Research article

Exploring self-supervised feature extraction techniques in the K-views algorithm for texture analysis


  • Received: 10 December 2024 Revised: 04 April 2025 Accepted: 09 April 2025 Published: 16 April 2025
  • This paper explored self-supervised feature extraction in the K-views algorithm for texture analysis, which can reduce the reliance on labeled data. The study compared the supervised, and self-supervised methods, focusing on pair-wise feature comparison to assess the similarity and dissimilarity between texture classes. Among the techniques evaluated, Siamese networks achieved the highest performance, while self-supervised methods like rotation prediction demonstrated competitive results and scalability. Experimental results on KTH-TIPS, Kylberg, and UIUC datasets show the potential of self-supervised approaches in improving texture classification by leveraging feature representations without the need for manually labeled data for the K-views algorithm.

    Citation: Burak Kure, Min Wang, Coskun Cetinkaya, Chih-Cheng Hung. Exploring self-supervised feature extraction techniques in the K-views algorithm for texture analysis[J]. Applied Computing and Intelligence, 2025, 5(1): 112-126. doi: 10.3934/aci.2025008

    Related Papers:

  • This paper explored self-supervised feature extraction in the K-views algorithm for texture analysis, which can reduce the reliance on labeled data. The study compared the supervised, and self-supervised methods, focusing on pair-wise feature comparison to assess the similarity and dissimilarity between texture classes. Among the techniques evaluated, Siamese networks achieved the highest performance, while self-supervised methods like rotation prediction demonstrated competitive results and scalability. Experimental results on KTH-TIPS, Kylberg, and UIUC datasets show the potential of self-supervised approaches in improving texture classification by leveraging feature representations without the need for manually labeled data for the K-views algorithm.



    加载中


    [1] A. Humeau-Heurtier, Texture feature extraction methods: a survey, IEEE Access, 7 (2019), 8975–9000. https://doi.org/10.1109/ACCESS.2018.2890743 doi: 10.1109/ACCESS.2018.2890743
    [2] A. Humeau-Heurtier, Color texture analysis: a survey, IEEE Access, 10 (2022), 107993–108003. https://doi.org/10.1109/ACCESS.2022.3213439 doi: 10.1109/ACCESS.2022.3213439
    [3] L. Armi, S. Fekri-Ershad, Texture image classification based on improved local quinary patterns, Multimed. Tools Appl., 78 (2019), 18995–19018. https://doi.org/10.1007/s11042-019-7207-2 doi: 10.1007/s11042-019-7207-2
    [4] J. Shotton, J. Winn, C. Rother, A. Criminisi, Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context, Int. J. Comput. Vis., 81 (2009), 2–23. https://doi.org/10.1007/s11263-007-0109-1 doi: 10.1007/s11263-007-0109-1
    [5] C. C. Hung, E. Song, Y. Lan, Image texture analysis: foundations, models and algorithms, Cham: Springer International Publishing, 2019. https://doi.org/10.1007/978-3-030-13773-1
    [6] D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, A. Efros, Context encoders: feature learning by inpainting, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 2536–2544. https://doi.org/10.1109/CVPR.2016.278 doi: 10.1109/CVPR.2016.278
    [7] S. Gidaris, P. Singh, N. Komodakis, Unsupervised representation learning by predicting image rotations, arXiv: 1803.07728. https://doi.org/10.48550/arXiv.1803.07728
    [8] R. Haralick, K. Shanmugam, I. Dinstein, Textural features for image classification, IEEE Trans. Syst. Man Cy., SMC-3 (1973), 610–621. https://doi.org/10.1109/TSMC.1973.4309314 doi: 10.1109/TSMC.1973.4309314
    [9] T. Ojala, M. Pietikäinen, D. Harwood, A comparative study of texture measures with classification based on featured distributions, Pattern Recogn., 29 (1996), 51–59. https://doi.org/10.1016/0031-3203(95)00067-4 doi: 10.1016/0031-3203(95)00067-4
    [10] D. Lowe, Object recognition from local scale-invariant features, Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, 1150–1157. https://doi.org/10.1109/ICCV.1999.790410 doi: 10.1109/ICCV.1999.790410
    [11] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, P. IEEE, 86 (1998), 2278–2324. https://doi.org/10.1109/5.726791 doi: 10.1109/5.726791
    [12] J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, R. Shah, Signature verification using a "Siamese" time delay neural network, Proceedings of the 7th International Conference on Neural Information Processing Systems, 1993,737–744.
    [13] M. Fritz, E. Hayman, B. Caputo, J. Eklundh, The KTH-TIPS database, KTH, 2004. Available from: https://www.csc.kth.se/cvap/databases/kth-tips/kth_tips.pdf.
    [14] G. Kylberg, Kylberg texture dataset v. 1.0, Uppsala: Centre for Image Analysis, Swedish University of Agricultural Sciences and Uppsala University, 2011.
    [15] S. Lazebnik, C. Schmid, J. Ponce, A sparse texture representation using local affine regions, IEEE Trans. Pattern Anal., 27 (2005), 1265–1278. https://doi.org/10.1109/TPAMI.2005.151 doi: 10.1109/TPAMI.2005.151
    [16] C. Zhang, Z. Zhang, A survey of recent advances in face detection, Technical report: MSR-TR-2010-66.
    [17] B. Manjunath, W. Ma, Texture features for browsing and retrieval of image data, IEEE Trans. Pattern Anal., 18 (1996), 837–842. https://doi.org/10.1109/34.531803 doi: 10.1109/34.531803
    [18] T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal., 24 (2002), 971–987. https://doi.org/10.1109/TPAMI.2002.1017623 doi: 10.1109/TPAMI.2002.1017623
    [19] R. Haralick, L. Shapiro, Image segmentation techniques, Computer Vision, Graphics, and Image Processing, 29 (1985), 100–132. https://doi.org/10.1016/S0734-189X(85)90153-7 doi: 10.1016/S0734-189X(85)90153-7
    [20] Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature, 521 (2015), 436–444. https://doi.org/10.1038/nature14539 doi: 10.1038/nature14539
    [21] X. Dong, H. Zhou, J. Dong, Texture classification using pair-wise difference pooling-based bilinear convolutional neural networks, IEEE Trans. Image Process., 29 (2020), 8776–8790. https://doi.org/10.1109/TIP.2020.3019185 doi: 10.1109/TIP.2020.3019185
    [22] C. Doersch, A. Gupta, A. Efros, Unsupervised visual representation learning by context prediction, Proceedings of IEEE International Conference on Computer Vision (ICCV), 2015, 1422–1430. https://doi.org/10.1109/ICCV.2015.167 doi: 10.1109/ICCV.2015.167
    [23] S. Fati, E. Senan, A. Azar, Hybrid and deep learning approach for early diagnosis of lower gastrointestinal diseases, Sensors, 22 (2022), 4079. https://doi.org/10.3390/s22114079 doi: 10.3390/s22114079
    [24] S. Nair, M. Subaji, A novel feature fusion for the classification of histopathological carcinoma images, Int. J. Adv. Comput. Sci., 4 (2023), 688–697. https://doi.org/10.14569/ijacsa.2023.0140972 doi: 10.14569/ijacsa.2023.0140972
    [25] P. Sethy, N. Barpanda, A. Rath, S. Behera, Deep feature based rice leaf disease identification using support vector machine, Comput. Electron. Agr., 175 (2020), 105527. https://doi.org/10.1016/j.compag.2020.105527 doi: 10.1016/j.compag.2020.105527
    [26] H. Abdi, L. Williams, Principal component analysis, WIREs Comput. Stat., 2 (2010), 433–459. https://doi.org/10.1002/wics.101 doi: 10.1002/wics.101
    [27] J. Masci, U. Meier, D. Cireşan, J. Schmidhuber, Stacked convolutional auto-encoders for hierarchical feature extraction, In: Artificial neural networks and machine learning–ICANN 2011, Berlin: Springer, 2011, 52–59. https://doi.org/10.1007/978-3-642-21735-7_7
    [28] D. Kingma, M. Welling, Auto-encoding variational bayes, arXiv: 1312.6114. https://doi.org/10.48550/arXiv.1312.6114
    [29] R. Khandelwal, One-shot learning with Siamese network: an intuitive explanation of Siamese network, The Startup, 2021. Available from: https://medium.com/swlh/one-shot-learning-with-siamese-network-1c7404c35fda.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1367) PDF downloads(52) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog