We present a method to construct optimal clustering via a sequence of merge steps. We formulate the merge-based clustering as a minimum redundancy search tree, and then search the optimal clustering by a branch-and-bound technique. Optimal clustering is found regardless of the objective function used. We also consider two suboptimal polynomial time variants based on the proposed branch-and-bound technique. However, all variants are slow and has merely theoretical interest. We discuss the reasons for the results.
Citation: Pasi Fränti, Olli Virmajoki. Optimal clustering by merge-based branch-and-bound[J]. Applied Computing and Intelligence, 2022, 2(1): 63-82. doi: 10.3934/aci.2022004
[1] | Kun-Peng Jin, Can Liu . RETRACTED ARTICLE: Decay estimates for the wave equation with partial boundary memory damping. Networks and Heterogeneous Media, 2024, 19(3): 1402-1423. doi: 10.3934/nhm.2024060 |
[2] | Yaru Xie, Genqi Xu . The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks and Heterogeneous Media, 2016, 11(3): 527-543. doi: 10.3934/nhm.2016008 |
[3] | Ye Sun, Daniel B. Work . Error bounds for Kalman filters on traffic networks. Networks and Heterogeneous Media, 2018, 13(2): 261-295. doi: 10.3934/nhm.2018012 |
[4] | Zhong-Jie Han, Enrique Zuazua . Decay rates for heat-wave planar networks. Networks and Heterogeneous Media, 2016, 11(4): 655-692. doi: 10.3934/nhm.2016013 |
[5] | Abdelaziz Soufyane, Adel M. Al-Mahdi, Mohammad M. Al-Gharabli, Imad Kissami, Mostafa Zahri . Stability results of a swelling porous-elastic system with two nonlinear variable exponent damping. Networks and Heterogeneous Media, 2024, 19(1): 430-455. doi: 10.3934/nhm.2024019 |
[6] | Clinton Innes, Razvan C. Fetecau, Ralf W. Wittenberg . Modelling heterogeneity and an open-mindedness social norm in opinion dynamics. Networks and Heterogeneous Media, 2017, 12(1): 59-92. doi: 10.3934/nhm.2017003 |
[7] | Serge Nicaise, Julie Valein . Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Networks and Heterogeneous Media, 2007, 2(3): 425-479. doi: 10.3934/nhm.2007.2.425 |
[8] | Gildas Besançon, Didier Georges, Zohra Benayache . Towards nonlinear delay-based control for convection-like distributed systems: The example of water flow control in open channel systems. Networks and Heterogeneous Media, 2009, 4(2): 211-221. doi: 10.3934/nhm.2009.4.211 |
[9] |
Linglong Du .
Long time behavior for the visco-elastic damped wave equation in |
[10] | Yacine Chitour, Guilherme Mazanti, Mario Sigalotti . Stability of non-autonomous difference equations with applications to transport and wave propagation on networks. Networks and Heterogeneous Media, 2016, 11(4): 563-601. doi: 10.3934/nhm.2016010 |
We present a method to construct optimal clustering via a sequence of merge steps. We formulate the merge-based clustering as a minimum redundancy search tree, and then search the optimal clustering by a branch-and-bound technique. Optimal clustering is found regardless of the objective function used. We also consider two suboptimal polynomial time variants based on the proposed branch-and-bound technique. However, all variants are slow and has merely theoretical interest. We discuss the reasons for the results.
The journal retracts the paper entitled "Decay estimates for the wave equation with partial boundary memory damping" [1].
After the article was published, the authors decided to withdraw the article.
This retraction was approved by the Editor in Chief of the journal Networks and Heterogeneous Media.
[1] | B. S. Everitt, Cluster Analysis, 3rd ed., Edward Arnold, London / Halsted Press, New York, 1993. ISBN 978-0340584798 / 978-0470220436 |
[2] | L. Kaufman, P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis, John Wiley Sons, New York, 1990. https://doi.org/10.1002/9780470316801 |
[3] | R. Dubes, A. Jain, Algorithms for Clustering Data, Prentice-Hall, Englewood Cliffs, NJ, 1988. ISBN 978-0-13-022278-7 |
[4] | A. Gersho, R. M. Gray, Vector Quantization and Signal Compression, Kluwer Academic Publishers, Dordrecht, 1992. https://doi.org/10.1007/978-1-4615-3626-0 |
[5] |
M. R. Garey, D. S. Johnson, H. S. Witsenhausen, The complexity of the generalized Lloyd-Max problem, IEEE Trans. Inf. Theory, 28 (1982), 255-256. https://doi.org/10.1109/TIT.1982.1056488 doi: 10.1109/TIT.1982.1056488
![]() |
[6] |
J. H. Ward, Hierarchical grouping to optimize an objective function, J. Amer. Statist. Assoc., 58 (1963), 236-244. https://doi.org/10.1080/01621459.1963.10500845 doi: 10.1080/01621459.1963.10500845
![]() |
[7] |
W. H. Equitz, A new vector quantization clustering algorithm, IEEE Trans. Acoust. Speech, Signal Processing, 37 (1989), 1568-1575. https://doi.org/10.1109/29.35395 doi: 10.1109/29.35395
![]() |
[8] | P. Fränti, O. Virmajoki, T. Kaukoranta, Branch-and-bound technique for solving optimal clustering, Int. Conf. on Pattern Recognition (ICPR'02), Québec, Canada, 2 (2002), 232-235. https://doi.org/10.1109/ICPR.2002.1048281 |
[9] | P. Fränti, O. Virmajoki, Polynomial-time clustering algorithms derived from branch-and-bound technique, Advanced Concepts for Intelligent Vision Systems (ACIVS'2002), Gent, Belgium, (2002), 118-123. |
[10] |
W. L. G. Koontz, P. M. Narendra, K. Fukunaga, A branch and bound clustering algorithm, IEEE Trans. Comput., 24 (1975), 908-915. https://doi.org/10.1109/T-C.1975.224336 doi: 10.1109/T-C.1975.224336
![]() |
[11] |
C.-H. Cheng, A branch and bound clustering algorithm, IEEE Trans. SMC, 25 (1995), 895-898. https://doi.org/10.1109/21.376504 doi: 10.1109/21.376504
![]() |
[12] |
G. Palubeckis, A branch-and-bound approach using polyhedral results for a clustering problem, INFORMS Journal of Computing, 9 (1997), 30-42. https://doi.org/10.1287/ijoc.9.1.30 doi: 10.1287/ijoc.9.1.30
![]() |
[13] |
L. S. Iyer, J. E. Aronson, A parallel branch-and-bound method for cluster analysis, Ann. Oper. Res., 90 (1999), 65-86. https://doi.org/10.1023/A:1018925018009 doi: 10.1023/A:1018925018009
![]() |
[14] |
M. J. Brusco, A repetitive branch-and-bound procedure for minimum within-cluster sums of squares partitioning, Psychometrika, 71 (2006), 347-363. https://doi.org/10.1007/s11336-004-1218-1 doi: 10.1007/s11336-004-1218-1
![]() |
[15] | G. Kaminka, Repetitive branch-and-bound using constraint programming for constrained minimum sum-of-squares clustering, European Conf. on Artificial Intelligence, The Hague, The Netherlands - Including Prestigious Applications of Artificial Intelligence (PAIS 2016), 285 (2016), 462-470. IOS Press. https://doi.org/10.3233/978-1-61499-672-9-462 |
[16] |
J. Bennell, G. Scheithauer, Y. Stoyan, T. Romanova, A. Pankratov, Optimal clustering of a pair of irregular objects, J. Glob. Optim., 61 (2015), 497-524. https://doi.org/10.1007/s10898-014-0192-0 doi: 10.1007/s10898-014-0192-0
![]() |
[17] |
Y. Han, L. Zhu, Z. Cheng, J. Li, X. Liu, Discrete optimal graph clustering, IEEE Trans. Cybern., 50 (2018), 1697-1710. https://doi.org/10.1109/TCYB.2018.2881539 doi: 10.1109/TCYB.2018.2881539
![]() |
[18] |
S. Boluki, S. Z. Dadaneh, X. Qian, E. R. Dougherty, Optimal clustering with missing values, BMC bioinformatics, 20 (2019), 1-10. https://doi.org/10.1186/s12859-019-2832-3 doi: 10.1186/s12859-019-2832-3
![]() |
[19] |
T. Feder, D. Greene, Optimal algorithms for approximate clustering, ACM Symposium on Theory of Computing, (1988), 434-444. https://doi.org/10.1145/62212.62255 doi: 10.1145/62212.62255
![]() |
[20] |
R. R. Mettu, C. G. Plaxton, Optimal time bounds for approximate clustering, Machine Learning, 56 (2004), 35-60. https://doi.org/10.1023/B:MACH.0000033114.18632.e0 doi: 10.1023/B:MACH.0000033114.18632.e0
![]() |
[21] |
Z. Wu, R. Leahy, An optimal graph theoretic approach to data clustering: theory and its application to image segmentation, IEEE T. Pattern Anal., 15 (1993), 1101-1113. https://doi.org/10.1109/34.244673 doi: 10.1109/34.244673
![]() |
[22] |
L. Gao, A. L. Rosenberg, R. K. Sitaraman, Optimal clustering of tree-sweep computations for high-latency parallel environments, IEEE T. Parall. Distr., 10 (1999), 813-824. https://doi.org/10.1109/71.790599 doi: 10.1109/71.790599
![]() |
[23] |
X. Wu, Optimal quantization by matrix searching, J. Algorithms, 12 (1991), 663-673. https://doi.org/10.1016/0196-6774(91)90039-2 doi: 10.1016/0196-6774(91)90039-2
![]() |
[24] |
P. Fränti, T. Kaukoranta, D.-F. Shen, K.-S. Chang, Fast and memory efficient implementation of the exact PNN, IEEE Trans. Image Process., 9 (2000), 773-777. https://doi.org/10.1109/83.841516 doi: 10.1109/83.841516
![]() |
[25] | H. Späth, Cluster Analysis Algorithms for Data Reduction and Classification of Objects, Ellis Horwood Limited, West Sussex, 1980. ISBN 978-0853121411 |
[26] | R. L. Graham, D. E. Knuth, O. Patashnik, Concrete Mathematics – a Foundation for Computer Science, 2nd ed., Addison-Wesley, 1994. ISBN 978-0201558029 |
[27] |
T. Kaukoranta, P. Fränti, O. Nevalainen, Vector quantization by lazy pairwise nearest neighbor method, Optical Engineering, 38 (1999), 1862-1868. https://doi.org/10.1117/1.602251 doi: 10.1117/1.602251
![]() |
[28] |
Y. Linde, A. Buzo, R. M. Gray, An algorithm for vector quantizer design, IEEE Trans. on Comm., 28 (1980), 84-95. https://doi.org/10.1109/TCOM.1980.1094577 doi: 10.1109/TCOM.1980.1094577
![]() |
[29] |
P. Fränti, O. Virmajoki, Iterative shrinking method for clustering problems, Pattern Recogn., 39 (2006), 761-765. https://doi.org/10.1016/j.patcog.2005.09.012 doi: 10.1016/j.patcog.2005.09.012
![]() |
[30] |
T. F. Gonzalez, Clustering to minimize the maximum intercluster distance, Theor. Comput. Sci., 38 (1985), 293-306. https://doi.org/10.1016/0304-3975(85)90224-5 doi: 10.1016/0304-3975(85)90224-5
![]() |
[31] |
P. Fränti, S. Sami, How much can k-means be improved by using better initialization and repeats? Pattern Recogn., 93 (2019), 95-112. https://doi.org/10.1016/j.patcog.2019.04.014 doi: 10.1016/j.patcog.2019.04.014
![]() |
[32] |
P. Fränti, N. Teemu, M. Yuan, Converting MST to TSP path by branch elimination, Applied Sciences, 11 (2020), 177. https://doi.org/10.3390/app11010177 doi: 10.3390/app11010177
![]() |
[33] |
P. Fränti, Efficiency of random swap clustering, Journal of Big Data, 5 (2018) 1-29. https://doi.org/10.1186/s40537-018-0122-y doi: 10.1186/s40537-018-0122-y
![]() |