncertainty analysis of knowledge reductions in rough sets, The Scientific World J., 2014 (2014), 576409. https://doi.org/10.1155/2014/576409 doi: 10.1155/2014/576409
![]() |
[60] |
K. Erk, Understanding the combined meaning of words, Nat. Comput. Sci., 2 (2022), 701–702. https://doi.org/10.1038/s43588-022-00338-6 doi: 10.1038/s43588-022-00338-6
![]() |
[61] |
M. Toneva, T. M. Mitchell, L. Wehbe, Combining computational controls with natural text reveals aspects of meaning composition, Nat. Comput. Sci., 2 (2022), 745–757. https://doi.org/10.1038/s43588-022-00354-6 doi: 10.1038/s43588-022-00354-6
![]() |
[62] |
S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput., 9 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 doi: 10.1162/neco.1997.9.8.1735
![]() |
[63] | G. E. Hinton, Distributed representations, Carnegie Mellon University, 1984. |
[64] |
D. E. Rumelhart, G. E. Hinton, R. J. Williams, Learning representations by back-propagating errors, Nature, 323 (1986), 533–536. http://dx.doi.org/10.1038/323533a0 doi: 10.1038/323533a0
![]() |
[65] |
J. L. Elman, Finding structure in time, Cognitive Sci., 14 (1990), 179–211. http://dx.doi.org/10.1207/s15516709cog1402_1 doi: 10.1207/s15516709cog1402_1
![]() |
[66] | Y. Bengio, H. Schwenk, F. Morin, J. L. Gauvain, Neural probabilistic language models, In: Innovations in Machine Learning: Theory and Applications, 2006,137–186. https://doi.org/10.1007/3-540-33486-6_6 |
[67] | R. Collobert, J. Weston, A unified architecture for natural language processing: Deep neural networks with multitask learning, In: Proceedings of the 25th international conference on Machine learning - ICML '08, 2008,160–167. https://doi.org/10.1145/1390156.1390177 |
[68] |
A. Mnih, G. E. Hinton, A scalable hierarchical distributed language model, Adv. Neural Inform. Process. Syst., 21 (2008), 1081–1088. https://dl.acm.org/doi/10.5555/2981780.2981915 doi: 10.5555/2981780.2981915
![]() |
[69] | T. Mikolov, J. Kopecky, L. Burget, O. Glembek, J. Cernocky, Neural network based language models for highly inflective languages, In: 2009 IEEE international conference on acoustics, speech and signal processing, 2009, 4725–4728. https://doi.org/10.1109/ICASSP.2009.4960686 |
[70] |
R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, P. Kuksa, Natural language processing (almost) from scratch, J. Mach. Learn. Res., 12 (2011), 2493–2537. https://dl.acm.org/doi/10.5555/1953048.2078186 doi: 10.5555/1953048.2078186
![]() |
[71] | E. H. Huang, R. Socher, C. D. Manning, A. Y. Ng, Improving word representations via global context and multiple word prototypes, In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics, 1 (2012), 873–882. |
[72] |
Y. Zhang, R. Jin, Z. H. Zhou, Understanding bag-of-words model: a statistical framework, Int. J. Mach. Learn. Cyb., 1 (2010), 43–52. http://dx.doi.org/10.1007/s13042-010-0001-0 doi: 10.1007/s13042-010-0001-0
![]() |
[73] | The lifespan of news stories, How the news enters (and exits) the public consciousness, Schema Design and Google Trends, 2019. Available from: https://newslifespan.com/. |
[74] |
N. Bloom, Fluctuations in uncertainty, J. Econ. Perspect., 28 (2014), 153–176. http://dx.doi.org/10.1257/jep.28.2.153 doi: 10.1257/jep.28.2.153
![]() |
[75] |
S. R. Baker, S. J. Davis, J. A. Levy, State-level economic policy uncertainty, J. Monetary Econ., 132 (2022), 81–99. http://dx.doi.org/10.1016/j.jmoneco.2022.08.004 doi: 10.1016/j.jmoneco.2022.08.004
![]() |
[76] |
S. Newcomb, A generalized theory of the combination of observations so as to obtain the best result, Am. J. Math., 1886,343–366. http://dx.doi.org/10.2307/2369392 doi: 10.2307/2369392
![]() |
[77] |
D. Böhning, E. Dietz, P. Schlattmann, Recent developments in computer-assisted analysis of mixtures, Biometrics, 54 (1998), 525–536. http://dx.doi.org/10.2307/3109760 doi: 10.2307/3109760
![]() |
[78] |
A. P. Dempster, N. M. Laird, D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, J. Roy. Stat. Soc. Ser. B, 39 (1977), 1–22. http://dx.doi.org/10.1111/j.2517-6161.1977.tb01600.x doi: 10.1111/j.2517-6161.1977.tb01600.x
![]() |
[79] |
T. Heskes, Self-organizing maps, vector quantization, and mixture modeling, IEEE T. Neur. Net., 12 (2001), 1299–1305. http://dx.doi.org/10.1109/72.963766 doi: 10.1109/72.963766
![]() |
[80] | A. Gepperth, B. Pfülb, A rigorous link between self-organizing maps and gaussian mixture models, In: Artificial Neural Networks and Machine Learning-ICANN 2020, Springer, Cham, 2020,863–872. http://dx.doi.org/10.1007/978-3-030-61616-8_69 |
[81] |
D. Povey, L. Burget, M. Agarwal, P. Akyazi, F. Kai, A. Ghoshal, et al., The subspace Gaussian mixture model–-A structured model for speech recognition, Comput. Speech Lang., 25 (2011), 404–439. http://dx.doi.org/10.1016/j.csl.2010.06.003 doi: 10.1016/j.csl.2010.06.003
![]() |
[82] | J. Yin, J. Wang, A dirichlet multinomial mixture model-based approach for short text clustering, In: Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining, 2014,233–242. http://dx.doi.org/10.1145/2623330.2623715 |
[83] | F. Najar, S. Bourouis, N. Bouguila, S. Belghith, A comparison between different Gaussian-based mixture models, In: 2017 IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), 2017,704–708. http://dx.doi.org/10.1109/AICCSA.2017.108 |
[84] |
G. Bordogna, G. Pasi, Soft clustering for information retrieval applications, WIRES Data Min. Knowl., 1 (2011), 138–146. http://dx.doi.org/10.1002/widm.3 doi: 10.1002/widm.3
![]() |
[85] |
N. F. G. Martin, J. W. England, R. Baierlein, Mathematical theory of entropy, Phys. Today, 36 (1983), 66–67. http://dx.doi.org/10.1063/1.2915804 doi: 10.1063/1.2915804
![]() |
[86] |
S. R. Bentes, R. Menezes, Entropy: A new measure of stock market volatility? J. Phys. Conf. Ser., 394 (2012), 012033. http://dx.doi.org/10.1088/1742-6596/394/1/012033 doi: 10.1088/1742-6596/394/1/012033
![]() |
[87] |
K. Ahn, D. Lee, S. Sohn, B. Yang, Stock market uncertainty and economic fundamentals: An entropy-based approach, Quant. Financ., 19 (2019), 1151–1163. http://dx.doi.org/10.1080/14697688.2019.1579922 doi: 10.1080/14697688.2019.1579922
![]() |
[88] |
T. Kohonen, The self-organizing map, Neurocomputing, 21 (1998), 1–6. http://dx.doi.org/10.1016/S0925-2312(98)00030-7 doi: 10.1016/S0925-2312(98)00030-7
![]() |
[89] |
M. Y. Kiang, Extending the Kohonen self-organizing map networks for clustering analysis, Comput. Stat. Data Anal., 38 (2001), 161–180. http://dx.doi.org/10.1016/S0167-9473(01)00040-8 doi: 10.1016/S0167-9473(01)00040-8
![]() |
[90] | T. Kohonen, Self-organization and associative memory, Springer Science & Business Media, 8 (2012). https://doi.org/10.1007/978-3-642-88163-3 |
[91] | B. Szmrecsanyi, Grammatical variation in British English dialects: A study in corpus-based dialectometry, Cambridge University Press, 2012. http://dx.doi.org/10.1017/CBO9780511763380 |
[92] | Dow Jones & CO WSJ.COM audience profile, comScore Media Metrix Q1, 2021. Available from: https://images.dowjones.com/wp-content/uploads/sites/183/2018/05/09164150/WSJ.com-Audience-Profile.pdf. |
[93] | VIX volatility suite, Cboe Global Markets, Inc., 2021. Available from: https://www.cboe.com/tradable_products/vix/. |
[94] | A. Elder, Trading for a living: Psychology, trading tactics, money management, John Wiley & Sons, 31 (1993). |
[95] | SCAYLE Supercomputación Castilla y León, 2021. Available from: https://www.scayle.es. |
[96] |
O. A. M. Salem, F. Liu, A. S. Sherif, W. Zhang, X. Chen, Feature selection based on fuzzy joint mutual information maximization, Math. Biosci. Eng., 18 (2020), 305–327. http://dx.doi.org/10.3934/mbe.2021016 doi: 10.3934/mbe.2021016
![]() |
[97] |
P. V. Balakrishnan, M. C. Cooper, V. S. Jacob, P. A. Lewis, A study of the classification capabilities of neural networks using unsupervised learning: A comparison with K-means clustering, Psychometrika, 59 (1994), 509–525. https://doi.org/10.1007/BF02294390 doi: 10.1007/BF02294390
![]() |
[98] | A. Flexer, Limitations of self-organizing maps for vector quantization and multidimensional scaling, Adv. Neur. Inform. Process. Syst., 9 (1996), 445–451. |
[99] | U. A. Kumar, Y. Dhamija, Comparative analysis of SOM neural network with K-means clustering algorithm, In: 2010 IEEE International Conference on Management of Innovation & Technology, 2010, 55–59. http://dx.doi.org/10.1109/ICMIT.2010.5492838 |
[100] | J. Han, M. Kamber, J. Pei, Data mining: Concepts and techniques, 3 Eds., Morgan Kauffman, 2012. https://doi.org/10.1016/C2009-0-61819-5 |
[101] |
H. M. Hodges, Arbitrage bounds of the implied volatility strike and term structures of European-style options, J. Deriv., 3 (1996), 23–35. http://dx.doi.org/10.3905/jod.1996.407950 doi: 10.3905/jod.1996.407950
![]() |
[102] |
A. M. Malz, A simple and reliable way to compute option-based risk-neutral distributions, FRB New York Staff Rep., 677 (2014). http://dx.doi.org/10.2139/ssrn.2449692 doi: 10.2139/ssrn.2449692
![]() |
[103] | B. Judge, 26 May 1896: Charles Dow launches the Dow Jones industrial average, 2015. Available from: https://moneyweek.com/392888/26-may-1896-charles-dow-launches-the-dow-jones-industrial-average/. |
[104] | A. C. MacKinlay, Event studies in economics and finance, J. Econ. Lit., 35 (1997), 13–39. |
[105] |
Z. Önder, C. Şimga-Mugan, How do political and economic news affect emerging markets? Evidence from Argentina and Turkey, Emerg. Mark. Financ. Tr., 42 (2006), 50–77. http://dx.doi.org/10.2753/REE1540-496X420403 doi: 10.2753/REE1540-496X420403
![]() |
[106] |
N. Aktas, E. de Bodt, J. G. Cousin, Event studies with a contaminated estimation period, J. Corp. Financ., 13 (2007), 129–145. http://dx.doi.org/10.1016/j.jcorpfin.2006.09.001 doi: 10.1016/j.jcorpfin.2006.09.001
![]() |
[107] |
O. Arslan, W. Xing, F. A. Inan, H. Du, Understanding topic duration in Twitter learning communities using data mining, J. Comput. Assist. Learn., 38 (2022), 513–525. http://dx.doi.org/10.1111/jcal.12633 doi: 10.1111/jcal.12633
![]() |
[108] |
T. Fawcett, An introduction to ROC analysis, Pattern Recogn. Lett., 27 (2006), 861–874. http://dx.doi.org/10.1016/j.patrec.2005.10.010 doi: 10.1016/j.patrec.2005.10.010
![]() |
[109] | D. W. Hosmer, S. Lemeshow, Applied logistic regression, 2 Eds., New York: John Wiley and Sons, 2000,160–164. http://dx.doi.org/10.1002/0471722146 |
[110] | T. Fawcett, ROC graphs: Notes and practical considerations for researchers, Mach. Learn., 31 (2004), 1–38. |
[111] |
F. Melo, Area under the ROC curve, Encyclopedia Syst. Biol., 2013 (2013). http://dx.doi.org/10.1007/978-1-4419-9863-7_209 doi: 10.1007/978-1-4419-9863-7_209
![]() |
[112] |
J. Cragg, R. Uhler, The demand for automobiles, Can. J. Econ., 3 (1970), 386–406. http://dx.doi.org/10.2307/133656 doi: 10.2307/133656
![]() |
[113] | G. Maddala, Limited dependent and qualitative variables in econometrics, New York: Cambridge University Press, 1983. http://dx.doi.org/10.1017/CBO9780511810176 |
[114] |
D. R. Cox, N. Wermuth, A comment on the coefficient of determination for binary responses, Am. Stat., 46 (1992), 1–4. http://dx.doi.org/10.2307/2684400 doi: 10.2307/2684400
![]() |
[115] | P. Flach, J. Hernández-Orallo, C. Ferri, A coherent interpretation of AUC as a measure of aggregated classification performance, In: Proceedings of the 28th International Conference on Machine Learning, 2011. |
[116] |
J. A. Hanley, B. J. McNeil, The meaning and use of the area under a receiver operating characteristic (ROC) curve, Radiology, 143 (1982), 29–36. http://dx.doi.org/10.1148/radiology.143.1.7063747 doi: 10.1148/radiology.143.1.7063747
![]() |
[117] | B. Efron, The jackknife, the bootstrap, and other resampling plans, In: Society of Industrial and Applied Mathematics CBMS-NSF Monographs 38, 1982. http://dx.doi.org/10.1137/1.9781611970319 |
[118] |
I. A. Boboc, M. C. Dinică, An Algorithm for testing the efficient market hypothesis, PloS One, 8 (2013), e78177. https://doi.org/10.1371/journal.pone.0078177 doi: 10.1371/journal.pone.0078177
![]() |
[119] |
M. A. Sánchez-Granero, K. A. Balladares, J. P. Ramos-Requena, J. E. Trinidad-Segovia, Testing the efficient market hypothesis in Latin American stock markets, Physica A, 540 (2020), 123082. https://doi.org/10.1016/j.physa.2019.123082 doi: 10.1016/j.physa.2019.123082
![]() |
[120] |
E. M. Sent, Rationality and bounded rationality: You can't have one without the other, Eur. J.Hist. Econ. Thou., 25 (2018), 1370–1386. http://dx.doi.org/10.1080/09672567.2018.1523206 doi: 10.1080/09672567.2018.1523206
![]() |
[121] |
M. Hahn, R. Futrell, R. Levy, E. Gibson, A resource-rational model of human processing of recursive linguistic structure, P. Natl. Acad. Sci., 119 (2022), e2122602119. http://dx.doi.org/10.1073/pnas.2122602119 doi: 10.1073/pnas.2122602119
![]() |
[122] |
M. Szczepański, M. Pawlicki, R. Kozik, M. Choraś, New explainability method for BERT-based model in fake news detection, Sci. Rep., 11 (2021), 23705. http://dx.doi.org/10.1038/s41598-021-03100-6 doi: 10.1038/s41598-021-03100-6
![]() |
[123] |
G. Pennycook, Z. Epstein, M. Mosleh, A. A. Arechar, D. Eckles, D. G. Rand, Shifting attention to accuracy can reduce misinformation online, Nature, 592 (2021) 590–595. http://dx.doi.org/10.1038/s41586-021-03344-2 doi: 10.1038/s41586-021-03344-2
![]() |
1. | Rahat Zarin, Kamel Guedri, Sobhy M. Ibrahim, Alhanouf Alburaikan, Hamiden Abd El-Wahed Khalifa, Zeeshan Nadar, Nonlinear dynamics of measles and HIV co-infection using a reaction-diffusion model and artificial neural networks, 2025, 0924-090X, 10.1007/s11071-025-11432-5 | |
2. | Manal Alqhtani, Rahat Zarin, Aurang Zeb, Amir Khan, Akram A. Naji, Khaled M. Saad, Spatiotemporal dynamics of HIV–measles co-infection: a coupled reaction–diffusion model with cross-infection and hospitalization effects, 2025, 140, 2190-5444, 10.1140/epjp/s13360-025-06468-w |