-
AIMS Materials Science, 2019, 6(2): 200-213. doi: 10.3934/matersci.2019.2.200
Review Topical Section
-
Export file:
Format
- RIS(for EndNote,Reference Manager,ProCite)
- BibTex
- Text
Content
- Citation Only
- Citation and Abstract
Colloidal stability of liposomes
1 Consiglio Nazionale delle Ricerche, Istituto per i Processi Chimico-Fisici, 98158 Messina, Italy
2 Consiglio Nazionale delle Ricerche, Istituto Studio Materiali Nanostrutturati, 00015 Roma, Italy
3 Dipartimento di Fisica e Scienze della Terra, Università di Messina, 98166 Messina, Italy
4 Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna, Moscow 141980, Russia
Received: , Accepted: , Published:
Topical Section: Biomolecular Materials: DNA, RNA, proteins, peptides, lipids
References
1. Chen G, Roy I, Yang C, et al. (2016) Nanochemistry and nanomedicine for nanoparticle-based dagnostics and therapy. Chem Rev 116: 2826–2885.
2. Ali I, Lone MN, Suhail M, et al. (2016) Advances in nanocarriers for anticancer drugs delivery. Curr Med Chem 23: 2159–2187.
3. Pasqua L, Leggio A, Sisci D, et al. (2016) Mesoporous silica nanoparticles in cancer therapy: relevance of the targeting function. Mini Rev Med Chem 16: 743–753.
4. Chow EKH, Ho D (2013) Cancer nanomedicine: from drug delivery to imaging. Sci Transl Med 5: 216rv4.
5. Lee BK, Yun YH, Park K (2015) Smart nanoparticles for drug delivery: boundaries and opportunities. Chem Eng Sci 125: 158–164.
6. Bozzuto G, Molinari A (2015) Liposomes as nanomedical devices. Int J Nanomed 10: 975–999.
7. Allen TM, Cullis PR (2013) Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliver Rev 65: 36–48.
8. Bobo D, Robinson KJ, Islam J, et al. (2016) Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res 33: 2373–2387.
9. Wilhelm S, Tavares AJ, Dai Q, et al. (2016) Analysis of nanoparticle delivery to tumours. Nat Rev Mater 1: 16014.
10. Iwamoto T (2013) Clinical application of drug delivery systems in cancer chemotherapy: review of the efficacy and side effects of approved drugs. Biol Pharm Bull 36: 715–718.
11. Brand W, Noorlander CW, Giannakou C, et al. (2017) Nanomedicinal products: a survey on specific toxicity and side effects. Int J Nanomed 12: 6107–6129.
12. Janssen Products Expert Committee, DOXIL (doxorubicin HCl liposome injection), 2018. Available from: https://www.doxil.com.
13. Ishida T, Harashima H, Kiwada H (2001) Interactions of liposomes with cells in vitro and in vivo: opsonins and receptors. Curr Drug Metab 2: 397–409.
14. Ishida T, Harashima H, Kiwada H, et al. (2002) Liposome clearance. Bioscience Rep 22: 197–224.
15. Lombardo D, Calandra P, Barreca D, et al. (2016) Soft interaction in liposome nanocarriers for therapeutic drug delivery. Nanomaterials 6: E125.
16. Dai Y, Xu C, Sun X, et al. (2017) Nanoparticle design strategies for enhanced anticancer therapy by exploiting the tumour microenvironment. Chem Soc Rev 46: 3830–3852.
17. Sackmann E (1995) Physical basis of self-organization and function of membranes: physics of vesicles, In: Lipowsky R, Sackmann E, Handbook of Biological Physics, Elsevier, 213–303.
18. Israelachvili J, Wennerström H (1996) Role of hydration and water structure in biological and colloidal interactions. Nature 379: 219–225.
19. Franks F (1972) Water-a comprehensive treatise, New York, NY, USA: Plenum.
20. Magazù S, Migliardo F, Telling MT (2007) Study of the dynamical properties of water in disaccharide solutions. Eur Biophys J 36: 163–171.
21. Degiorgio V, Corti M (1985) Physics of amphiphiles: micelles, vesicles and microemulsions, Amsterdam: North-Holland.
22. Tanford C (1980) The hydrophobic effect: formation of micelles and biological membranes, 2 Eds., New York: Wiley.
23. Parsegian VA (2006) Van der Waals forces: a handbook for biologists, chemists, engineers, and physicists, Cambridge University Press.
24. Hunter RJ (1986) Foundations of Colloid Science, Oxford University Press.
25. Cevc G (1993) Electrostatic characterization of liposomes. Chem Phys Lipids 64: 163–186.
26. Dan N (2002) Effect of liposome charge and PEG polymer layer thickness on cell-liposome electrostatic interactions. BBA-Biomembranes 1564: 343–348.
27. Lombardo D (2014) Modeling dendrimers charge interaction in solution: relevance in biosystems. Biochem Res Int 2014: 837651.
28. Akpinar B, Fielding LA, Cunningham VJ, et al. (2016) Determining the effective density and stabilizer layer thickness of sterically stabilized nanoparticles. Macromolecules 49: 5160–5171.
29. Wang Z, Zhu W, Qiu Y, et al. (2016) Biological and environmental interactions of emerging two-dimensional nanomaterials. Chem Soc Rev 45: 1750–1780.
30. Moore TL, Rodriguez-Lorenzo L, Hirsch V, et al. (2015) Nanoparticle colloidal stability in cell culture media and impact on cellular interactions. Chem Soc Rev 44: 6287–6305.
31. Plessis JD, Ramachandran C, Weiner N (1996) The influence of lipid composition and lamellarity of liposomes on the physical stability of liposomes upon storage. Int J Pharm 127: 273–278.
32. Ceh B, Lasic DD (1995) A rigorous theory of remote loading of drugs into liposomes. Langmuir 11: 3356–3368.
33. Geng S, Yang B, Wang G, et al. (2014) Two cholesterol derivative-based PEGylated liposomes as drug delivery system, study on pharmacokinetics and drug delivery to retina. Nanotechnology 25: 275103.
34. Kiselev MA, Janich M, Hildebrand A, et al. (2013) Structural transition in aqueous lipid/bile salt [DPPC/NaDC] supramolecular aggregates: SANS and DLS study. Chem Phys 424: 93–99.
35. Kiselev MA, Lombardo D, Lesieur P, et al. (2008) Membrane self assembly in mixed DMPC/NaC systems by SANS. Chem Phys 345: 173–180.
36. Hernández-Caselles T, Villalaín J, Gómez-Fernández JC (1993) Influence of liposome charge and composition on their interaction with human blood serum proteins. Mol Cell Biochem 120: 119–126.
37. Narenji M, Talae MR, Moghimi HR (2017) Effect of Charge on Separation of Liposomes upon Stagnation. Iran J Pharm Res 16: 423–431.
38. Krasnici S, Werner A, Eichhorn ME, et al. (2003) Effect of the surface charge of liposomes on their uptake by angiogenic tumor vessels. Int J Cancer 105: 561–567.
39. Jain NK, Nahar M (2010) PEGylated nanocarriers for systemic delivery. Methods Mol Biol 624: 221–234.
40. Dan N (2014) Nanostructured lipid carriers: effect of solid phase fraction and distribution on the release of encapsulated materials. Langmuir 30: 13809–13814.
41. Bourgaux C, Couvreur P (2014) Interactions of anticancer drugs with biomembranes: what can we learn from model membranes? J Control Release 190: 127–138.
42. Lombardo D, Calandra P, Magazù S, et al. (2018) Soft nanoparticles charge expression within lipid membranes: The case of amino terminated dendrimers in bilayers vesicles. Colloid Surface B 170: 609–616.
43. Dan N (2016) Membrane-induced interactions between curvature-generating protein domains: the role of area perturbation. AIMS Biophys 4: 107–120.
44. Lombardo D, Calandra P, Bellocco E, et al. (2016) Effect of anionic and cationic polyamidoamine (PAMAM) dendrimers on a model lipid membrane. BBA-Biomembranes 1858: 2769–2777.
45. Katsaras J, Gutberlet T (2000) Lipid bilayers: Structure and Interactions, Springer Science & Business Media.
46. Wanderlingh U, D'Angelo G, Branca C (2014) Multi-component modeling of quasielastic neutron scattering from phospholipid membranes. J Chem Phys 140: 05B602.
47. Kiselev MA, Lombardo D (2017) Structural characterization in mixed lipid membrane systems by neutron and X-ray scattering. BBA-Gen Subjects 1861: 3700–3717.
48. Kiselev MA, Lesieur P, Kisselev AM, et al. (2001) A sucrose solutions application to the study of model biological membranes. Nucl Instrum Meth A 470: 409–416.
49. Blanco E, Shen H, Ferrari M (2015) Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nat Biotechnol 33: 941–951.
50. Pirollo KF, Chang EH (2008) Does a targeting ligand influence nanoparticle tumor localization or uptake? Trends Biotechnol 26: 552–558.
51. Bae YK, Park K (2011) Targeted drug delivery to tumors: myths, reality and possibility. J Control Release 153: 198–205.
52. Mura S, Nicolas J, Couvreur P (2013) Stimuli-responsive nanocarriers for drug delivery. Nat Mater 12: 991–1003.
53. Xing H, Hwang K, Lu Y (2016) Recent developments of liposomes as nanocarriers for theranostic applications. Theranostics 6: 1336–1352.
54. Lombardo D, Kiselev AM, Caccamo MT (2019) Smart nanoparticles for drug delivery application: development of versatile nanocarrier platforms in biotechnology and nanomedicine. J Nanomater 2019: 3702518.
© 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution Licese (http://creativecommons.org/licenses/by/4.0)