Loading [MathJax]/jax/output/SVG/jax.js

Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks

  • Received: 01 October 2006 Revised: 01 May 2007
  • Primary: 35L05, 93D15; Secondary: 35L10.

  • In this paper we consider the wave equation on 1-d networks with a delay term in the boundary and/or transmission conditions. We first show the well posedness of the problem and the decay of an appropriate energy. We give a necessary and sufficient condition that guarantees the decay to zero of the energy. We further give sufficient conditions that lead to exponential or polynomial stability of the solution. Some examples are also given.

    Citation: Serge Nicaise, Julie Valein. Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks[J]. Networks and Heterogeneous Media, 2007, 2(3): 425-479. doi: 10.3934/nhm.2007.2.425

    Related Papers:

    [1] Serge Nicaise, Julie Valein . Stabilization of the wave equation on 1-d networks with a delay term in the nodal feedbacks. Networks and Heterogeneous Media, 2007, 2(3): 425-479. doi: 10.3934/nhm.2007.2.425
    [2] Yaru Xie, Genqi Xu . The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls. Networks and Heterogeneous Media, 2016, 11(3): 527-543. doi: 10.3934/nhm.2016008
    [3] Yacine Chitour, Guilherme Mazanti, Mario Sigalotti . Stability of non-autonomous difference equations with applications to transport and wave propagation on networks. Networks and Heterogeneous Media, 2016, 11(4): 563-601. doi: 10.3934/nhm.2016010
    [4] Zhong-Jie Han, Enrique Zuazua . Decay rates for 1d heat-wave planar networks. Networks and Heterogeneous Media, 2016, 11(4): 655-692. doi: 10.3934/nhm.2016013
    [5] Dingwen Deng, Jingliang Chen . Explicit Richardson extrapolation methods and their analyses for solving two-dimensional nonlinear wave equation with delays. Networks and Heterogeneous Media, 2023, 18(1): 412-443. doi: 10.3934/nhm.2023017
    [6] Zhong-Jie Han, Gen-Qi Xu . Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs. Networks and Heterogeneous Media, 2011, 6(2): 297-327. doi: 10.3934/nhm.2011.6.297
    [7] Martin Gugat, Mario Sigalotti . Stars of vibrating strings: Switching boundary feedback stabilization. Networks and Heterogeneous Media, 2010, 5(2): 299-314. doi: 10.3934/nhm.2010.5.299
    [8] Wen Shen . Traveling wave profiles for a Follow-the-Leader model for traffic flow with rough road condition. Networks and Heterogeneous Media, 2018, 13(3): 449-478. doi: 10.3934/nhm.2018020
    [9] Xiaoqian Gong, Alexander Keimer . On the well-posedness of the "Bando-follow the leader" car following model and a time-delayed version. Networks and Heterogeneous Media, 2023, 18(2): 775-798. doi: 10.3934/nhm.2023033
    [10] Yinlin Ye, Hongtao Fan, Yajing Li, Ao Huang, Weiheng He . An artificial neural network approach for a class of time-fractional diffusion and diffusion-wave equations. Networks and Heterogeneous Media, 2023, 18(3): 1083-1104. doi: 10.3934/nhm.2023047
  • In this paper we consider the wave equation on 1-d networks with a delay term in the boundary and/or transmission conditions. We first show the well posedness of the problem and the decay of an appropriate energy. We give a necessary and sufficient condition that guarantees the decay to zero of the energy. We further give sufficient conditions that lead to exponential or polynomial stability of the solution. Some examples are also given.


  • This article has been cited by:

    1. Serge Nicaise, Julie Valein, Quasi exponential decay of a finite difference space discretization of the 1-d wave equation by pointwise interior stabilization, 2010, 32, 1019-7168, 303, 10.1007/s10444-008-9108-1
    2. Zhong-Jie Han, Gen-Qi Xu, Exponential stability of Timoshenko beam system with delay terms in boundary feedbacks, 2011, 17, 1292-8119, 552, 10.1051/cocv/2010009
    3. Gilbert Bayili, Akram Ben Aissa, Serge Nicaise, Same decay rate of second order evolution equations with or without delay, 2020, 141, 01676911, 104700, 10.1016/j.sysconle.2020.104700
    4. YingFeng Shang, Genqi Xu, Dynamic control of an Euler–Bernoulli equation with time-delay and disturbance in the boundary control, 2019, 92, 0020-7179, 27, 10.1080/00207179.2017.1334264
    5. Kaïs Ammari, Serge Nicaise, 2015, Chapter 5, 978-3-319-10899-5, 147, 10.1007/978-3-319-10900-8_5
    6. H. El Boujaoui, Uniform interior stabilization for the finite difference fully-discretization of the 1-D wave equation, 2018, 29, 1012-9405, 557, 10.1007/s13370-018-0559-3
    7. Serge Nicaise, Internal stabilization of a Mindlin-Timoshenko model by interior feedbacks, 2011, 1, 2156-8499, 331, 10.3934/mcrf.2011.1.331
    8. E. M. Ait Benhassi, J. E. Benyaich, H. Bouslous, L. Maniar, Decay rates for delayed abstract thermoelastic systems with Cattaneo law, 2017, 95, 0037-1912, 222, 10.1007/s00233-017-9880-7
    9. Shun-Tang Wu, Blow-Up of Solution for A Viscoelastic Wave Equation with Delay, 2019, 39, 0252-9602, 329, 10.1007/s10473-019-0124-7
    10. Denis Mercier, Virginie Régnier, Boundary controllability of a chain of serially connected Euler-Bernoulli beams with interior masses, 2009, 60, 0010-0757, 307, 10.1007/BF03191374
    11. Kaïs Ammari, Denis Mercier, Virginie Régnier, Julie Valein, Spectral analysis and stabilization of a chain of serially connected Euler-Bernoulli beams and strings, 2012, 11, 1553-5258, 785, 10.3934/cpaa.2012.11.785
    12. Kaïs Ammari, Denis Mercier, Boundary feedback stabilization of a chain of serially connected strings, 2015, 4, 2163-2480, 1, 10.3934/eect.2015.4.1
    13. Zhong-Jie Han, Gen-Qi Xu, Exponential stabilisation of a simple tree-shaped network of Timoshenko beams system, 2010, 83, 0020-7179, 1485, 10.1080/00207179.2010.481767
    14. Jilong Wu, Yingfeng Shang, Exponential Stability of the Euler-Bernoulli Beam Equation with External Disturbance and Output Feedback Time-Delay, 2019, 32, 1009-6124, 542, 10.1007/s11424-018-7182-0
    15. Zhong-Jie Han, Gen-Qi Xu, Stabilization and SDG condition of serially connected vibrating strings system with discontinuous displacement, 2012, 14, 15618625, 95, 10.1002/asjc.218
    16. Yaru Xie, Genqi Xu, The exponential decay rate of generic tree of 1-d wave equations with boundary feedback controls, 2016, 11, 1556-1801, 527, 10.3934/nhm.2016008
    17. Z. Abbas, S. Nicaise, Polynomial decay rate for a wave equation with general acoustic boundary feedback laws, 2013, 61, 1575-9822, 19, 10.1007/s40324-013-0002-5
    18. Hugo Lhachemi, Christophe Prieur, Robert Shorten, In-Domain Stabilization of Block Diagonal Infinite-Dimensional Systems With Time-Varying Input Delays, 2021, 66, 0018-9286, 6017, 10.1109/TAC.2021.3059103
    19. Xiu Fang Liu, Gen Qi Xu, Exponential Stabilization for Timoshenko Beam with Distributed Delay in the Boundary Control, 2013, 2013, 1085-3375, 1, 10.1155/2013/726794
    20. Li Zhang, Gen Qi Xu, Nikos E Mastorakis, A new approach for stabilization of Heat-ODE cascaded systems with boundary delayed control, 2022, 39, 0265-0754, 112, 10.1093/imamci/dnab037
    21. Serge Nicaise, Julie Valein, A remark on the stabilization of the 1-d wave equation, 2010, 348, 1631073X, 47, 10.1016/j.crma.2009.11.015
    22. Markus Dick, Martin Gugat, Gunter Leugering, 2012, Feedback stabilization of quasilinear hyperbolic systems with varying delays, 978-1-4673-2124-2, 125, 10.1109/MMAR.2012.6347931
    23. Jamilu Hashim Hassan, Nasser-eddine Tatar, Optimal stability for a viscoelastic neutral differential problem, 2022, 34, 0897-3962, 10.1216/jie.2022.34.335
    24. Julie Valein, Enrique Zuazua, Stabilization of the Wave Equation on 1-d Networks, 2009, 48, 0363-0129, 2771, 10.1137/080733590
    25. Qilong Gu, Tatsien Li, Exact boundary controllability for quasilinear wave equations in a planar tree-like network of strings, 2009, 26, 0294-1449, 2373, 10.1016/j.anihpc.2009.05.002
    26. Lea Sirota, Anuradha M. Annaswamy, Modeling and Control of Wave Propagation in a Ring With Applications to Power Grids, 2019, 64, 0018-9286, 3676, 10.1109/TAC.2018.2889064
    27. Charlotte Rodriguez, Networks of geometrically exact beams: Well-posedness and stabilization, 2022, 12, 2156-8472, 49, 10.3934/mcrf.2021002
    28. Dongyi Liu, Genqi Xu, 2010, Stability of a controlled strings network with a circuit, 978-1-4244-5181-4, 2683, 10.1109/CCDC.2010.5498740
    29. Martin Gugat, Markus Dick, Time-delayed boundary feedback stabilization of the isothermal Euler equations with friction, 2011, 1, 2156-8499, 469, 10.3934/mcrf.2011.1.469
    30. Xiaoxuan Feng, Genqi Xu, Yunlan Chen, Rapid stabilisation of an Euler–Bernoulli beam with the internal delay control, 2019, 92, 0020-7179, 42, 10.1080/00207179.2017.1286693
    31. Gilbert Bayili, Serge Nicaise, Roland Silga, Rational energy decay rate for the wave equation with delay term on the dynamical control, 2021, 495, 0022247X, 124693, 10.1016/j.jmaa.2020.124693
    32. Soumaya Amara, Uniform exponential decay of the energy for a fully discrete wave equation with point‐wise dissipation, 2023, 0170-4214, 10.1002/mma.9099
    33. Ying Feng Shang, Gen Qi Xu, Dynamic feedback control and exponential stabilization of a compound system, 2015, 422, 0022247X, 858, 10.1016/j.jmaa.2014.09.013
    34. Zhong-Jie Han, Enrique Zuazua, Decay rates for 1d heat-wave planar networks, 2016, 11, 1556-1801, 655, 10.3934/nhm.2016013
    35. Kaïs Ammari, Farhat Shel, 2022, Chapter 2, 978-3-030-86350-0, 15, 10.1007/978-3-030-86351-7_2
    36. Ying Feng Shang, Gen Qi Xu, Stabilization of an Euler–Bernoulli beam with input delay in the boundary control, 2012, 61, 01676911, 1069, 10.1016/j.sysconle.2012.07.012
    37. Yaru Xie, Genqi Xu, 2017, The orientation control of the tree-shaped strings network, 978-988-15639-3-4, 1551, 10.23919/ChiCC.2017.8027571
    38. Yanni Guo, Genqi Xu, 2012, Stabilization of wave equations with boundary delays and non-collocated feedback controls, 978-1-4577-2074-1, 3142, 10.1109/CCDC.2012.6244495
    39. Kaïs Ammari, Serge Nicaise, 2015, Chapter 3, 978-3-319-10899-5, 61, 10.1007/978-3-319-10900-8_3
    40. Xiu-Fang Liu, Gen-Qi Xu, Exponential stabilization of Timoshenko beam with input and output delays, 2016, 6, 2156-8472, 271, 10.3934/mcrf.2016004
    41. Yaxuan Zhang, Genqi Xu, Controller design for bush-type 1-d wave networks, 2012, 18, 1292-8119, 208, 10.1051/cocv/2010050
    42. D. Mercier, V. Régnier, Control of a network of Euler–Bernoulli beams, 2008, 342, 0022247X, 874, 10.1016/j.jmaa.2007.12.062
    43. Hugo Lhachemi, Robert Shorten, Christophe Prieur, Control Law Realification for the Feedback Stabilization of a Class of Diagonal Infinite-Dimensional Systems With Delay Boundary Control, 2019, 3, 2475-1456, 930, 10.1109/LCSYS.2019.2919309
    44. Zhong-Jie Han, Gen-Qi Xu, Output feedback stabilisation of a tree-shaped network of vibrating strings with non-collocated observation, 2011, 84, 0020-7179, 458, 10.1080/00207179.2011.561441
    45. Zhong-Jie Han, Enrique Zuazua, Decay rates for elastic-thermoelastic star-shaped networks, 2017, 12, 1556-181X, 461, 10.3934/nhm.2017020
    46. Farhat Shel, Exponential stability of a network of elastic and thermoelastic materials, 2013, 36, 01704214, 869, 10.1002/mma.2644
    47. Yan-Fang Li, Zhong-Jie Han, Gen-Qi Xu, Explicit decay rate for coupled string-beam system with localized frictional damping, 2018, 78, 08939659, 51, 10.1016/j.aml.2017.11.003
    48. Yaxuan Zhang, Genqi Xu, Exponential and Super Stability of a Wave Network, 2013, 124, 0167-8019, 19, 10.1007/s10440-012-9768-1
    49. Marjeta Kramar Fijavž, Delio Mugnolo, Serge Nicaise, Linear hyperbolic systems on networks: well-posedness and qualitative properties, 2021, 27, 1292-8119, 7, 10.1051/cocv/2020091
    50. Hugo Lhachemi, Christophe Prieur, Feedback Stabilization of a Class of Diagonal Infinite-Dimensional Systems With Delay Boundary Control, 2021, 66, 0018-9286, 105, 10.1109/TAC.2020.2975003
    51. Li Zhang, Gen Qi Xu, Hao Chen, Uniform stabilization of 1-d wave equation with anti-damping and delayed control, 2020, 357, 00160032, 12473, 10.1016/j.jfranklin.2020.09.034
    52. Hai-E. Zhang, Gen-Qi Xu, Hao Chen, Min Li, Stability of a Variable Coefficient Star-Shaped Network with Distributed Delay, 2022, 35, 1009-6124, 2077, 10.1007/s11424-022-1157-x
    53. Yanni Guo, Yunlan Chen, Genqi Xu, Yaxuan Zhang, Exponential stabilization of variable coefficient wave equations in a generic tree with small time-delays in the nodal feedbacks, 2012, 395, 0022247X, 727, 10.1016/j.jmaa.2012.05.079
    54. Dongyi Liu, Rumeng Han, Genqi Xu, Controller design for distributed parameter systems with time delays in the boundary feedbacks via the backstepping method, 2020, 93, 0020-7179, 1220, 10.1080/00207179.2018.1500717
    55. Christophe Prieur, Emmanuel Trelat, Feedback Stabilization of a 1-D Linear Reaction–Diffusion Equation With Delay Boundary Control, 2019, 64, 0018-9286, 1415, 10.1109/TAC.2018.2849560
    56. Hugo Lhachemi, Christophe Prieur, Robert Shorten, Robustness of constant-delay predictor feedback for in-domain stabilization of reaction–diffusion PDEs with time- and spatially-varying input delays, 2021, 123, 00051098, 109347, 10.1016/j.automatica.2020.109347
    57. E. M. Ait Benhassi, K. Ammari, S. Boulite, L. Maniar, Feedback stabilization of a class of evolution equations with delay, 2009, 9, 1424-3199, 103, 10.1007/s00028-009-0004-z
    58. Genqi Xu, Hongxia Wang, Stabilisation of Timoshenko beam system with delay in the boundary control, 2013, 86, 0020-7179, 1165, 10.1080/00207179.2013.787494
    59. Emilia Fridman, Serge Nicaise, Julie Valein, Stability of second order evolution equations with time-varying delays, 2009, 42, 14746670, 112, 10.3182/20090901-3-RO-4009.00016
    60. E. M. Ait Benhassi, K. Ammari, S. Boulite, L. Maniar, Exponential energy decay of some coupled second order systems, 2013, 86, 0037-1912, 362, 10.1007/s00233-012-9440-0
    61. Yanni Guo, Genqi Xu, Yansha Guo, Stabilization of the wave equation with interior input delay and mixed Neumann-Dirichlet boundary, 2016, 21, 1531-3492, 2491, 10.3934/dcdsb.2016057
    62. Emilia Fridman, Serge Nicaise, Julie Valein, Stabilization of Second Order Evolution Equations with Unbounded Feedback with Time-Dependent Delay, 2010, 48, 0363-0129, 5028, 10.1137/090762105
    63. Xiu Fang Liu, Gen Qi Xu, Output-Based Stabilization of Timoshenko Beam with the Boundary Control and Input Distributed Delay, 2016, 22, 1079-2724, 347, 10.1007/s10883-015-9293-4
    64. Lila Ihaddadene, Ammar Khemmoudj, General decay for a wave equation with Wentzell boundary conditions and nonlinear delay terms, 2022, 95, 0020-7179, 2565, 10.1080/00207179.2021.1919318
    65. E.M. Ait Ben Hassi, K. Ammari, S. Boulite, L. Maniar, Stability of abstract thermo-elastic semigroups, 2016, 435, 0022247X, 1021, 10.1016/j.jmaa.2015.11.010
    66. Gabriel Rivière, Julien Royer, Spectrum of a non-selfadjoint quantum star graph, 2020, 53, 1751-8113, 495202, 10.1088/1751-8121/abbfbe
    67. Yaru Xie, Genqi Xu, Exponential stability of 1-d wave equation with the boundary time delay based on the interior control, 2017, 10, 1937-1179, 557, 10.3934/dcdss.2017028
    68. Ying Feng Shang, Gen Qi Xu, Yun Lan Chen, Stability analysis of Euler-Bernoulli beam with input delay in the boundary control, 2012, 14, 15618625, 186, 10.1002/asjc.279
    69. Hugo Lhachemi, Robert Shorten, Boundary feedback stabilization of a reaction–diffusion equation with Robin boundary conditions and state-delay, 2020, 116, 00051098, 108931, 10.1016/j.automatica.2020.108931
    70. Gen Qi Xu, Li Zhang, Uniform Stabilization of 1-D Coupled Wave Equations with Anti-dampings and Joint Delayed Control, 2020, 58, 0363-0129, 3161, 10.1137/19M1289145
    71. Serge Nicaise, Julie Valein, Stabilization of second order evolution equations with unbounded feedback with delay, 2010, 16, 1292-8119, 420, 10.1051/cocv/2009007
    72. Mokhtar Kirane, Belkacem Said-Houari, Existence and asymptotic stability of a viscoelastic wave equation with a delay, 2011, 62, 0044-2275, 1065, 10.1007/s00033-011-0145-0
    73. Lucie Baudouin, Emmanuelle Crépeau, Julie Valein, Global Carleman estimate on a network for the wave equation and application to an inverse problem, 2011, 1, 2156-8499, 307, 10.3934/mcrf.2011.1.307
    74. Serge Nicaise, Cristina Pignotti, Julie Valein, Exponential stability of the wave equation with boundary time-varying delay, 2011, 4, 1937-1179, 693, 10.3934/dcdss.2011.4.693
    75. Zhong-Jie Han, Gen-Qi Xu, Dynamical behavior of networks of non-uniform Timoshenko beams system with boundary time-delay inputs, 2011, 6, 1556-181X, 297, 10.3934/nhm.2011.6.297
    76. Xiu Fang Liu, Gen Qi Xu, Exponential stabilization for Timoshenko beam with different delays in the boundary control, 2015, 0265-0754, dnv036, 10.1093/imamci/dnv036
    77. Ya-Xuan Zhang, Zhong-Jie Han, Gen-Qi Xu, Stability and Spectral Properties of General Tree-Shaped Wave Networks with Variable Coefficients, 2019, 164, 0167-8019, 219, 10.1007/s10440-018-00236-y
    78. Ionu Munteanu, Stabilisation of non-diagonal infinite-dimensional systems with delay boundary control, 2022, 0020-7179, 1, 10.1080/00207179.2022.2063193
    79. Kaïs Ammari, Serge Nicaise, 2015, Chapter 1, 978-3-319-10899-5, 1, 10.1007/978-3-319-10900-8_1
    80. Delio Mugnolo, Damped wave equations with dynamic boundary conditions, 2011, 17, 1425-6908, 10.1515/jaa.2011.015
    81. Shun-Tang Wu, ASYMPTOTIC BEHAVIOR FOR A VISCOELASTIC WAVE EQUATION WITH A DELAY TERM, 2013, 17, 1027-5487, 10.11650/tjm.17.2013.2517
    82. Zaiyun Zhang, Jianhua Huang, Zhenhai Liu, Mingbao Sun, Boundary Stabilization of a Nonlinear Viscoelastic Equation with Interior Time-Varying Delay and Nonlinear Dissipative Boundary Feedback, 2014, 2014, 1085-3375, 1, 10.1155/2014/102594
    83. Jérôme Lohéac, Enrique Zuazua, Averaged controllability of parameter dependent conservative semigroups, 2017, 262, 00220396, 1540, 10.1016/j.jde.2016.10.017
    84. Abdelkader Moulay, Abdelghani Ouahab, 2019, Chapter 17, 978-3-030-26986-9, 265, 10.1007/978-3-030-26987-6_17
    85. Martin Gugat, Markus Dick, Günter Leugering, Gas Flow in Fan-Shaped Networks: Classical Solutions and Feedback Stabilization, 2011, 49, 0363-0129, 2101, 10.1137/100799824
    86. Houssem Herbadji, Ammar Khemmoudj, Stability of coupled wave equations with variable coefficients, localised Kelvin–Voigt damping and time delay, 2024, 109, 0037-1912, 390, 10.1007/s00233-024-10453-7
    87. Cuiying Li, Yi Cheng, Donal O’Regan, Exponential stability of a geometric nonlinear beam with a nonlinear delay term in boundary feedbacks, 2023, 74, 0044-2275, 10.1007/s00033-023-02018-5
    88. Désiré Saba, Gilbert Bayili, Serge Nicaise, Polynomial stabilization of the wave equation with a time varying delay term in the dynamical control, 2024, 538, 0022247X, 128441, 10.1016/j.jmaa.2024.128441
    89. Martin Gugat, Stabilization of a cyclic network of strings by nodal control, 2025, 25, 1424-3199, 10.1007/s00028-024-01030-0
    90. Serge Nicaise, Lassi Paunonen, David Seifert, Stability of abstract coupled systems, 2025, 00221236, 110909, 10.1016/j.jfa.2025.110909
    91. Soumaya Amara, Mohamed Jellouli, Spectral Analysis for a System of Wave Equations and Applications, 2025, 0170-4214, 10.1002/mma.10956
    92. Yaru Xie, Ruiqing Gao, Exponential stabilization of 1-D wave network with boundary delay, 2025, 2095-6983, 10.1007/s11768-025-00256-8
  • Reader Comments
  • © 2007 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6329) PDF downloads(171) Cited by(92)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog