Research article Special Issues

A comparative study of disease transmission in hearing-impaired populations using the SIR model

  • Published: 19 May 2025
  • MSC : 34A08, 92B05

  • The study extends the classical SIR epidemic model by incorporating a hearing impairment (H) compartment, which accounts for individuals who suffer from long-term auditory complications due to infection. The proposed SIR-H model includes one more $ H $ compartment to study the effect of infectious diseases on long-term disability. The model is expressed in terms of fractional-order differential equations to better capture the memory and hereditary nature of disease processes. A stability analysis is conducted to find the equilibrium points along with the basic reproduction number $ R_0 $ that governs the disease spread. Numerical solutions are derived using the Laplace Residual Power Series (LRPS) approach, and a comparative analysis with the Runge-Kutta method guarantees accuracy and efficiency. The Simulation results demonstrate how different values for the fractional order $ \alpha $ influence the disease dynamics, with smaller values reflecting higher memory effects. Additionally, machine learning algorithms such as Sequential Neural Networks are used to enhance the predictive capability and identify long-term epidemiological trends. The findings highlight the importance of incorporating disability-related compartments into epidemic models in order to aid public health strategies and policy formation.

    Citation: Zeeshan Afzal, Mansoor Alshehri. A comparative study of disease transmission in hearing-impaired populations using the SIR model[J]. AIMS Mathematics, 2025, 10(5): 11290-11304. doi: 10.3934/math.2025512

    Related Papers:

  • The study extends the classical SIR epidemic model by incorporating a hearing impairment (H) compartment, which accounts for individuals who suffer from long-term auditory complications due to infection. The proposed SIR-H model includes one more $ H $ compartment to study the effect of infectious diseases on long-term disability. The model is expressed in terms of fractional-order differential equations to better capture the memory and hereditary nature of disease processes. A stability analysis is conducted to find the equilibrium points along with the basic reproduction number $ R_0 $ that governs the disease spread. Numerical solutions are derived using the Laplace Residual Power Series (LRPS) approach, and a comparative analysis with the Runge-Kutta method guarantees accuracy and efficiency. The Simulation results demonstrate how different values for the fractional order $ \alpha $ influence the disease dynamics, with smaller values reflecting higher memory effects. Additionally, machine learning algorithms such as Sequential Neural Networks are used to enhance the predictive capability and identify long-term epidemiological trends. The findings highlight the importance of incorporating disability-related compartments into epidemic models in order to aid public health strategies and policy formation.



    加载中


    [1] S. Banerjee, Mathematical modelling, 2 Eds., New Youk: Chapman and Hall/CRC, 2021. https://doi.org/10.1201/9781351022941
    [2] W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proc. R. Soc. Lond. A, 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
    [3] S. C. Auld, A. Sheshadri, J. Alexander-Brett, Y. Aschner, A. K. Barczak, M. C. Basil, et al., Postinfectious pulmonary complications: establishing research priorities to advance the field: An official American Thoracic Society Workshop report, Annals of the American Thoracic Society, 21 (2024), 1219–1237. https://doi.org/10.1513/AnnalsATS.202406-651ST doi: 10.1513/AnnalsATS.202406-651ST
    [4] Z. Afzal, F. Yasin, M. S. Arshad, M. Rafaqat, An analytical approach for solving fractional financial risk system, Int. J. Math. Phys., 14 (2023), 42–48. https://doi.org/10.26577/ijmph.2023.v14.i2.05 doi: 10.26577/ijmph.2023.v14.i2.05
    [5] A. R. Liu, F. Yasin, Z. Afzal, W. Nazeer, Analytical solution of a non-linear fractional order SIS epidemic model utilizing a new technique, Alex. Eng. J., 73 (2023), 123–129. https://doi.org/10.1016/j.aej.2023.04.018 doi: 10.1016/j.aej.2023.04.018
    [6] M. S. Arshad, Z. Afzal, M. N. Aslam, F. Yasin, J. E. Macías-Díaz, A. Zarnab, Analyzing the impact of time-fractional models on chemotherapy's effect, Alex. Eng. J., 98 (2024), 1–9. https://doi.org/10.1016/j.aej.2024.04.032 doi: 10.1016/j.aej.2024.04.032
    [7] J. Mondal, S. Khajanchi, Mathematical modeling and optimal intervention strategies of the COVID-19 outbreak, Nonlinear Dyn., 109 (2022), 177–202. https://doi.org/10.1007/s11071-022-07235-7 doi: 10.1007/s11071-022-07235-7
    [8] G.-J. Zou, Z. R. Chen, X. Q. Wang, Y. H. Cui, F. Li, C.-Q. Li, et al., Microglial activation in the medial prefrontal cortex after remote fear recall participates in the regulation of auditory fear extinction, Eur. J. Pharmacol., 978 (2024), 176759. https://doi.org/10.1016/j.ejphar.2024.176759 doi: 10.1016/j.ejphar.2024.176759
    [9] X. K. An, L. Du, F. Jiang, Y. J. Zhang, Z. C. Deng, J. Kurths, A few-shot identification method for stochastic dynamical systems based on residual multipeaks adaptive sampling, Chaos, 34 (2024), 073118. https://doi.org/10.1063/5.0209779 doi: 10.1063/5.0209779
    [10] A. Venkatesh, M. Manivel, B. Baranidharan, Shyamsunder, Numerical study of a new time-fractional Mpox model using Caputo fractional derivatives, Phys. Scr., 99 (2024), 025226. https://doi.org/10.1088/1402-4896/ad196d doi: 10.1088/1402-4896/ad196d
    [11] S. S. Zhou, S. Rashid, S. Parveen, A. O. Akdemir, Z. Hammouch, New computations for extended weighted functionals within the Hilfer generalized proportional fractional integral operators, AIMS Mathematics, 6 (2021), 4507–4525. https://doi.org/10.3934/math.2021267 doi: 10.3934/math.2021267
    [12] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Amsterdam: Elsevier, 2006.
    [13] A. G. Talafha, S. M. Alqaraleh, M. Al-Smadi, S. Hadid, S. Momani, Analytic solutions for a modified fractional three wave interaction equations with conformable derivative by unified method, Alex. Eng. J., 59 (2020), 3731–3739. https://doi.org/10.1016/j.aej.2020.06.027 doi: 10.1016/j.aej.2020.06.027
    [14] S. Hasan, A. El-Ajou, S. Hadid, M. Al-Smadi, S. Momani, Atangana-Baleanu fractional framework of reproducing kernel technique in solving fractional population dynamics system, Chaos Soliton. Fract., 133 (2020), 109624. https://doi.org/10.1016/j.chaos.2020.109624 doi: 10.1016/j.chaos.2020.109624
    [15] R. Almeida, D. Tavares, D. F. M. Torres, The variable-order fractional calculus of variations, Cham: Springer, 2019. https://doi.org/10.1007/978-3-319-94006-9
    [16] R. Saadeh, M. Alaroud, M. Al-Smadi, R. R. Ahmad, U. K. S. Din, Application of fractional residual power series algorithm to solve Newell–Whitehead–Segel equation of fractional order, Symmetry, 11 (2019), 1431. https://doi.org/10.3390/sym11121431 doi: 10.3390/sym11121431
    [17] P. Dayan, L. F. Abbott, Theoretical neuroscience: computational and mathematical modeling of neural systems, Cambridge: MIT Press, 2001.
    [18] Z. Afzal, M. Y. Bhatti, N. Amin, A. Mushtaq, C. Y. Jung, Effect of Alpha-type external input on annihilation of self-sustained activity in a two population neural field model, IEEE Access, 7 (2019), 108411–108418. https://doi.org/10.1109/ACCESS.2019.2933263 doi: 10.1109/ACCESS.2019.2933263
    [19] Z. Afzal, Y. S. Rao, Y. Bhatti, N. Amin, Emergence of persistent activity states in a two-population neural field model for smooth $\alpha $-type external input, IEEE Access, 7 (2019), 59081–59090. https://doi.org/10.1109/ACCESS.2019.2914427 doi: 10.1109/ACCESS.2019.2914427
    [20] H. C. Li, C. H. Xia, T. B. Wang, Z. Wang, P. Cui, X. J. Li, Grass: Learning spatial–temporal properties from chain like cascade data for microscopic diffusion prediction, IEEE T. Neur. Net. Lear., 35 (2024), 16313–16327. https://doi.org/10.1109/TNNLS.2023.3293689 doi: 10.1109/TNNLS.2023.3293689
    [21] J.-Y. Xia, S. X. Li, J.-J. Huang, Z. X. Yang, I. M. Jaimoukha, D. Gündüz, Metalearning-based alternating minimization algorithm for nonconvex optimization, IEEE T. Neur. Net. Lear., 34 (2023), 5366–5380. https://doi.org/10.1109/TNNLS.2022.3165627 doi: 10.1109/TNNLS.2022.3165627
    [22] J. C. Duan, Z. C. Wei, D. H. Li, H. Su, C. Grebogi, Symbolic dynamics for a kinds of piecewise smooth maps, Discrete Cont. Dyn.-S, 17 (2024), 2778–2787. http://doi.org/10.3934/dcdss.2024042 doi: 10.3934/dcdss.2024042
    [23] J. C. Duan, Z. C. Wei, G. L. Li, D. H. Li, C. Grebogi, Strange nonchaotic attractors in a class of quasiperiodically forced piecewise smooth systems, Nonlinear Dyn., 112 (2024), 12565–12577. https://doi.org/10.1007/s11071-024-09678-6 doi: 10.1007/s11071-024-09678-6
    [24] J. C. Duan, W. Zhou, D. H. Li, C. Grebogi, Birth of strange nonchaotic attractors in a piecewise linear oscillator, Chaos, 32 (2022), 103106. https://doi.org/10.1063/5.0096959 doi: 10.1063/5.0096959
    [25] J. Harraq, K. Hattaf, N. Achtaich, Epidemiological models in high school mathematics education, Commun. Math. Biol. Neurosci., 2020 (2020), 34. https://doi.org/10.28919/cmbn/4708 doi: 10.28919/cmbn/4708
    [26] K. Hattaf, A. A. Lashari, Y. Louartassi, N. Yousfi, A delayed SIR epidemic model with a general incidence rate, Electron. J. Qual. Theory Differ. Equ., 3 (2013), 1–9. https://doi.org/10.14232/ejqtde.2013.1.3 doi: 10.14232/ejqtde.2013.1.3
    [27] K. Hattaf, A new mixed fractional derivative with applications in computational biology, Computation, 12 (2024), 7. https://doi.org/10.3390/computation12010007 doi: 10.3390/computation12010007
    [28] K. Hattaf, A new class of generalized fractal and fractal-fractional derivatives with non-singular kernels, Fractal Fract., 7 (2023), 395. https://doi.org/10.3390/fractalfract7050395 doi: 10.3390/fractalfract7050395
    [29] Y. M. Li, S. Rashid, Z. Hammouch, D. Baleanu, Y. M. Chu, New Newton's type estimates pertaining to local fractional integral via generalized p-convexity with applications, Fractals, 29 (2021), 2140018. https://doi.org/10.1142/S0218348X21400181 doi: 10.1142/S0218348X21400181
    [30] M. M. Khader, K. M. Saad, Z. Hammouch, D. Baleanu, A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives, Appl. Numer. Math., 161 (2021), 137–146. https://doi.org/10.1016/j.apnum.2020.10.024 doi: 10.1016/j.apnum.2020.10.024
    [31] M. Al-Smadi, O. A. Arqub, D. Zeidan, (2021). Fuzzy fractional differential equations under the Mittag-Leffler kernel differential operator of the ABC approach: theorems and applications, Chaos Soliton. Fract., 146 (2021), 110891. https://doi.org/10.1016/j.chaos.2021.110891 doi: 10.1016/j.chaos.2021.110891
    [32] A. Ahmad, M. Farman, F. Yasin, M. O. Ahmad, Dynamical transmission and effect of smoking in society, Int. J. Adv. Appl. Sci., 5 (2018), 71–75. https://doi.org/10.21833/ijaas.2018.02.012 doi: 10.21833/ijaas.2018.02.012
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(751) PDF downloads(43) Cited by(2)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog