This paper explored self-supervised feature extraction in the K-views algorithm for texture analysis, which can reduce the reliance on labeled data. The study compared the supervised, and self-supervised methods, focusing on pair-wise feature comparison to assess the similarity and dissimilarity between texture classes. Among the techniques evaluated, Siamese networks achieved the highest performance, while self-supervised methods like rotation prediction demonstrated competitive results and scalability. Experimental results on KTH-TIPS, Kylberg, and UIUC datasets show the potential of self-supervised approaches in improving texture classification by leveraging feature representations without the need for manually labeled data for the K-views algorithm.
Citation: Burak Kure, Min Wang, Coskun Cetinkaya, Chih-Cheng Hung. Exploring self-supervised feature extraction techniques in the K-views algorithm for texture analysis[J]. Applied Computing and Intelligence, 2025, 5(1): 112-126. doi: 10.3934/aci.2025008
This paper explored self-supervised feature extraction in the K-views algorithm for texture analysis, which can reduce the reliance on labeled data. The study compared the supervised, and self-supervised methods, focusing on pair-wise feature comparison to assess the similarity and dissimilarity between texture classes. Among the techniques evaluated, Siamese networks achieved the highest performance, while self-supervised methods like rotation prediction demonstrated competitive results and scalability. Experimental results on KTH-TIPS, Kylberg, and UIUC datasets show the potential of self-supervised approaches in improving texture classification by leveraging feature representations without the need for manually labeled data for the K-views algorithm.
| [1] |
A. Humeau-Heurtier, Texture feature extraction methods: a survey, IEEE Access, 7 (2019), 8975–9000. https://doi.org/10.1109/ACCESS.2018.2890743 doi: 10.1109/ACCESS.2018.2890743
|
| [2] |
A. Humeau-Heurtier, Color texture analysis: a survey, IEEE Access, 10 (2022), 107993–108003. https://doi.org/10.1109/ACCESS.2022.3213439 doi: 10.1109/ACCESS.2022.3213439
|
| [3] |
L. Armi, S. Fekri-Ershad, Texture image classification based on improved local quinary patterns, Multimed. Tools Appl., 78 (2019), 18995–19018. https://doi.org/10.1007/s11042-019-7207-2 doi: 10.1007/s11042-019-7207-2
|
| [4] |
J. Shotton, J. Winn, C. Rother, A. Criminisi, Textonboost for image understanding: multi-class object recognition and segmentation by jointly modeling texture, layout, and context, Int. J. Comput. Vis., 81 (2009), 2–23. https://doi.org/10.1007/s11263-007-0109-1 doi: 10.1007/s11263-007-0109-1
|
| [5] | C. C. Hung, E. Song, Y. Lan, Image texture analysis: foundations, models and algorithms, Cham: Springer International Publishing, 2019. https://doi.org/10.1007/978-3-030-13773-1 |
| [6] |
D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, A. Efros, Context encoders: feature learning by inpainting, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, 2536–2544. https://doi.org/10.1109/CVPR.2016.278 doi: 10.1109/CVPR.2016.278
|
| [7] | S. Gidaris, P. Singh, N. Komodakis, Unsupervised representation learning by predicting image rotations, arXiv: 1803.07728. https://doi.org/10.48550/arXiv.1803.07728 |
| [8] |
R. Haralick, K. Shanmugam, I. Dinstein, Textural features for image classification, IEEE Trans. Syst. Man Cy., SMC-3 (1973), 610–621. https://doi.org/10.1109/TSMC.1973.4309314 doi: 10.1109/TSMC.1973.4309314
|
| [9] |
T. Ojala, M. Pietikäinen, D. Harwood, A comparative study of texture measures with classification based on featured distributions, Pattern Recogn., 29 (1996), 51–59. https://doi.org/10.1016/0031-3203(95)00067-4 doi: 10.1016/0031-3203(95)00067-4
|
| [10] |
D. Lowe, Object recognition from local scale-invariant features, Proceedings of the Seventh IEEE International Conference on Computer Vision, 1999, 1150–1157. https://doi.org/10.1109/ICCV.1999.790410 doi: 10.1109/ICCV.1999.790410
|
| [11] |
Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, P. IEEE, 86 (1998), 2278–2324. https://doi.org/10.1109/5.726791 doi: 10.1109/5.726791
|
| [12] | J. Bromley, I. Guyon, Y. LeCun, E. Säckinger, R. Shah, Signature verification using a "Siamese" time delay neural network, Proceedings of the 7th International Conference on Neural Information Processing Systems, 1993,737–744. |
| [13] | M. Fritz, E. Hayman, B. Caputo, J. Eklundh, The KTH-TIPS database, KTH, 2004. Available from: https://www.csc.kth.se/cvap/databases/kth-tips/kth_tips.pdf. |
| [14] | G. Kylberg, Kylberg texture dataset v. 1.0, Uppsala: Centre for Image Analysis, Swedish University of Agricultural Sciences and Uppsala University, 2011. |
| [15] |
S. Lazebnik, C. Schmid, J. Ponce, A sparse texture representation using local affine regions, IEEE Trans. Pattern Anal., 27 (2005), 1265–1278. https://doi.org/10.1109/TPAMI.2005.151 doi: 10.1109/TPAMI.2005.151
|
| [16] | C. Zhang, Z. Zhang, A survey of recent advances in face detection, Technical report: MSR-TR-2010-66. |
| [17] |
B. Manjunath, W. Ma, Texture features for browsing and retrieval of image data, IEEE Trans. Pattern Anal., 18 (1996), 837–842. https://doi.org/10.1109/34.531803 doi: 10.1109/34.531803
|
| [18] |
T. Ojala, M. Pietikainen, T. Maenpaa, Multiresolution gray-scale and rotation invariant texture classification with local binary patterns, IEEE Trans. Pattern Anal., 24 (2002), 971–987. https://doi.org/10.1109/TPAMI.2002.1017623 doi: 10.1109/TPAMI.2002.1017623
|
| [19] |
R. Haralick, L. Shapiro, Image segmentation techniques, Computer Vision, Graphics, and Image Processing, 29 (1985), 100–132. https://doi.org/10.1016/S0734-189X(85)90153-7 doi: 10.1016/S0734-189X(85)90153-7
|
| [20] |
Y. LeCun, Y. Bengio, G. Hinton, Deep learning, Nature, 521 (2015), 436–444. https://doi.org/10.1038/nature14539 doi: 10.1038/nature14539
|
| [21] |
X. Dong, H. Zhou, J. Dong, Texture classification using pair-wise difference pooling-based bilinear convolutional neural networks, IEEE Trans. Image Process., 29 (2020), 8776–8790. https://doi.org/10.1109/TIP.2020.3019185 doi: 10.1109/TIP.2020.3019185
|
| [22] |
C. Doersch, A. Gupta, A. Efros, Unsupervised visual representation learning by context prediction, Proceedings of IEEE International Conference on Computer Vision (ICCV), 2015, 1422–1430. https://doi.org/10.1109/ICCV.2015.167 doi: 10.1109/ICCV.2015.167
|
| [23] |
S. Fati, E. Senan, A. Azar, Hybrid and deep learning approach for early diagnosis of lower gastrointestinal diseases, Sensors, 22 (2022), 4079. https://doi.org/10.3390/s22114079 doi: 10.3390/s22114079
|
| [24] |
S. Nair, M. Subaji, A novel feature fusion for the classification of histopathological carcinoma images, Int. J. Adv. Comput. Sci., 4 (2023), 688–697. https://doi.org/10.14569/ijacsa.2023.0140972 doi: 10.14569/ijacsa.2023.0140972
|
| [25] |
P. Sethy, N. Barpanda, A. Rath, S. Behera, Deep feature based rice leaf disease identification using support vector machine, Comput. Electron. Agr., 175 (2020), 105527. https://doi.org/10.1016/j.compag.2020.105527 doi: 10.1016/j.compag.2020.105527
|
| [26] |
H. Abdi, L. Williams, Principal component analysis, WIREs Comput. Stat., 2 (2010), 433–459. https://doi.org/10.1002/wics.101 doi: 10.1002/wics.101
|
| [27] | J. Masci, U. Meier, D. Cireşan, J. Schmidhuber, Stacked convolutional auto-encoders for hierarchical feature extraction, In: Artificial neural networks and machine learning–ICANN 2011, Berlin: Springer, 2011, 52–59. https://doi.org/10.1007/978-3-642-21735-7_7 |
| [28] | D. Kingma, M. Welling, Auto-encoding variational bayes, arXiv: 1312.6114. https://doi.org/10.48550/arXiv.1312.6114 |
| [29] | R. Khandelwal, One-shot learning with Siamese network: an intuitive explanation of Siamese network, The Startup, 2021. Available from: https://medium.com/swlh/one-shot-learning-with-siamese-network-1c7404c35fda. |