AIMS Mathematics, 2019, 4(5): 1403-1415. doi: 10.3934/math.2019.5.1403

Research article

Export file:

Format

  • RIS(for EndNote,Reference Manager,ProCite)
  • BibTex
  • Text

Content

  • Citation Only
  • Citation and Abstract

Some inequalities via Ψ-Riemann-Liouville fractional integrals

School of Natural Sciences, National University of Sciences and Technology, H-12 Islamabad, Pakistan

In this paper, we establish some Hermite-Hadamard type inequalities via $\psi$-Riemann-Liouville fractional integrals for $s$-convex functions in second sense and the functions belongs to the class $P(I)$ $($that is, a class of non-negative functions $\curlyvee:I\rightarrow\mathbb{R}$ which satisfies the condition $\curlyvee(ra_1+(1-r)a_2)\leq \curlyvee(a_1)+\curlyvee(a_2)$, for all $a_1,a_2\in I$ and $r\in[0,1])$. Some applications to special means are also investigated.
  Figure/Table
  Supplementary
  Article Metrics

References

1. M. Avci, H. Kavurmaci, M. E. Ozdemir, New inequalities of Hermite-Hadamard type via sconvex functions in the second sense with applications, Appl. Math. Comput., 217 (2011), 5171-5176.

2. F. Chen, Extension of the Hermite-Hadamard inequality for harmonically convex functions via fractional integrals, Appl. Math. Comput., 268 (2015), 121-128.

3. F. Chen, S. Wu, Several complementary inequalities to inequalities of Hermite-Hadamard type for s-convex functions, J. Nonlinear Sci. Appl., 9 (2016), 705-716.    

4. S. S. Dragomir, S. Fitzpatrick, The Hadamard's inequality for s-convex functions in the second sense, Demonstratio Math., 32 (1999), 687-696.

5. S. S. Dragomir, J. Pecaric, L. E. Persson, Some inequalities of Hadamard type, Soochow J. Math., 21 (1995), 335-341.

6. J. Hadamard, Étude sur les propriétés des fonctions entières et en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., (1893), 171-215.

7. Ch. Hermite, Sur deux limites d'une integrale denie, Mathesis., 3 (1883), 82.

8. H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math., 48 (1994), 100-111.    

9. I. Iscan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2014), 935-942.

10. I. Iscan, Hermite-Hadamard type inequalities for p-convex functions, Int. J. Ana. Appl., 11 (2016), 137-145.

11. M. Jleli, D. O'Regan, B. Samet, On Hermite-Hadamard type inequalities via generalized fractional integrals, Turk. J. Math., 40 (2016), 1221-1230.    

12. A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and Applications of Fractional Differential Equations, Amsterdam: Elsevier Science, 2006.

13. K. Liu, J. Wang, D. O'Regan, On the Hermite-Hadamard type inequality for Ψ-Riemann-Liouville fractional integrals via convex functions, J. Inequal. Appl., 2019 (2019), 27.

14. C. P. Niculescu, L. E. Persson, Convex Functions and Their Applications. A Contemporary Approach, 2 Eds., New York: Springer, 2018.

15. N. Mehreen, M. Anwar, Hermite-Hadamard and Hermite-Hadamard-Fejer type inequalities for p-convex functions via new fractional conformable integral operators, J. Math. Compt. Sci., 19 (2019), 230-240.    

16. N. Mehreen, M. Anwar, Hermite-Hadamard type inequalities via exponentially p-convex functions and exponentially s-convex functions in second sense with applications, J. Inequal. Appl., 2019 (2019), 92.

17. N. Mehreen, M. Anwar, Integral inequalities for some convex functions via generalized fractional integrals, J. Inequal. Appl., 2018 (2018), 208.

18. M. Z. Sarikaya, E. Set, H. Yaldiz, et al., Hermite-Hadamard's inequlities for fractional integrals and related fractional inequalitis, Math. Comput. Modelling, 57 (2013), 2403-2407.    

19. E. Set, M. Z. Sarikaya, A. Gozpinar, Some Hermite-Hadamard type inequalities for convex functions via conformable fractional integrals and related inequalities, Creat. Math. Inform., Accepted paper, 2017.

20. E. Set, M. Z. Sarikaya, M. E. Ozdemir, et al., The Hermite-Hadamard's inequality for some convex functions via fractional integrals and related results, J. Appl. Math. Stat. Inform., 10 (2014), 69-83.    

21. J. V. C. Sousa, E. C. Oliveira, On the Ψ-Hilfer fractional derivative, Commun. Nonlinear Sci. Numer. Simulat., 60 (2018), 72-91.    

© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)

Download full text in PDF

Export Citation

Article outline

Show full outline
Copyright © AIMS Press All Rights Reserved