In this study, we introduced the log-Lomax distribution, a more versatile probabilistic model for capturing various statistical properties. The study was divided into two sections: Modeling stock price exchange rates with the proposed log-Lomax distribution and incorporating log-Lomax features into machine learning models for prediction. In the modeling section, we introduced the log-Lomax distribution, which employed a logarithmic transformation with an exponent parameter. The model was left- and right-skewed, monotonic, inverted, and bathtub-shaped. Some properties were obtained, and several parameter estimation techniques were evaluated using a simulation study. The model was applied to two Nigerian stock exchange rate datasets: Naira-to-Euro and Naira-to-Riyal, as well as the Worcester heart attack patient dataset. The prediction section used insights from modeling methods and machine learning workflows to improve accuracy and reduce overfitting. The predictions were evaluated in two ways: With raw data and features derived from the log-Lomax model. Employing log-Lomax model features, Random Forest, and XGBoost achieved 99.87% accuracy in the Euro dataset, respectively. Random Forest and XGBoost had accuracy rates of 98.67% and 99.33% on the Riyal dataset, respectively, and 91.25% and 88.75% on the heart attack dataset. Random Forests and XGBoost are the preferred models, as they consistently provide the best prediction performance and stability mix across datasets.
Citation: Aliyu Ismail Ishaq, Abdullahi Ubale Usman, Hana N. Alqifari, Amani Almohaimeed, Hanita Daud, Sani Isah Abba, Ahmad Abubakar Suleiman. A new Log-Lomax distribution, properties, stock price, and heart attack predictions using machine learning techniques[J]. AIMS Mathematics, 2025, 10(5): 12761-12807. doi: 10.3934/math.2025575
[1] | Shuhai Li, Lina Ma, Huo Tang . Meromorphic harmonic univalent functions related with generalized (p, q)-post quantum calculus operators. AIMS Mathematics, 2021, 6(1): 223-234. doi: 10.3934/math.2021015 |
[2] | Bakhtiar Ahmad, Muhammad Ghaffar Khan, Basem Aref Frasin, Mohamed Kamal Aouf, Thabet Abdeljawad, Wali Khan Mashwani, Muhammad Arif . On q-analogue of meromorphic multivalent functions in lemniscate of Bernoulli domain. AIMS Mathematics, 2021, 6(4): 3037-3052. doi: 10.3934/math.2021185 |
[3] | Ying Yang, Jin-Lin Liu . Some geometric properties of certain meromorphically multivalent functions associated with the first-order differential subordination. AIMS Mathematics, 2021, 6(4): 4197-4210. doi: 10.3934/math.2021248 |
[4] | Hari Mohan Srivastava, Muhammad Arif, Mohsan Raza . Convolution properties of meromorphically harmonic functions defined by a generalized convolution q-derivative operator. AIMS Mathematics, 2021, 6(6): 5869-5885. doi: 10.3934/math.2021347 |
[5] | Tao He, Shu-Hai Li, Li-Na Ma, Huo Tang . Closure properties of generalized λ-Hadamard product for a class of meromorphic Janowski functions. AIMS Mathematics, 2021, 6(2): 1715-1726. doi: 10.3934/math.2021102 |
[6] | Zhuo Wang, Weichuan Lin . The uniqueness of meromorphic function shared values with meromorphic solutions of a class of q-difference equations. AIMS Mathematics, 2024, 9(3): 5501-5522. doi: 10.3934/math.2024267 |
[7] | Pinhong Long, Xing Li, Gangadharan Murugusundaramoorthy, Wenshuai Wang . The Fekete-Szegö type inequalities for certain subclasses analytic functions associated with petal shaped region. AIMS Mathematics, 2021, 6(6): 6087-6106. doi: 10.3934/math.2021357 |
[8] | Ekram E. Ali, Nicoleta Breaz, Rabha M. El-Ashwah . Subordinations and superordinations studies using q-difference operator. AIMS Mathematics, 2024, 9(7): 18143-18162. doi: 10.3934/math.2024886 |
[9] | Erhan Deniz, Hatice Tuǧba Yolcu . Faber polynomial coefficients for meromorphic bi-subordinate functions of complex order. AIMS Mathematics, 2020, 5(1): 640-649. doi: 10.3934/math.2020043 |
[10] | Huo Tang, Muhammad Arif, Khalil Ullah, Nazar Khan, Bilal Khan . Majorization results for non vanishing analytic functions in different domains. AIMS Mathematics, 2022, 7(11): 19727-19738. doi: 10.3934/math.20221081 |
In this study, we introduced the log-Lomax distribution, a more versatile probabilistic model for capturing various statistical properties. The study was divided into two sections: Modeling stock price exchange rates with the proposed log-Lomax distribution and incorporating log-Lomax features into machine learning models for prediction. In the modeling section, we introduced the log-Lomax distribution, which employed a logarithmic transformation with an exponent parameter. The model was left- and right-skewed, monotonic, inverted, and bathtub-shaped. Some properties were obtained, and several parameter estimation techniques were evaluated using a simulation study. The model was applied to two Nigerian stock exchange rate datasets: Naira-to-Euro and Naira-to-Riyal, as well as the Worcester heart attack patient dataset. The prediction section used insights from modeling methods and machine learning workflows to improve accuracy and reduce overfitting. The predictions were evaluated in two ways: With raw data and features derived from the log-Lomax model. Employing log-Lomax model features, Random Forest, and XGBoost achieved 99.87% accuracy in the Euro dataset, respectively. Random Forest and XGBoost had accuracy rates of 98.67% and 99.33% on the Riyal dataset, respectively, and 91.25% and 88.75% on the heart attack dataset. Random Forests and XGBoost are the preferred models, as they consistently provide the best prediction performance and stability mix across datasets.
Let ∑ denote the class of meromorphic function of the form:
λ(ω)=1ω+∞∑t=0atωt, | (1.1) |
which are analytic in the punctured open unit disc U∗={ω:ω∈C and 0<|ω|<1}=U−{0}, where U=U∗∪{0}. Let δ(ω)∈∑, be given by
δ(ω)=1ω+∞∑t=0btωt, | (1.2) |
then the Convolution (Hadamard product) of λ(ω) and δ(ω) is denoted and defined as:
(λ∗δ)(ω)=1ω+∞∑t=0atbtωt. |
In 1967, MacGregor [17] introduced the concept of majorization as follows.
Definition 1. Let λ and δ be analytic in U∗. We say that λ is majorized by δ in U∗ and written as λ(ω)≪δ(ω)ω∈U∗, if there exists a function φ(ω), analytic in U∗, satisfying
|φ(ω)|≤1, and λ(ω)=φ(ω)δ(ω), ω∈U∗. | (1.3) |
In 1970, Robertson [19] gave the idea of quasi-subordination as:
Definition 2. A function λ(ω) is subordinate to δ(ω) in U and written as: λ(ω)≺δ(ω), if there exists a Schwarz function k(ω), which is holomorphic in U∗ with |k(ω)|<1, such that λ(ω)=δ(k(ω)). Furthermore, if the function δ(ω) is univalent in U∗, then we have the following equivalence (see [16]):
λ(ω)≺δ(ω)andλ(U)⊂δ(U). | (1.4) |
Further, λ(ω) is quasi-subordinate to δ(ω) in U∗ and written is
λ(ω)≺qδ(ω) ( ω∈U∗), |
if there exist two analytic functions φ(ω) and k(ω) in U∗ such that λ(ω)φ(ω) is analytic in U∗ and
|φ(ω)|≤1 and k(ω)≤|ω|<1 ω∈U∗, |
satisfying
λ(ω)=φ(ω)δ(k(ω)) ω∈U∗. | (1.5) |
(ⅰ) For φ(ω)=1 in (1.5), we have
λ(ω)=δ(k(ω)) ω∈U∗, |
and we say that the λ function is subordinate to δ in U∗, denoted by (see [20])
λ(ω)≺δ(ω) ( ω∈U∗). |
(ⅱ) If k(ω)=ω, the quasi-subordination (1.5) becomes the majorization given in (1.3). For related work on majorization see [1,4,9,21].
Let us consider the second order linear homogenous differential equation (see, Baricz [6]):
ω2k′′(ω)+αωk′(ω)+[βω2−ν2+(1−α)]k(ω)=0. | (1.6) |
The function kν,α,β(ω), is known as generalized Bessel's function of first kind and is the solution of differential equation given in (1.6)
kν,α,β(ω)=∞∑t=0(−β)tΓ(t+1)Γ(t+ν+1+α+12)(ω2)2t+ν. | (1.7) |
Let us denote
Lν,α,βλ(ω)=2νΓ(ν+α+12)ων2+1kν,α,β(ω12), =1ω+∞∑t=0(−β)t+1Γ(ν+α+12)4t+1Γ(t+2)Γ(t+ν+1+α+12)(ω)t, |
where ν,α and β are positive real numbers. The operator Lν,α,β is a variation of the operator introduced by Deniz [7] (see also Baricz et al. [5]) for analytic functions. By using the convolution, we define the operator Lν,α,β as follows:
( Lν,α,βλ)(ω)=Lν,α,β(ω)∗λ(ω),=1ω+∞∑t=0(−β)t+1Γ(ν+α+12)4t+1Γ(t+2)Γ(t+ν+1+α+12)at(ω)t. | (1.8) |
The operator Lν,α,β was introduced and studied by Mostafa et al. [15] (see also [2]). From (1.8), we have
ω(Lν,α,βλ(ω))j+1=(ν−1+α+12)(Lν−1,α,βλ(ω))j−(ν+α+12)(Lν,α,βλ(ω))j. | (1.9) |
By taking α=β=1, the above operator reduces to ( Lνλ)(ω) studied by Aouf et al. [2].
Definition 3. Let −1≤B<A≤1,η∈C−{0},j∈W and ν,α,β>0. A function λ∈∑ is said to be in the class Mν,jα,β(η,ϰ;A,B) of meromorphic functions of complex order η≠0 in U∗ if and only if
1−1η(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+ν+j)−ϰ|−1η(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+ν+j)|≺1+Aω1+Bω. | (1.10) |
Remark 1.
(i). For A=1,B=−1 and ϰ=0, we denote the class
Mν,jα,β(η,0;1,−1)=Mν,jα,β(η). |
So, λ∈Mν,jα,β(η,ϰ;A,B) if and only if
ℜ[1−1η(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+ν+j)]>0. |
(ii). For α=1,β=1, Mν,j1,1(η,0;1,−1) reduces to the class Mν,j(η).
ℜ[1−1η(ω(Lνλ(ω))j+1(Lνλ(ω))j+ν+j)]>0. |
Definition 4. A function λ∈∑ is said to be in the class Nν,jα,β(θ,b;A,B) of meromorphic spirllike functions of complex order b≠0 in U∗, if and only if
1−eiθbcosθ(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+j+1)≺1+Aω1+Bω, | (1.11) |
where,
(−π2<θ<π2, −1≤β<A≤1,η∈C−{0}, j∈W, ν,α,β>0andω∈U∗ ). |
(i). For A=1 and B=−1, we set
Nν,jα,β(θ,b;1,−1)=Nν,jα,β(θ,b), |
where Nν,jα,β(θ,b) denote the class of functions λ∈∑ satisfying the following inequality:
ℜ[eiθbcosθ(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+j+1)]<1. |
(ii). For θ=0 and α=β=1 we write
Nν,j1,1(0,b;1,−1)=Nν,j(b), |
where Nν,j(b) denote the class of functions λ∈∑ satisfying the following inequality:
ℜ[1b(ω(Lνλ(ω))j+1(Lνλ(ω))j+j+1)]<1. |
A majorization problem for the normalized class of starlike functions has been examined by MacGregor [17] and Altintas et al. [3,4]. Recently, Eljamal et al. [8], Goyal et al. [12,13], Goswami et al. [10,11], Li et al. [14], Tang et al. [21,22] and Prajapat and Aouf [18] generalized these results for different classes of analytic functions.
The objective of this paper is to examined the problems of majorization for the classes Mν,jα,β(η,ϰ;A,B) and Nν,jα,β(θ,b;A,B).
In Theorem 1, we prove majorization property for the class Mν,jα,β(η,ϰ;A,B).
Theorem 1. Let the function λ∈∑ and suppose that δ∈Mν,jα,β(η,ϰ;A,B). If (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U∗, then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r0), | (2.1) |
where r0=r0(η,ϰ,ν,α,β,A,B) is the smallest positive roots of the equation
−ρ(ν−1+α+12)[(A−B)|η|1−ϰ−(α+12)|B|]r3−(ν−1+α+12)[ρ(α+12)+ρ2|B|−|B|]r2−(ν−1+α+12)[(A−B)|η|1−ϰ−(α+12)|B|+ρ2|B|−1]r+ρ(ν−1+α+12)(α+12)=0. | (2.2) |
Proof. Since δ∈Mν,jα,β(η,ϰ;A,B), we have
1−1η(ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j+ν+j)−ϰ|−1η(ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j+ν+j)|=1+Ak(ω)1+Bk(ω), | (2.3) |
where k(ω)=c1ω+c2ω2+..., is analytic and bounded functions in U∗ with
|k(ω)|≤|ω| (ω∈U∗). | (2.4) |
Taking
§(ω)=1−1η(ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j+ν+j), | (2.5) |
In (2.3), we have
§(ω)−ϰ|§(ω)−1|=1+Ak(ω)1+Bk(ω), |
which implies
§(ω)=1+(A−Bϰe−iθ1−ϰe−iθ)k(ω)1+Bk(ω). | (2.6) |
Using (2.6) in (2.5), we get
ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j=−ν+j+[(A−B)η1−ϰe−iθ+(ν+j)B]k(ω)1+Bk(ω). | (2.7) |
Application of Leibnitz's Theorem on (1.9) gives
ω(Lν,α,βδ(ω))j+1=(ν−1+α+12)(Lν−1,α,βδ(ω))j−(ν+j+α+12)(Lν,α,βδ(ω))j. | (2.8) |
By using (2.8) in (2.7) and making simple calculations, we have
(Lν−1,α,βδ(ω))j(Lν,α,βδ(ω))j=α+12−[(A−B)η1−ϰe−iθ−(α+12)B]k(ω)(1+Bk(ω))(ν−1+α+12). | (2.9) |
Or, equivalently
(Lν,α,βδ(ω))j=(1+Bk(ω))(ν−1+α+12)α+12−[(A−B)η1−ϰe−iθ−(α+12)B]k(ω)(Lν−1,α,βδ(ω))j. | (2.10) |
Since |k(ω)|≤|ω|, (2.10) gives us
|(Lν,α,βδ(ω))j|≤[1+|B||ω|](ν−1+α+12)α+12−|(A−B)η1−ϰe−iθ−(α+12)B||ω||(Lν−1,α,βδ(ω))j|≤[1+|B||ω|](ν−1+α+12)α+12−[(A−B)|η|1−ϰ−(α+12)|B|]|ω||(Lν−1,α,βδ(ω))j| | (2.11) |
Since (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U∗. So from (1.3), we have
(Lν,α,βλ(ω))j=φ(ω)(Lν,α,βδ(ω))j. | (2.12) |
Differentiating (2.12) with respect to ω then multiplying with ω, we get
(Lν,α,βλ(ω))j=ωφ′(ω)(Lν,α,βδ(ω))j+ωφ(ω)(Lν,α,βδ(ω))j+1. | (2.13) |
By using (2.8), (2.12) and (2.13), we have
(Lν,α,βλ(ω))j+1=1(ν−1+α+12)ωφ′(ω)(Lν,α,βδ(ω))j+φ(ω)(Lν−1,α,βδ(ω))j+1. | (2.14) |
On the other hand, noticing that the Schwarz function φ satisfies the inequality
|φ′(ω)|≤1−|φ(ω)|21−|ω|2 (ω∈U∗). | (2.15) |
Using (2.8) and (2.15) in (2.14), we get
|(Lν,α,βλ(ω))j|≤[|φ(ω)|+ω(1−|φ(ω)|2)[1+|B||ω|](ν−1+α+12)(ν−1+α+12)(1−|ω|2)(α+12−[(A−B)|η|1−ϰ−(α+12)B]|ω|)]×|(Lν−1,α,βδ(ω))j|, |
By taking
|ω|=r, |φ(ω)|=ρ (0≤ρ≤1), |
reduces to the inequality
|(Lν,α,βλ(ω))j|≤Φ1(ρ)(ν−1+α+12)(1−r2)(α+12−[(A−B)|η|1−ϰ−(α+12)B]r)|(Lν−1,α,βδ(ω))j|, |
where
Φ1(ρ)=[ρ(ν−1+α+12)(1−r2)(α+12−[(A−B)|η|1−ϰ−(α+12)B]r)+r(1−ρ2)[1+|B|r](ν−1+α+12)]=−r[1+|B|r](ν−1+α+12)ρ2+ρ(ν−1+α+12)(1−r2)(α+12−[(A−B)|η|1−ϰ−(α+12)B]r)+r[1+|B|r](ν−1+α+12), | (2.16) |
takes in maximum value at ρ=1 with r0=r0(η,ϰ,ν,α,β,A,B) where r0 is the least positive root of the (2.2). Furthermore, if 0≤ξ0≤r0(η,ϰ,ν,α,β,A,B), then the function ψ1(ρ) defined by
ψ1(ρ)=−ξ0[1+|B|ξ0](ν−1+α+12)ρ2+ρ(ν−1+α+12)(1−ξ20)(α+12−[(A−B)|η|1−ϰ−(α+12)B]ξ0)+ξ0[1+|B|ξ0](ν−1+α+12), | (2.17) |
is an increasing function on the interval (0≤ρ≤1), so that
ψ1(ρ)≤ψ1(1)=(ν−1+α+12)(1−ξ20)[α+12−((A−B)|η|1−ϰ−(α+12)B)ξ0](0≤ρ≤1, 0≤ξ0≤r0(η,ϰ,A,B)). |
Hence, upon setting ρ=1 in (2.17), we achieve (2.1).
Special Cases: Let A=1 and B=−1 in Theorem 1, we obtain the following corollary.
Corollary 1. Let the function λ∈∑ and suppose that δ∈Mν,jα,β(η,ϰ;A,B). If (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U∗, then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r1), |
where r1=r1(η,ϰ,ν,α,β) is the least positive roots of the equation
ρ(ν−1+α+12)[2|η|1−ϰ−(α+12)]r3−(ν−1+α+12)[ρ(α+12)+ρ2−1]r2−(ν−1+α+12)[ρ{2|η|1−ϰ−(α+12)}+ρ2−1]r+ρ(ν−1+α+12)(α+12)=0. | (2.18) |
Here, r=−1 is one of the roots (2.18) and the other roots are given by
r1=k0−√k20−4ρ2(ν−1+α+12)[2|η|1−ϰ−(α+12)](ν−1+α+12)(α+12)2ρ(ν−1+α+12)[2|η|1−ϰ−(α+12)], |
where
k0=(ν−1+α+12)[ρ{2|η|1−ϰ−2(α+12)}+ρ2−1]. |
Taking ϰ=0 in corollary 1, we state the following:
Corollary 2. Let the function λ∈∑ and suppose that δ∈Mν,jα,β(η,ϰ;A,B). If (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U∗, then
|(Lv,α,βλ(ω))j+1|≤|(Lv,α,βδ(ω))j+1|,(|ω|<r2), |
where r2=r2(η,ν,α,β) is the lowest positive roots of the equation
ρ(ν−1+α+12)[2|η|−(α+12)]r3−(ν−1+α+12)[ρ(α+12)+ρ2−1]r2−(ν−1+α+12)[ρ{2|η|−(α+12)}+ρ2−1]r+ρ(ν−1+α+12)(α+12)=0, | (2.19) |
given by
r2=k1−√k21−4ρ2(ν−1+α+12)[2|η|−(α+12)](ν−1+α+12)(α+12)2ρ(ν−1+α+12)[2|η|−(α+12)], |
where
k1=(ν−1+α+12)[ρ{2|η|−2(α+12)}+ρ2−1]. |
Taking α=β=1 in corollary 2, we get the following:
Corollary 3. Let the function λ∈∑ and suppose that δ∈Mν,jα,β(η,ϰ;A,B). If (Lν,α,βλ(ω))j is majorized by (Lν,α,βδ(ω))j in U∗, then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r3), |
where r3=r3(η,ν) is the lowest positive roots of the equation
ρν[2|η|−1]r3−ν[ρ+ρ2−1]r2−ν[ρ(2|η|−1)+ρ2−1]r+ρν=0, | (2.20) |
given by
r3=k2−√k22−4ρ2ν[2|η|−1]ν2ρν[2|η|−1], |
where
k2=ν[ρ{2|η|−2}+ρ2−1]. |
Secondly, we exam majorization property for the class Nν,jα,β(θ,b;A,B).
Theorem 2. Let the function λ∈∑ and suppose that δ∈Nν,jα,β(θ,b;A,B). If
(Lν,α,βλ(ω))j≪(Lν,α,βδ(ω))j,(j∈0,1,2...), |
then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r4), | (3.1) |
where r4=r4(θ,b,ν,α,β,A,B) is the smallest positive roots of the equation
−ρ[|(B−A)bcosθ+(ν+α+12−1)|B||]r3−[ρ{ν+α+12−1}−|B|(1−ρ2)(ν−1+α+12)]r2+[ρ{|(B−A)bcosθ+(ν+α+12−1)|B||}+(1−ρ2)(ν−1+α+12)]r+ρ[ν+α+12−1]=0,(−π2<θ<π2,−1≤β<A≤1,η∈C−{0},ν,α,β>0,andω∈U∗). | (3.2) |
Proof. Since δ∈Nν,jα,β(θ,b;A,B), so
1−eiθbcosθ(ω(Lν,α,βλ(ω))j+1(Lν,α,βλ(ω))j+j+1)=1+Aω1+Bω, | (3.3) |
where, k(ω) is defined as (2.4).
From (3.3), we have
ω(Lν,α,βδ(ω))j+1(Lν,α,βδ(ω))j=[(B−A)bcosθ−(j+1)Beiθ]k(ω)−(j+1)eiθeiθ(1+Bk(ω)). | (3.4) |
Now, using (2.8) in (3.4) and making simple calculations, we obtain
(Lν−1,α,βδ(ω))j(Lν,α,βδ(ω))j=[(B−A)bcosθ+(ν+α+12−1)Beiθ]k(ω)+[(ν+j+α+12)−1]eiθeiθ(1+Bk(ω))(ν−1+α+12), | (3.5) |
which, in view of |k(ω)|≤|ω| (ω∈U∗), immediately yields the following inequality
|(Lν,α,βδ(ω))j|≤|eiθ|(1+|B||k(ω)|)(ν−1+α+12)[|(B−A)bcosθ+(ν+α+12−1)Beiθ|]|k(ω)|+[(ν+α+12)−1]|eiθ|×|(Lν−1,α,βδ(ω))j|. | (3.6) |
Now, using (2.15) and (3.6) in (2.14) and working on the similar lines as in Theorem 1, we have
|(Lν−1,α,βλ(ω))j|≤[|φ(ω)|+|ω|(1−|φ(ω)|2)(1+|B||ω|)(ν−1+α+12)(1−|ω|2)[{|(B−A)bcosθ+(ν+α+12−1)B|}|ω|+[(ν+α+12)−1]]]×|(Lν−1,α,βδ(ω))j|. |
By setting |ω|=r,|φ(ω)|=ρ(0≤ρ≤1), leads us to the inequality
|(Lν−1,α,βλ(ω))j|≤[Φ2(ρ)(1−r2)[{|(B−A)bcosθ+(ν+α+12−1)B|}r+(ν+α+12)−1]]×|(Lν−1,α,βδ(ω))j|, | (3.7) |
where the function Φ2(ρ) is given by
Φ2(ρ)=ρ(1−r2)[{|(B−A)bcosθ+(ν+α+12−1)B|}r+(ν+α+12)−1]+r(1−ρ2)(1+Br)(ν−1+α+12). |
Φ2(ρ) its maximum value at ρ=1 with r4=r4(θ,b,ν,α,β,A,B) given in (3.2). Moreover if 0≤ξ1≤r4(θ,b,ν,α,β,A,B), then the function.
ψ2(ρ)=ρ(1−ξ21)[{|(B−A)bcosθ+(ν+α+12−1)B|}ξ1+(ν+α+12)−1]+ξ1(1−ρ2)(1+Bξ1)(ν−1+α+12), |
increasing on the interval 0≤ρ≤1, so that ψ2(ρ) does not exceed
ψ2(1)=(1−ξ21)[{|(B−A)bcosθ+(ν+α+12−1)B|}ξ1+(ν+α+12)−1]. |
Therefore, from this fact (3.7) gives the inequality (3.1). We complete the proof.
Special Cases: Let A=1 and B=−1 in Theorem 2, we obtain the following corollary.
Corollary 4. Let the function λ∈∑ and suppose that δ∈Nν,jα,β(θ,b;A,B). If
(Lν,α,βλ(ω))j≪(Lν,α,βδ(ω))j,(j∈0,1,2,...), |
then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r5), |
where r5=r5(θ,b,ν,α,β) is the lowest positive roots of the equation
−ρ[|−2bcosθ+(ν+α+12−1)|]r3−[ρ{ν+α+12−1}−(1−ρ2)(ν−1+α+12)]r2+[ρ{|−2bcosθ+(ν+α+12−1)|}+(1−ρ2)(ν−1+α+12)]r+ρ[ν+α+12−1]=0. | (3.8) |
Where r=−1 is first roots and the other two roots are given by
r5=κ0−√κ20+4ρ2[|−2bcosθ+(ν+α+12−1)|][ν+α+12−1]−2ρ[|−2bcosθ+(ν+α+12−1)|], |
and
κ0=[(1−ρ2)(ν−1+α+12)−ρ{|−2bcosθ+2(ν+α+12−1)|}]. |
Which reduces to Corollary 4 for θ=0.
Corollary 5. Let the function λ∈∑ and suppose that δ∈Nν,jα,β(θ,b;A,B). If
(Lν,α,βλ(ω))j≪(Lν,α,βδ(ω))j,(j∈0,1,2,...), |
then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r6), |
where r6=r6(b,ν,α,β) is the least positive roots of the equation
−ρ[|−2b+(ν+α+12−1)|]r3−[ρ{ν+α+12−1}−(1−ρ2)(ν−1+α+12)]r2+[ρ{|−2b+(ν+α+12−1)|}+(1−ρ2)(ν−1+α+12)]r+ρ[ν+α+12−1]=0, | (3.9) |
given by
r6=κ1−√κ21+4ρ2[|−2b+(ν+α+12−1)|][ν+α+12−1]−2ρ[|−2b+(ν+α+12−1)|], |
and
κ1=[(1−ρ2)(ν−1+α+12)−ρ{|−2b+2(ν+α+12−1)|}]. |
Taking α=β=1 in corollary 5, we get.
Corollary 6. Let the function λ∈∑ and suppose that δ∈Nν,jα,β(θ,b;A,B). If
(Lν,α,βλ(ω))j≪(Lν,α,βδ(ω))j,(j∈0,1,2,...), |
then
|(Lν,α,βλ(ω))j+1|≤|(Lν,α,βδ(ω))j+1|,(|ω|<r7), |
where r7=r7(b,ν) is the lowest positive roots of the equation
−ρ|−2b+ν|r3−[ρν−(1−ρ2)ν]r2+[ρ|−2b+ν|+(1−ρ2)ν]r+ρ[ν]=0, | (3.10) |
given by
r7=κ2−√κ22+4ρ2[|−2b+ν|][ν]−2ρ[|−2b+ν|], |
and
κ2=[(1−ρ2)ν−ρ{|−2b+2ν|}]. |
In this paper, we explore the problems of majorization for the classes Mν,jα,β(η,ϰ;A,B) and Nν,jα,β(θ,b;A,B) by using a convolution operator Lν,α,β. These results generalizes and unify the theory of majorization which is an active part of current ongoing research in Geometric Function Theory. By specializing different parameters like ν,η,ϰ,θ and b, we obtain a number of important corollaries in Geometric Function Theory.
The work here is supported by GUP-2019-032.
The authors agree with the contents of the manuscript, and there is no conflict of interest among the authors.
[1] | A. I. Ishaq, A. A. Abiodun, A. A. Suleiman, A. Usman, A. S. Mohammed, M. Tasiu, Modelling Nigerian inflation rates from January 2003 to June 2023 using newly developed inverse power Chi-Square distribution, In: 2023 4th International Conference on Data Analytics for Business and Industry (ICDABI), 2023,644–651. http://doi.org/10.1109/ICDABI60145.2023.10629442 |
[2] | A. A. Suleiman, H. Daud, M. Othman, A. Husin, A. I. Ishaq, R. Sokkalingam, et al., Forecasting the southeast Asian currencies against the British pound sterling using probability distributions, J. Data Sci. Insights, 1 (2023), 31–51. |
[3] |
M. A. Islam, M. Z. H. Majumder, M. S. Miah, S. Jannaty, Precision healthcare: A deep dive into machine learning algorithms and feature selection strategies for accurate heart disease prediction, Comput. Biol. Med., 176 (2024), 108432. https://doi.org/10.1016/j.compbiomed.2024.108432 doi: 10.1016/j.compbiomed.2024.108432
![]() |
[4] | F. Bouchama, M. Kamal, Enhancing cyber threat detection through machine learning-based behavioral modeling of network traffic patterns, Int. J. Business Intell. Big Data Analyt., 4 (2021), 1–9. |
[5] |
S. Ahmad, S. Jha, A. Alam, M. Yaseen, H. A. M. Abdeljaber, A novel AI-based stock market prediction using machine learning algorithm, Sci. Prog., 2022 (2022), 4808088. https://doi.org/10.1155/2022/4808088 doi: 10.1155/2022/4808088
![]() |
[6] | A. U. USMAN, S. B. Abdullahi, J. Ran, Y. Liping, A. A. Suleiman, H. Daud, et al., Modeling the dynamic behaviors of bank account fraudsters using combined simultaneous game theory with neural networks, preprint paper, 2024. http://doi.org/10.21203/rs.3.rs-3928159/v1 |
[7] |
F. Kamalov, Forecasting significant stock price changes using neural networks, Comput. Applic., 32 (2020), 17655–17667. http://doi.org/10.1007/s00521-020-04942-3 doi: 10.1007/s00521-020-04942-3
![]() |
[8] |
U. Panitanarak, A. I. Ishaq, N. S. S. Singh, A. Usman, A. U. Usman, H. Daud, et al., Machine learning models in predicting failure times data using a novel version of the maxwell model, Eur. J. Stat., 5 (2025), 1. http://doi.org/10.28924/ada/stat.5.1 doi: 10.28924/ada/stat.5.1
![]() |
[9] |
K. S. Lomax, Business failures: Another example of the analysis of failure data, J. Amer. Stat. Assoc., 268 (1954), 847–852. http://doi.org/10.1080/01621459.1954.10501239 doi: 10.1080/01621459.1954.10501239
![]() |
[10] |
A. S. Hassan, S. M. Assar, A. Shelbaia, Optimum step-stress accelerated life test plan for Lomax distribution with an adaptive type-Ⅱ progressive hybrid censoring, J. Adv. Math. Comput. Sci., 13 (2016), 1–19. https://doi.org/10.9734/BJMCS/2016/21964 doi: 10.9734/BJMCS/2016/21964
![]() |
[11] |
C. M. Harris, The Pareto distribution as a queue service discipline, Oper. Res., 16 (1968), 307–313. http://doi.org/10.1287/opre.16.2.307 doi: 10.1287/opre.16.2.307
![]() |
[12] |
G. Gaudet, Distribution of personal wealth in Britain, Economic J., 88 (1978), 581–583. https://doi.org/10.2307/2232061 doi: 10.2307/2232061
![]() |
[13] |
J. Chen, R. G. Addie, M. Zukerman, T. D. Neame, Performance evaluation of a queue fed by a Poisson Lomax burst process, IEEE Commun. Lett., 19 (2014), 367–370. http://doi.org/10.1109/LCOMM.2014.2385083 doi: 10.1109/LCOMM.2014.2385083
![]() |
[14] |
M. C. Bryson, Heavy-tailed distributions: Properties and tests, Technometrics, 16 (1974), 61–68. http://doi.org/10.2307/1267493 doi: 10.2307/1267493
![]() |
[15] |
A. A. Khalaf, M. Ibrahim, M. Khaleel, Different transformation methods of the Lomax distribution: A review, Iraqi Stat. J., 1 (2024), 41–52. http://doi.org/10.62933/6w437q74 doi: 10.62933/6w437q74
![]() |
[16] |
J. K. Pokharel, G. Aryal, N. Khanal, C. P. Tsokos, Probability distributions for modeling stock market returns-an empirical inquiry, Int. J. Financial Stud., 12 (2024), 43. https://doi.org/10.3390/ijfs12020043 doi: 10.3390/ijfs12020043
![]() |
[17] |
V. B. V. Nagarjuna, R. V. Vardhan, C. Chesneau, Nadarajah-Haghighi Lomax distribution and its applications, Math. Comput. Appl, 27 (2022), 30. http://doi.org/10.3390/mca27020030 doi: 10.3390/mca27020030
![]() |
[18] |
A. J. Lemonte, G. M. Cordeiro, An extended Lomax distribution, Statistics, 47 (2013), 800–816. http://doi.org/10.1080/02331888.2011.568119 doi: 10.1080/02331888.2011.568119
![]() |
[19] |
A. H. El-Bassiouny, N. F. Abdo, H. S. Shahen, Exponential lomax distribution, Int. J. Comput. Appl., 121 (2015), 24–29. http://doi.org/10.5120/21602-4713 doi: 10.5120/21602-4713
![]() |
[20] |
N. M. Kilany, Weighted lomax distribution, SpringerPlus, 5 (2016), 1862. http://doi.org/10.1186/s40064-016-3489-2 doi: 10.1186/s40064-016-3489-2
![]() |
[21] |
M. H. Tahir, M. A. Hussain, G. M. Cordeiro, G. G. Hamedani, M. Mansoor, M. Zubair, The Gumbel-Lomax distribution: Properties and applications, J. Stat. Theory Appl., 15 (2016), 61–79. http://doi.org/10.2991/jsta.2016.15.1.6 doi: 10.2991/jsta.2016.15.1.6
![]() |
[22] |
A. A. Abiodun, A. I. Ishaq, On Maxwell-Lomax distribution: Properties and applications, Arab J. Basic Appl. Sci., 29 (2022), 221–232. http://doi.org/10.1080/25765299.2022.2093033 doi: 10.1080/25765299.2022.2093033
![]() |
[23] |
G. M. Cordeiro, E. E. E. Ortega, B. V. Popović, The gamma-Lomax distribution, J. Stat. Comput. Simul., 85 (2015), 305–319. http://doi.org/10.1080/00949655.2013.822869 doi: 10.1080/00949655.2013.822869
![]() |
[24] |
B. Alnssyan, The modified-Lomax distribution: Properties, estimation methods, and application, Symmetry, 15 (2023), 1367. http://doi.org/10.3390/sym15071367 doi: 10.3390/sym15071367
![]() |
[25] |
A. I. Ishaq, A. A. Abiodun, Adewole, The Maxwell-Weibull distribution in modeling lifetime datasets, Ann. Data Sci., 7 (2020), 639–662. http://doi.org/10.1007/s40745-020-00288-8 doi: 10.1007/s40745-020-00288-8
![]() |
[26] |
A. Shafiq, S. A. Lone, T. N. Sindhu, Y. El Khatib, Q. M. Al-Mdallal, T. Muhammad, A new modified Kies Fréchet distribution: Applications of mortality rate of Covid-19, Results Phys., 28 (2021), 104638. http://doi.org/10.1016/j.rinp.2021.104638 doi: 10.1016/j.rinp.2021.104638
![]() |
[27] |
A. Z. Afify, M. Nassar, D. Kumar, G. M. Cordeiro, A new unit distribution: Properties, inference, and applications, Elect. J. Appl. Stat. Anal., 15 (2022), 438–462. http://doi.org/10.1285/i20705948v15n2p438 doi: 10.1285/i20705948v15n2p438
![]() |
[28] |
H. M. Alshanbari, A. M. Gemeay, A. H. El-Bagoury, S. K. Khosa, E. H. Hafez, A. H. Muse, A novel extension of Fréchet distribution: Application on real data and simulation, Alex. Eng. J., 61 (2022), 7917–7938. http://doi.org/10.1016/j.aej.2022.01.013 doi: 10.1016/j.aej.2022.01.013
![]() |
[29] |
E. Hossam, A. T. Abdulrahman, A. M. Gemeay, N. Alshammari, E. Alshawarbeh, N. K. Mashaqbah, A novel extension of gumbel distribution: Statistical inference with covid-19 application, Alex. Eng. J., 61 (2022), 8823–8842. http://doi.org/10.1016/j.aej.2022.01.071 doi: 10.1016/j.aej.2022.01.071
![]() |
[30] | A. I. Ishaq, A. Usman, M. Tasi'u, A. A. Suleiman, A. G. Ahmad, A new odd F-Weibull distribution: properties and application of the monthly Nigerian naira to British pound exchange rate data, In: 2022 International Conference on Data Analytics for Business and Industry (ICDABI). 2022,326–332. http://doi.org/10.1109/ICDABI56818.2022.10041527 |
[31] |
Y. L. Oh, F. P. Lim, C. Y. Chen, W. S. Ling, Y. F. Loh, Exponentiated Weibull Burr type X distribution's properties and its applications, Elect. J. Appl. Stat. Anal., 15 (2022), 553–573. http://doi.org/10.1285/i20705948v15n3p553 doi: 10.1285/i20705948v15n3p553
![]() |
[32] |
E. A. El-Sherpieny, H. Z. Muhammed, E. M. Almetwally, A new inverse Rayleigh distribution with applications of COVID-19 data: Properties, estimation methods and censored sample, Elect. J. Appl. Stat. Anal., 16 (2023), 449–472. http://doi.org/10.1285/i20705948v16n2p449 doi: 10.1285/i20705948v16n2p449
![]() |
[33] |
A. A. Suleiman, H. Daud, N. S. S. Singh, A. I. Ishaq, M. Othman, A new odd beta prime-burr X distribution with applications to petroleum rock sample data and COVID-19 mortality rate, Data, 8 (2023), 143. http://doi.org/10.3390/data8090143 doi: 10.3390/data8090143
![]() |
[34] |
N. Alotaibi, I. Elbatal, M. Shrahili, A. S. Al-Moisheer, M. Elgarhy, E. M. Almetwally, Statistical inference for the Kavya-Manoharan Kumaraswamy model under ranked set sampling with applications, Symmetry, 15 (2023), 587. http://doi.org/10.3390/sym15030587 doi: 10.3390/sym15030587
![]() |
[35] |
M. Alqawba, Y. Altayab, S. M. Zaidi, A. Z. Afify, The extended Kumaraswamy generated family: Properties, inference and applications in applied fields, Elect. J. Appl. Stat. Anal., 16 (2023), 740–763. http://doi.org/10.1285/i20705948v16n3p740 doi: 10.1285/i20705948v16n3p740
![]() |
[36] |
A. A. Suleiman, H. Daud, N. S. S. Singh, M. Othman, A. A. Ishaq, R. Sokkalingam, A novel odd beta prime-logistic distribution: Desirable mathematical properties and applications to engineering and environmental data, Sustainability, 15 (2023), 10239. http://doi.org/10.3390/su151310239 doi: 10.3390/su151310239
![]() |
[37] |
G. W. Liyanage, M. Gabanakgosi, B. Oluyede, Generalized Topp-Leone-G power series class of distributions: properties and applications, Elect. J. Appl. Stat. Anal., 16 (2023), 564–583. http://doi.org/10.1285/i20705948v16n3p564 doi: 10.1285/i20705948v16n3p564
![]() |
[38] |
A. I. Ishaq, U. Panitanarak, A. A. Abiodun, A. A. Suleiman, H. Daud, The generalized odd maxwell-kumaraswamy distribution: Its properties and applications, Contemp. Math., 5 (2024), 711–742. http://doi.org/10.37256/cm.5120242888 doi: 10.37256/cm.5120242888
![]() |
[39] |
A. A. Suleiman, H. Daud, A. I. Ishaq, M. Kayid, R. Sokkalingam, R. Y. Hamed, et al., A new Weibull distribution for modeling complex biomedical data, J. Rad. Res. Appl. Sci., 17 (2024), 101190. http://doi.org/10.1016/j.jrras.2024.101190 doi: 10.1016/j.jrras.2024.101190
![]() |
[40] |
H. Daud, A. S. Mohammed, A. I. Ishaq, B. Abba, Y. Zakari, J. Abdullahi, et al., Modeling and prediction of exchange rates using Topp-Leone Burr type X, machine learning and deep learning models, Eur. J. Stat., 4 (2024), 11. http://doi.org/10.28924/ada/stat.4.11 doi: 10.28924/ada/stat.4.11
![]() |
[41] |
H. Daud, A. A. Suleiman, A. I. Ishaq, N. Alsadat, M. Elgarhy, M. A. Usman, et al., A new extension of the Gumbel distribution with biomedical data analysis, J. Rad. Res. Appl. Sci., 17 (2024), 101055. http://doi.org/10.1016/j.jrras.2024.101055 doi: 10.1016/j.jrras.2024.101055
![]() |
[42] |
U. Panitanarak, A. I. Ishaq, A. A. Abiodun, H. Daud, A. A. Suleiman, A new Maxwell-Log logistic distribution and its applications for mortality rate data, J. Niger. Soc. Phys. Sci., 7 (2025), 1976–1976. http://doi.org/10.46481/jnsps.2025.1976 doi: 10.46481/jnsps.2025.1976
![]() |
[43] |
R. C. Gupta, P. L. Gupta, R. D. Gupta, Modeling failure time data by Lehman alternatives, Commun. Stat.-Theory Meth., 27 (1998), 887–904. http://doi.org/10.1080/03610929808832134 doi: 10.1080/03610929808832134
![]() |
[44] | D. W. Hosmer, S. Lemeshow, S. May, Applied survival analysis, In: Wiley Series in Probability and Statistics, 60 (2008). |
[45] |
A. Ganguly, D. Mitra, N. Balakrishnan, D. A. Kundu, A flexible model based on piecewise linear approximation for the analysis of left truncated right censored data with covariates, and applications to Worcester Heart Attack Study data and Channing House data, Stat. Med., 43 (2023), 233–255. http://doi.org/10.1002/sim.9954 doi: 10.1002/sim.9954
![]() |
[46] | I. B. Abdul-Moniem, H. F. Abdel-Hameed, On exponentiated Lomax distribution, Int. J. Math. Arch., 3 (2012), 1–7. |
[47] |
E. A. Rady, W. A. Hassanein, T. A. Elhaddad, The power Lomax distribution with an application to bladder cancer data, SpringerPlus, 5 (2016), 1838. http://doi.org/10.1186/s40064-016-3464-y doi: 10.1186/s40064-016-3464-y
![]() |
[48] |
P. E. Oguntunde, M. A. Khaleel, H. I. Okagbue, O. A. Odetunmibi, The Topp-Leone Lomax (TLLo) distribution with applications to airbone communication transceiver dataset, Wirel. Per. Commun., 109 (2019), 349–360. http://doi.org/10.1007/s11277-019-06568-8 doi: 10.1007/s11277-019-06568-8
![]() |
[49] |
A. A. Abiodun, A. I. Ishaq, On Maxwell-Lomax distribution: Properties and applications, Arab J. Basic Appl. Sci., 29 (2022), 221–232. http://doi.org/10.1080/25765299.2022.2093033 doi: 10.1080/25765299.2022.2093033
![]() |
[50] | M. Shabbir, A. Riaz, H. Gull, Rayleigh Lomax distribution, J. Middle East North Africa Sci., 4 (2018), 1–4. |
[51] | P. Embrechts, C. Kluppelberg, T. Mikosch, Modelling extremal events, British Actuar. J., 5 (1999), 465–465. |
[52] | G. P. Patil, M. T. Boswell, S. W. Joshi, M. V. Ratnaparkhi, Dictionary and classified bibliography of statistical distributions in scientific work, Int. Co-operative Publishing House, 1985. |
[53] | C. Kleiber, A guide to the Dagum distributions, In: Modeling Income Distributions and Lorenz Curves. Economic Studies in Equality, Social Exclusion and Well-Being, Springer, 2008, 97–117. https://doi.org/10.1007/978-0-387-72796-7_6 |
[54] |
T. Nombebe, J. Allison, L. Santana, J. Visagie, On fitting the Lomax distribution: A comparison between minimum distance estimators and other estimation techniques, Computation, 11 (2023), 44. http://doi.org/10.3390/computation11030044. doi: 10.3390/computation11030044
![]() |
[55] |
P. Supsermpol, S. Thajchayapong, N. Chiadamrong, Predicting financial performance for listed companies in Thailand during the transition period: A class-based approach using logistic regression and random forest algorithm, J. Open Innov.: Technol. Market Complex., 9 (2023), 100–130. http://doi.org/10.1016/j.joitmc.2023.100130 doi: 10.1016/j.joitmc.2023.100130
![]() |
[56] |
A. Kurani, P. Doshi, A. Vakharia, M. Shah, A comprehensive comparative study of artificial neural network (ANN) and support vector machines (SVM) on stock forecasting, Ann. Data Sci., 10 (2023), 183–208. http://doi.org/10.1007/s40745-021-00344-x doi: 10.1007/s40745-021-00344-x
![]() |
[57] |
C. J. Huang, D. X. Yang, Y. T. Chuang, Application of wrapper approach and composite classifier to the stock trend prediction, Expert Syst. Appl., 34 (2008), 2870–2878. http://doi.org/10.1016/j.eswa.2007.05.035 doi: 10.1016/j.eswa.2007.05.035
![]() |
[58] |
C. Sattarhoff, T. Lux, Thomas, Forecasting the variability of stock index returns with the multifractal random walk model for realized volatilities, Int. J. Forec., 39 (2023), 1678–1697. http://doi.org/10.1016/j.ijforecast.2022.08.009 doi: 10.1016/j.ijforecast.2022.08.009
![]() |
[59] |
M. Chen, Q. Liu, S. Chen, Y. Liu, C. H. Zhang, R. Liu, XGBoost-based algorithm interpretation and application on post-fault transient stability status prediction of power system, IEEE Access, 7 (2019), 13149–13158. http://doi.org/10.1109/ACCESS.2019.2893448 doi: 10.1109/ACCESS.2019.2893448
![]() |
[60] |
M. Heydarian, T. E. Doyle, R. Samavi, MLCM: Multi-label confusion matrix, IEEE Access, 10 (2022), 19083–19095. http://doi.org/10.1109/ACCESS.2022.3151048 doi: 10.1109/ACCESS.2022.3151048
![]() |
[61] |
A. U. Usman, S. B. Abdullahi, Y. L. Liping, B. Alghofaily, A. S. Almasoud, A. Rehman, Financial fraud detection using value-at-risk with machine learning in skewed data, IEEE Access, 12 (2024), 64285–64299. http://doi.org/10.1109/ACCESS.2024.3393154 doi: 10.1109/ACCESS.2024.3393154
![]() |
[62] |
S. Uddin, H. Lu, Confirming the statistically significant superiority of tree-based machine learning algorithms over their counterparts for tabular data, PLos One, 19 (2024), e0301541. https://doi.org/10.1371/journal.pone.0301541 doi: 10.1371/journal.pone.0301541
![]() |
1. | Syed Ghoos Ali Shah, Saqib Hussain, Akhter Rasheed, Zahid Shareef, Maslina Darus, Fanglei Wang, Application of Quasisubordination to Certain Classes of Meromorphic Functions, 2020, 2020, 2314-8888, 1, 10.1155/2020/4581926 | |
2. | Syed Ghoos Ali Shah, Saima Noor, Saqib Hussain, Asifa Tasleem, Akhter Rasheed, Maslina Darus, Rashad Asharabi, Analytic Functions Related with Starlikeness, 2021, 2021, 1563-5147, 1, 10.1155/2021/9924434 | |
3. | Syed Ghoos Ali Shah, Saqib Hussain, Saima Noor, Maslina Darus, Ibrar Ahmad, Teodor Bulboaca, Multivalent Functions Related with an Integral Operator, 2021, 2021, 1687-0425, 1, 10.1155/2021/5882343 | |
4. | Syed Ghoos Ali Shah, Shahbaz Khan, Saqib Hussain, Maslina Darus, q-Noor integral operator associated with starlike functions and q-conic domains, 2022, 7, 2473-6988, 10842, 10.3934/math.2022606 | |
5. | Neelam Khan, Muhammad Arif, Maslina Darus, Abdellatif Ben Makhlouf, Majorization Properties for Certain Subclasses of Meromorphic Function of Complex Order, 2022, 2022, 1099-0526, 1, 10.1155/2022/2385739 | |
6. | Ibrar Ahmad, Syed Ghoos Ali Shah, Saqib Hussain, Maslina Darus, Babar Ahmad, Firdous A. Shah, Fekete-Szegö Functional for Bi-univalent Functions Related with Gegenbauer Polynomials, 2022, 2022, 2314-4785, 1, 10.1155/2022/2705203 | |
7. | F. Müge SAKAR, Syed Ghoos Ali SHAH, Saqib HUSSAİN, Akhter RASHEED, Muhammad NAEEM, q-Meromorphic closed-to-convex functions related with Janowski function, 2022, 71, 1303-5991, 25, 10.31801/cfsuasmas.883970 | |
8. | Syed Ghoos Ali Shah, Sa’ud Al-Sa’di, Saqib Hussain, Asifa Tasleem, Akhter Rasheed, Imran Zulfiqar Cheema, Maslina Darus, Fekete-Szegö functional for a class of non-Bazilevic functions related to quasi-subordination, 2023, 56, 2391-4661, 10.1515/dema-2022-0232 | |
9. | Abdul Basir, Muhammad Adil Khan, Hidayat Ullah, Yahya Almalki, Saowaluck Chasreechai, Thanin Sitthiwirattham, Derivation of Bounds for Majorization Differences by a Novel Method and Its Applications in Information Theory, 2023, 12, 2075-1680, 885, 10.3390/axioms12090885 | |
10. | Shatha S. Alhily, Alina Alb Lupas, Certain Class of Close-to-Convex Univalent Functions, 2023, 15, 2073-8994, 1789, 10.3390/sym15091789 |