Review Special Issues

Materials for hydrogen storage and the Na-Mg-B-H system

  • Received: 01 December 2014 Accepted: 29 January 2015 Published: 06 February 2015
  • This review on materials for hydrogen storage in the solid state gives a brief discussion underlying reasons and driving forces of this specific field of research and development (the why question). This scenario is followed by an outline of the main materials investigated as options for hydrogen storage (the what exactly). Then, it moves into breakthroughs in the specific case of solid state storage of hydrogen, regarding both materials (where to store it) and properties (how it works). Finally, one of early model systems, namely NaBH4/MgH2 (the case study), is discussed more comprehensively to better elucidate some of the issues and drawbacks of its use in solid state hydrogen storage.

    Citation: Daphiny Pottmaier, Marcello Baricco. Materials for hydrogen storage and the Na-Mg-B-H system[J]. AIMS Energy, 2015, 3(1): 75-100. doi: 10.3934/energy.2015.1.75

    Related Papers:

  • This review on materials for hydrogen storage in the solid state gives a brief discussion underlying reasons and driving forces of this specific field of research and development (the why question). This scenario is followed by an outline of the main materials investigated as options for hydrogen storage (the what exactly). Then, it moves into breakthroughs in the specific case of solid state storage of hydrogen, regarding both materials (where to store it) and properties (how it works). Finally, one of early model systems, namely NaBH4/MgH2 (the case study), is discussed more comprehensively to better elucidate some of the issues and drawbacks of its use in solid state hydrogen storage.

    [1] Crabtree GW, Dresselhaus MS, Buchanan MV (2004) The Hydrogen Economy. Phys Today 57: 39-44. doi: 10.1063/1.1878333
    [2] Zuttel A, Borgschulte A, Schlapbach L (2008) Hydrogen as a Future Energy Carrier. Winheim: Wiley-VCH Verlag GmbH & Co.
    [3] Riis T, Hagen EF, Vie PJS, et al. (2006) Hydrogen Production R&D. Paris: IEA.
    [4] Turner JA (2004) Sustainable Hydrogen Production. Science 305: 972-974. doi: 10.1126/science.1103197
    [5] Merle G, Wessling M, Nijmeijer K (2011) Anion exchange membranes for alkaline fuel cells: A review. J Membrane Sci 377: 1-35. doi: 10.1016/j.memsci.2011.04.043
    [6] Giddey S, Badwal SPS, Kulkarni A, et al. (2012) A comprehensive review of direct carbon fuel cell technology. Prog Energy Combust 38: 360-399. doi: 10.1016/j.pecs.2012.01.003
    [7] Antolini E, Perez J (2011) The use of rare earth-based materials in low-temperature fuel cells. Int J Hydrogen Energy 36: 15752-15765. doi: 10.1016/j.ijhydene.2011.08.104
    [8] Stambouli AB, Traversa E (2002) Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy. Renew Sust Energy Rev 6: 433-455. doi: 10.1016/S1364-0321(02)00014-X
    [9] Riis T, Sandrock G, Ulleberg O, et al. (2006) Hydrogen Storage R&D. Paris: IEA.
    [10] Elam CC, Padró CEG, Sandrock G, et al. (2003) Realizing the hydrogen future: the International Energy Agency's efforts to advance hydrogen energy technologies. Int J Hydrogen Energy 28: 601-607. doi: 10.1016/S0360-3199(02)00147-7
    [11] MHCoE For a description of the Metal Hydride Center of Excellence. Available from:
    [12] CHCoE For a description of the Chemical Hydride Center of Excellence. Available from:
    [13] HSCoE For a description of the Hydrogen Sorption Center of Excellence. Available from:
    [14] Klebanoff L (2013) Hydrogen Storage Technology: Materials and Applications. United States of America: CRC press.
    [15] US-DOE (2010) Hydrogen and Fuel Cells: Current Technology of Hydrogen Storage. Available from:
    [16] Felderhoff M, Weidenthaler C, von Helmolt R, et al. (2007) Hydrogen storage: the remaining scientific and technological challenges. Phys Chem Chem Phys 9: 2643-2653. doi: 10.1039/b701563c
    [17] Graetz J (2009) New approaches to hydrogen storage. Chem Soc Rev 38: 73-82. doi: 10.1039/B718842K
    [18] van den Berg AWC, Arean CO (2008) Materials for hydrogen storage: current research trends and perspectives. Chem Commun 14: 668-681.
    [19] Klebanoff LE, Keller JO (2013) 5 Years of hydrogen storage research in the U.S. DOE Metal Hydride Center of Excellence (MHCoE). Int J Hydrogen Energ 38: 4533-4576.
    [20] Lu Z-H, Xu Q (2012) Recent Progress in Boron and Nitrogen based Chemical Hydrogen Storage. Functional Materials Letters 05.
    [21] Michel KJ, Ozoliņš V (2013) Recent advances in the theory of hydrogen storage in complex metal hydrides. MRS Bulletin 38: 462-472. doi: 10.1557/mrs.2013.130
    [22] Varin RA, Czujiko T, Wronski ZS (2009) Nanomaterials for solid state hydrogen storage. Cleveland: Springer.
    [23] Grochala W, Edwards PP (2004) Thermal Decomposition of the Non-Interstitial Hydrides for the Storage and Production of Hydrogen. Chem Rev 104: 1283-1316. doi: 10.1021/cr030691s
    [24] Eremets MI, Trojan IA, Medvedev SA, et al. (2008) Superconductivity in Hydrogen Dominant Materials: Silane. Science 319: 1506-1509. doi: 10.1126/science.1153282
    [25] Scheler T, Degtyareva O, Marqués M, et al. (2011) Synthesis and properties of platinum hydride. Phys Rev B 83: 214106. doi: 10.1103/PhysRevB.83.214106
    [26] Gao G, Wang H, Zhu L, et al. (2011) Pressure-Induced Formation of Noble Metal Hydrides. J Phys Chem C 116: 1995-2000.
    [27] Driessen A, Sanger P, Hemmes H, et al. (1990) Metal hydride formation at pressures up to 1 Mbar. J Physics: Condensed Matter 2: 9797. doi: 10.1088/0953-8984/2/49/007
    [28] Sandrock G (1999) A panoramic overview of hydrogen storage alloys from a gas reaction point of view. J Alloys Compounds 293-295: 877-888.
    [29] Bogdanovi B, Schwickardi M (1997) Ti-doped alkali metal aluminium hydrides as potential novel reversible hydrogen storage materials. J Alloy Compd 253-254: 1-9.
    [30] Bogdanović B, Brand RA, Marjanović A, et al. (2000) Metal-doped sodium aluminium hydrides as potential new hydrogen storage materials. J Alloy Compd 302: 36-58. doi: 10.1016/S0925-8388(99)00663-5
    [31] Eberle U, Arnold G, von Helmolt R (2006) Hydrogen storage in metal-hydrogen systems and their derivatives. J Power Sources 154: 456-460. doi: 10.1016/j.jpowsour.2005.10.050
    [32] Sandrock G, Gross K, Thomas G (2002) Effect of Ti-catalyst content on the reversible hydrogen storage properties of the sodium alanates. J Alloy Compd 339: 299-308. doi: 10.1016/S0925-8388(01)02014-X
    [33] Zaluska A, Zaluski L, Ström-Olsen JO (2000) Sodium alanates for reversible hydrogen storage. J Allos Compd 298: 125-134. doi: 10.1016/S0925-8388(99)00666-0
    [34] Gross KJ, Sandrock G, Thomas GJ (2002) Dynamic in situ X-ray diffraction of catalyzed alanates. J Alloy Compd 330-332: 691-695.
    [35] Bellosta von Colbe JM, Felderhoff M, Bogdanovic B, et al. (2005) One-step direct synthesis of a Ti-doped sodium alanate hydrogen storage material. Chem Commun 4732-4734.
    [36] Li L, Xu C, Chen C, et al. (2013) Sodium alanate system for efficient hydrogen storage. Int J Hydrogen Energy 38: 8798-8812. doi: 10.1016/j.ijhydene.2013.04.109
    [37] NIST. Availabe from: ed.
    [38] Zaluska A, Zaluski L, Srom-Olsen JO, et al. (1999) Method for inducing hydrogen desorption from a metal hydride. In: 5882623, Patent. United States of America.
    [39] Zaluska A, Zaluski L, Strm-Olsen JO (1999) Nanocrystalline magnesium for hydrogen storage. J Alloy Compd 288: 217-225. doi: 10.1016/S0925-8388(99)00073-0
    [40] Varin RA, Czujko T, Wronski ZS, et al. (2009) Nanomaterials for hydrogen storage produced by ball milling. Can Metall Quart 48: 11-26. doi: 10.1179/cmq.2009.48.1.11
    [41] Fichtner M (2009) Properties of nanoscale metal hydrides. Nanotechnology 20: 204009. doi: 10.1088/0957-4484/20/20/204009
    [42] Bérubé V, Radtke G, Dresselhaus M, et al. (2007) Size effects on the hydrogen storage properties of nanostructured metal hydrides: A review. Int J Energy Res 31: 637-663. doi: 10.1002/er.1284
    [43] Chen PX, Z.; Luo, J.; Lin, J.; Tan, K. L. (2002) Interaction of hydrogen with metal nitrides and imides. Nature 420: 302-304. doi: 10.1038/nature01210
    [44] Hu YH, Ruckenstein E (2003) Ultrafast Reaction between LiH and NH3 during H2 Storage in Li3N. J Phys Chem A 107: 9737-9739. doi: 10.1021/jp036257b
    [45] Ichikawa T, Hanada N, Isobe S, et al. (2004) Mechanism of Novel Reaction from LiNH2 and LiH to Li2NH and H2 as a Promising Hydrogen Storage System. J Phys Chem B 108: 7887-7892. doi: 10.1021/jp049968y
    [46] Lohstroh W, Fichtner M (2007) Reaction steps in the Li-Mg-N-H hydrogen storage system. J Alloy Compd 446-447: 332-335.
    [47] Hu YH, Ruckenstein E (2004) Highly Effective Li2O/Li3N with Ultrafast Kinetics for H2 Storage. Ind Eng Chem Res 43: 2464-2467. doi: 10.1021/ie049947q
    [48] Zuttel A, Wenger P, Rentsch S, et al. (2003) LiBH4 a new hydrogen storage material. J Power Sources 118: 1-7. doi: 10.1016/S0378-7753(03)00054-5
    [49] Mosegaard L, Moller B, Jorgensen J-E, et al. (2008) Reactivity of LiBH4: In Situ Synchrotron Radiation Powder X-ray Diffraction Study. J Phys Chem C 112: 1299-1303.
    [50] Yu XB, Grant DM, Walker GS (2009) Dehydrogenation of LiBH4 Destabilized with Various Oxides. J Phys Chem C 113: 17945-17949. doi: 10.1021/jp906519p
    [51] Maekawa H, Matsuo M, Takamura H, et al. (2009) Halide-Stabilized LiBH4, a Room-Temperature Lithium Fast-Ion Conductor. J Am Chem Soc 131: 894-895. doi: 10.1021/ja807392k
    [52] Luo C, Wang H, Sun T, et al. (2012) Enhanced dehydrogenation properties of LiBH4 compositing with hydrogenated magnesium-rare earth compounds. Int J Hydrogen Energy 37: 13446-13451. doi: 10.1016/j.ijhydene.2012.06.114
    [53] Pendolino F (2011) “Boron Effect” on the Thermal Decomposition of Light Metal Borohydrides MBH4 (M = Li, Na, Ca). J Phys Chem C 116: 1390-1394.
    [54] Pendolino F (2013) Thermal study on decomposition of LiBH4 at non-isothermal and non-equilibrium conditions. J Thermal Analysis Calorimetry 112: 1207-1211. doi: 10.1007/s10973-012-2662-2
    [55] Gross AF, Vajo JJ, Van Atta SL, et al. (2008) Enhanced Hydrogen Storage Kinetics of LiBH4 in Nanoporous Carbon Scaffolds. J Phys Chem C 112: 5651-5657. doi: 10.1021/jp711066t
    [56] Xu J, Yu X, Ni J, et al. (2009) Enhanced catalytic dehydrogenation of LiBH4 by carbon-supported Pd nanoparticles. Dalton Transactions: 8386-8391.
    [57] Xu J, Yu X, Zou Z, et al. (2008) Enhanced dehydrogenation of LiBH4 catalyzed by carbon-supported Pt nanoparticles. Chem Commun 5740-5742.
    [58] Xu J, Qi Z, Cao J, et al. (2013) Reversible hydrogen desorption from LiBH4 catalyzed by graphene supported Pt nanoparticles. Dalton Transactions 42: 12926-12933
    [59] Luo W (2004) (LiNH2-MgH2): a viable hydrogen storage system. J Alloy Compd 381: 284-287. doi: 10.1016/j.jallcom.2004.03.119
    [60] Xiong Z, Wu G, Hu J, et al. (2004) Ternary Imides for Hydrogen Storage. Adv Mater 16: 1522-1525. doi: 10.1002/adma.200400571
    [61] Leng HY, Ichikawa T, Hino S, et al. (2004) New Metal-N-H System Composed of Mg(NH2)2 and LiH for Hydrogen Storage. J Phy Chem B 108: 8763-8765. doi: 10.1021/jp048002j
    [62] Nakamori Y, Kitahara G, Orimo S (2004) Synthesis and dehydriding studies of Mg-N-H systems. J Power Sources 138: 309-312. doi: 10.1016/j.jpowsour.2004.06.026
    [63] Nakamori Y, Kitahara G, Miwa K, et al. (2005) Reversible hydrogen-storage functions for mixtures of Li3N and Mg3N2. Appl Phys A 80: 1-3.
    [64] Dolci F, Weidner E, Hoelzel M, et al. (2010) In-situ neutron diffraction study of magnesium amide/lithium hydride stoichiometric mixtures with lithium hydride excess. Int J Hydrogen Energy 35: 5448-5453. doi: 10.1016/j.ijhydene.2010.03.030
    [65] Barison S, Agresti F, Lo Russo S, et al. (2008) A study of the LiNH2-MgH2 system for solid state hydrogen storage. J Alloy Compd 459: 343-347. doi: 10.1016/j.jallcom.2007.04.278
    [66] Shahi RR, Yadav TP, Shaz MA, et al. (2008) Effects of mechanical milling on desorption kinetics and phase transformation of LiNH2/MgH2 mixture. Int J Hydrogen Energy 33: 6188-6194. doi: 10.1016/j.ijhydene.2008.07.029
    [67] Liang C, Liu Y, Luo K, et al. (2010) Reaction Pathways Determined by Mechanical Milling Process for Dehydrogenation/Hydrogenation of the LiNH2/MgH2 System. Chemistry A European Journal 16: 693-702. doi: 10.1002/chem.200901967
    [68] Liu Y, Li B, Tu F, et al. (2011) Correlation between composition and hydrogen storage behaviors of the Li2NH-MgNH combination system. Dalton Transactions 40: 8179-8186. doi: 10.1039/c1dt10108k
    [69] Lu J, Choi YJ, Fang ZZ, et al. (2010) Effect of milling intensity on the formation of LiMgN from the dehydrogenation of LiNH2-MgH2 (1:1) mixture. J Power Sources 195: 1992-1997. doi: 10.1016/j.jpowsour.2009.10.032
    [70] Pottmaier D, Dolci F, Orlova M, et al. (2011) Hydrogen release and structural transformations in LiNH2-MgH2 systems. J Alloy Compd 509, Supplement 2: S719-S723.
    [71] Vajo JJ, Skeith SL, Mertens F (2005) Reversible Storage of Hydrogen in Destabilized LiBH4. J Phys Chem B 109: 3719-3722. doi: 10.1021/jp040769o
    [72] Bosenberg U, Doppiu S, Mosegaard L, et al. (2007) Hydrogen sorption properties of MgH2-LiBH4 composites. Acta Materialia 55: 3951-3958. doi: 10.1016/j.actamat.2007.03.010
    [73] Bosenberg U, Ravnsbk DB, Hagemann H, et al. (2010) Pressure and Temperature Influence on the Desorption Pathway of the LiBH4-MgH2 Composite System. J Phys Chem C 114: 15212-15217.
    [74] Nakagawa T, Ichikawa T, Hanada N, et al. (2007) Thermal analysis on the Li-Mg-B-H systems. J Alloy Compd 446-447: 306-309.
    [75] Shim J-H, Lim J-H, Rather S-u, et al. (2009) Effect of Hydrogen Back Pressure on Dehydrogenation Behavior of LiBH4-Based Reactive Hydride Composites. J Phys Chem Lett 1: 59-63.
    [76] Yang J, Sudik A, Wolverton C (2007) Destabilizing LiBH 4 with a Metal ( M ) Mg , Al , Ti , V , Cr , or Sc ) or Metal Hydride ( MH 2 ). J Phys Chem C 111: 19134-19140. doi: 10.1021/jp076434z
    [77] Pinkerton FE, Meyer MS, Meisner GP, et al. (2007) Phase Boundaries and Reversibility of LiBH 4 / MgH 2 Hydrogen Storage Material. J Phys Chem Lett C 111: 12881-12885. doi: 10.1021/jp0742867
    [78] Price TEC, Grant DM, Legrand V, et al. (2010) Enhanced kinetics for the LiBH4:MgH2 multi-component hydrogen storage system—The effects of stoichiometry and decomposition environment on cycling behaviour. Int J Hydrogen Energy 35: 4154-4161. doi: 10.1016/j.ijhydene.2010.02.082
    [79] Wan X, Markmaitree T, Osborn W, et al. (2008) Nanoengineering-Enabled Solid-State Hydrogen Uptake and Release in the LiBH4 Plus MgH2 System. J Phys Chem C 112: 18232-18243. doi: 10.1021/jp8033159
    [80] Price TEC, Grant DM, Telepeni I, et al. (2009) The decomposition pathways for LiBD4-MgD2 multicomponent systems investigated by in situ neutron diffraction. J Alloy Compd 472: 559-564. doi: 10.1016/j.jallcom.2008.05.030
    [81] Walker GS, Grant DM, Price TC, et al. (2009) High capacity multicomponent hydrogen storage materials: Investigation of the effect of stoichiometry and decomposition conditions on the cycling behaviour of LiBH4,ÄìMgH2. J Power Sources 194: 1128-1134. doi: 10.1016/j.jpowsour.2009.06.075
    [82] Yu XB, Grant DM, Walker GS (2006) A new dehydrogenation mechanism for reversible multicomponent borohydride systems--The role of Li-Mg alloys. Chem commun (Cambridge, England) 1: 3906-3908.
    [83] Dobbins T, NaraseGowda S, Butler LG (2012) Study of Morphological Changes in MgH2 Destabilized LiBH4 Systems Using Computed X-ray Microtomography. Materials 5: 1740-1751. doi: 10.3390/ma5101740
    [84] Barkhordarian G, Klassen T, Dornheim M, et al. (2007) Unexpected kinetic effect of MgB2 in reactive hydride composites containing complex borohydrides. J Alloy Compd 440: L18-L21. doi: 10.1016/j.jallcom.2006.09.048
    [85] COSY-network Complex Solid State Reaction for Energy Efficient Hydrogen Storage. Available from:
    [86] Santos DMF, Sequeira CAC (2011) Sodium borohydride as a fuel for the future. Renew Sust Energy Rev 15: 3980-4001. doi: 10.1016/j.rser.2011.07.018
    [87] Dinsdale AT (1991) SGTE Data for Pure Elements. CALPHAD 15: 317-425. doi: 10.1016/0364-5916(91)90030-N
    [88] Manchester FD (2000) Phase Diagrams of Binary Hydrogen Alloys. United State of America: ASM International.
    [89] George L, Saxena SK (2010) Structural stability of metal hydrides, alanates and borohydrides of alkali and alkali- earth elements: A review. Int J Hydrogen Energy 35: 5454-5470. doi: 10.1016/j.ijhydene.2010.03.078
    [90] Pottmaier D, Pinatel ER, Vitillo JG, et al. (2011) Structure and Thermodynamic Properties of the NaMgH3 Perovskite: A Comprehensive Study. Chem Mater 23: 2317-2326. doi: 10.1021/cm103204p
    [91] Barrico M, Paulmbo M, Pinatel E, et al. (2010) Thermodynamic Database for Hydrogen Storage Materials. Adv Sci Tech 72: 213-218. doi: 10.4028/
    [92] Stasinevich G, Egorenko A (1969) J Inorg Chem 13: 341-343.
    [93] Martelli P, Caputo R, Remhof A, et al. (2010) Stability and Decomposition of NaBH 4. The J Phys Chem C 114: 7173-7177.
    [94] Urgnani J, Torres F, Palumbo M, et al. (2008) Hydrogen release from solid state NaBH4. Int J Hydrogen Energy 33: 3111-3115. doi: 10.1016/j.ijhydene.2008.03.031
    [95] Mao JF, Yu XB, Guo ZP, et al. (2009) Enhanced hydrogen storage performances of NaBH4-MgH2 system. J Alloy Compd 479: 619-623. doi: 10.1016/j.jallcom.2009.01.012
    [96] Humphries TD, Kalantzopoulos GN, Llamas-Jansa I, et al. (2013) Reversible Hydrogenation Studies of NaBH4 Milled with Ni-Containing Additives. J Phys Chem C 117: 6060-6065. doi: 10.1021/jp312105w
    [97] Pendolino F, Mauron P, Borgschulte A, et al. (2009) Effect of Boron on the Activation Energy of the Decomposition of LiBH4. J Phys Chem C 113: 17231-17234. doi: 10.1021/jp902384v
    [98] Caputo R, Garroni S, Olid D, et al. (2010) Can Na2[B12H12] be a decomposition product of NaBH4? Phys Chem Chem Phys 12: 15093-15100.99. Her J-H, Zhou W, Stavila V, et al. (2009) Role of Cation Size on the Structural Behavior of the Alkali-Metal Dodecahydro-closo-Dodecaborates. J Phys Chem Lett C 113: 11187-11189. doi: 10.1021/jp904980m
    [99] 100. Friedrichs O, Remhof A, Hwang K-J, et al. (2010) Role of Li2B12H12 for the formation and decomposition of LiBH4. Chem Mater 22: 3265-3268. doi: 10.1021/cm100536a
    [100] 101. Her JH, Yousufuddin M, Zhou W, et al. (2008) Crystal structure of Li2B12H12: a possible intermediate species in the decomposition of LiBH4. Inorg Chem 47: 9757-9759. doi: 10.1021/ic801345h
    [101] 102. Hwang SJ, Bowman RC, Reiter JW, et al. (2008) NMR Confirmation for Formation of [B12H12]2- Complexes during Hydrogen Desorption from Metal Borohydrides. J Phys Chem C 112: 3164-3169.
    [102] 103. Minella CB, Pistidda C, Garroni S, et al. (2013) Ca(BH4)2 + MgH2: Desorption Reaction and Role of Mg on Its Reversibility. J Phys Chem C 117: 3846-3852. doi: 10.1021/jp312271s
    [103] 104. Yan Y, Remhof A, Rentsch D, et al. (2013) Is Y2(B12H12)3 the main intermediate in the decomposition process of Y(BH4)3? Chem Commun 49: 5234-5236. doi: 10.1039/c3cc41184b
    [104] 105. Mao J, Guo Z, Yu X, et al. (2013) Combined effects of hydrogen back-pressure and NbF5 addition on the dehydrogenation and rehydrogenation kinetics of the LiBH4-MgH2 composite system. Int J Hydrogen Energy 38: 3650-3660. doi: 10.1016/j.ijhydene.2012.12.106
    [105] 106. Yan Y, Li H-W, Maekawa H, et al. (2011) Formation of Intermediate Compound Li2B12H12 during the Dehydrogenation Process of the LiBH4-MgH2 System. J Phys Chem C 115: 19419-19423. doi: 10.1021/jp205450c
    [106] 107. Garroni S, Milanese C, Pottmaier D, et al. (2011) Experimental Evidence of Na2[B12H12] and Na Formation in the Desorption Pathway of the 2NaBH4 + MgH2 System. J Phys Chem C 115: 16664-16671. doi: 10.1021/jp202341j
    [107] 108. Pottmaier D, Pistidda C, Groppo E, et al. (2011) Dehydrogenation reactions of 2NaBH4 + MgH2 system. Int J Hydrogen Energy 36: 7891-7896. doi: 10.1016/j.ijhydene.2011.01.059
    [108] 109. Pistidda C, Garroni S, Minella CB, et al. (2010) Pressure Effect on the 2NaH + MgB2 Hydrogen Absorption Reaction. J Phys Chem C 114: 21816-21823. doi: 10.1021/jp107363q
    [109] 110. Garroni S, Milanese C, Girella A, et al. (2010) Sorption properties of NaBH4/MH2 (M = Mg, Ti) powder systems. Int J Hydrogen Energy 35: 5434-5441. doi: 10.1016/j.ijhydene.2010.03.004
    [110] 111. Shi L, Gi Y, Qian T, et al. (2004) Synthesis of ultrafine superconducting MgB2 by a convenient solid-state reaction route. Physica C 405: 271-274. doi: 10.1016/j.physc.2004.02.013
    [111] 112. Varin RA, Chiu C, Wronski ZS (2008) Mechano-chemical activation synthesis (MCAS) of disordered Mg(BH4)2 using NaBH 4. J Alloy Compd 462: 201-208. doi: 10.1016/j.jallcom.2007.07.110
    [112] 113. Varin Ra, Czujko T, Chiu C, et al. (2009) Synthesis of nanocomposite hydrides for solid-state hydrogen storage by controlled mechanical milling techniques. J Alloy Compd 483: 252-255. doi: 10.1016/j.jallcom.2008.07.207
    [113] 114. Czujko T, Varin R, Wronski Z, et al. (2007) Synthesis and hydrogen desorption properties of nanocomposite magnesium hydride with sodium borohydride (MgH2+NaBH4). J Alloy Compd 427: 291-299. doi: 10.1016/j.jallcom.2006.03.020
    [114] 115. Czujiko T, Varin R, Zaranski Z, et al. (2010) The dehydrogenation process of destabilized NaBH4-MgH2 solid state hydride composites. Arch Metall Mater 55: 539-552.
    [115] 116. Garroni S, Pistidda C, Brunelli M, et al. (2009) Hydrogen desorption mechanism of 2NaBH4+MgH2 composite prepared by high-energy ball milling. Scripta Materialia 60: 1129-1132. doi: 10.1016/j.scriptamat.2009.02.059
    [116] 117. Caputo R, Garroni S, Olid D, et al. (2010) Can Na2[B12H12] be a decomposition product of NaBH4? Phys Chem Chem Phys 12: 15093-15100. doi: 10.1039/c0cp00877j
    [117] 118. Garroni S, Milanese C, Girella A, et al. (2010) Sorption properties of NaBH4/MH2 (M=Mg, Ti) powder systems. Int J Hydrogen Energy 35: 5434-5441. doi: 10.1016/j.ijhydene.2010.03.004
    [118] 119. Pottmaier D, Garroni S, Barò MD, et al. (2010) Hydrogen Desorption Reactions of the Na-Mg-B-H System. Adv Sci Tech72: 164-169. doi: 10.4028/
    [119] 120.Pottmaier D, Garroni S, Brunelli M, et al. (2010) NaBX4-MgX2 Composites (X= D,H) Investigated by In situ Neutron Diffraction. Mater Res Soc Symp Proc 1262: W03-04.
    [120] 121. Nwakwuo CC, Pistidda C, Dornheim M, et al. (2012) Microstructural study of hydrogen desorption in 2NaBH4 + MgH2 reactive hydride composite. Int J Hydrogen Energy 37: 2382-2387. doi: 10.1016/j.ijhydene.2011.10.070
    [121] 122. Mao J, Guo Z, Yu X, et al. (2011) Improved Hydrogen Storage Properties of NaBH4 Destabilized by CaH2 and Ca(BH4)2. J Phys Chem C 115: 9283-9290. doi: 10.1021/jp2020319
    [122] 123. Franco F, Baricco M, Chierotti MR, et al. (2013) Coupling Solid-State NMR with GIPAW ab Initio Calculations in Metal Hydrides and Borohydrides. J Phys Chem C 117: 9991-9998. doi: 10.1021/jp3126895
    [123] 124. Shane DT, Corey RL, Bowman Jr RC, et al. (2009) NMR studies of the hydrogen storage compound NaMgH3. J Phys Chem C 113: 18414-18419. doi: 10.1021/jp906414q
    [124] 125. Huang Z, Eagles M, Porter S, et al. (2013) Thermolysis and solid state NMR studies of NaB3H8, NH3B3H7, and NH4B3H8. Dalton Transactions 42: 701-708. doi: 10.1039/C2DT31365K
    [125] 126. Çakır D, de Wijs GA, Brocks G (2011) Native Defects and the Dehydrogenation of NaBH4. J Phys Chem C 115: 24429-24434. doi: 10.1021/jp208642g
    [126] 127. Pistidda C, Barkhordarian G, Rzeszutek A, et al. (2011) Activation of the reactive hydride composite 2NaBH4+MgH2. Scripta Materialia 64: 1035-1038. doi: 10.1016/j.scriptamat.2011.02.017
    [127] 128. Kato S, Borgschulte A, Bielmann M, et al. (2012) Interface reactions and stability of a hydride composite (NaBH4 + MgH2). Phys Chem Chem Phys 14: 8360-8368. doi: 10.1039/c2cp23491b
    [128] 129. Pistidda C, Napolitano E, Pottmaier D, et al. (2013) Structural study of a new B-rich phase obtained by partial hydrogenation of 2NaH + MgB2. Int J Hydrogen Energy 38: 10479-10484. doi: 10.1016/j.ijhydene.2013.06.025
    [129] 130. Milanese C, Garroni S, Girella A, et al. (2011) Thermodynamic and Kinetic Investigations on Pure and Doped NaBH4-MgH2 System. J Phys Chem C 115: 3151-3162. doi: 10.1021/jp109392e
    [130] 131. Saldan I, Gosalawit-Utke R, Pistidda C, et al. (2012) Influence of Stoichiometry on the Hydrogen Sorption Behavior in the LiF-MgB2 System. J Phys Chem C 116: 7010-7015. doi: 10.1021/jp212322u
    [131] 132. Christian M, Aguey-Zinsou K-F (2013) Synthesis of core-shell NaBH4@M (M = Co, Cu, Fe, Ni, Sn) nanoparticles leading to various morphologies and hydrogen storage properties. Chem Commun 49: 6794-6796. doi: 10.1039/c3cc42815j
    [132] 133. Mulas G, Campesi R, Garroni S, et al. (2012) Hydrogen storage in 2NaBH4+MgH2 mixtures: Destabilization by additives and nanoconfinement. J Alloy Compd 536, Supplement 1: S236-S240.
    [133] 134. Peru F, Garroni S, Campesi R, et al. (2013) Ammonia-free infiltration of NaBH4 into highly-ordered mesoporous silica and carbon matrices for hydrogen storage. J Alloy Compd 580, Supplement 1: S309-S312.
    [134] 135. Bardhan R, Hedges LO, Pint CL, et al. (2013) Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals. Nat Mater advance online publication.
    [135] 136. Schlesinger HI, Sanderson RT, Burg AB (1940) Metallo Borohydrides. I. Aluminum Borohydride. J Am Chem Soc 62: 3421-3425.
    [136] 137. Schlesinger HI, Brown HC (1940) Metallo Borohydrides. III. Lithium Borohydride. J Am Chem Soc 62: 3429-3435. doi: 10.1021/ja01869a039
    [137] 138. Schlesinger HI, Brown HC, Hoekstra HR, et al. (1953) Reactions of Diborane with Alkali Metal Hydrides and Their Addition Compounds. New Syntheses of Borohydrides. Sodium and Potassium Borohydrides1. J Am Chem Soc 75: 199-204.
    [138] 139. Schlesinger HI, Brown HC, Abraham B, et al. (1953) New Developments in the Chemistry of Diborane and the Borohydrides. I. General Summary1. J Am Chem Soc 75: 186-190.
    [139] 140. Miwa K, Aoki M, Noritake T, et al. (2006) Correlation between thermodynamic staibilties of metal borohydrides and cation electronegavities: First principles calculations and experiments. Phys Rev B 74: 075110. doi: 10.1103/PhysRevB.74.075110
    [140] 141. Nakamori Y, Li H, Kikuchi K, et al. (2007) Thermodynamical stabilities of metal-borohydrides. J Alloy Compd 447: 296-300.
    [141] 142. Hu J, Kwak JH, Zhenguo Y, et al. (2009) Direct observation of ion exchange in mechanism activated LiH+MgB2 system using ultrahigh field nuclear magnetic resonance spectroscopy. Appl Phys Lett 94: 05. doi: 10.1063/1.3110966
    [142] 143. Li H-W, Matsunaga T, Yan Y, et al. (2010) Nanostructure-induced hydrogenation of layered compound MgB2. J Alloy Compd 505: 654-656. doi: 10.1016/j.jallcom.2010.06.101
    [143] 144. Pistidda C, Garroni S, Dolci F, et al. (2010) Synthesis of amorphous Mg(BH4)2 from MgB2 and H2 at room temperature. J Alloy Compd 508: 212-215. doi: 10.1016/j.jallcom.2010.07.226
    [144] 145. Barkhordarian G, Jensen TR, Doppiu S, et al. (2008) Formation of Ca(BH4)2 from Hydrogenation of CaH2+MgB2 Composite. J Phys Chem C 112: 2743-2749.
    [145] 146. Nwakwuo CC, Pistidda C, Dornheim M, et al. (2011) Microstructural analysis of hydrogen absorption in 2NaH+MgB2. Scripta Materialia 64: 351-354. doi: 10.1016/j.scriptamat.2010.10.034
    [146] 147. Garroni S, Minella CB, Pottmaier D, et al. (2013) Mechanochemical synthesis of NaBH4 starting from NaH-MgB2 reactive hydride composite system. Int J Hydrogen Energy 38: 2363-2369. doi: 10.1016/j.ijhydene.2012.11.136
    [147] 148. Nwakwuo CC, Hutchison JL, Sykes JM (2012) Hydrogen sorption in 3NaH+MgB2/2NaBH4+NaMgH3 composite. Scripta Materialia 66: 175-177. doi: 10.1016/j.scriptamat.2011.10.035
    [148] 149. Wang H, Zhang J, Liu JW, et al. (2013) Catalysis and hydrolysis properties of perovskite hydride NaMgH3. J Alloy Compd 580, Supplement 1: S197-S201.
    [149] 150. Rafi ud d, Xuanhui Q, Zahid GH, et al. (2014) Improved hydrogen storage performances of MgH2-NaAlH4 system catalyzed by TiO2 nanoparticles. J Alloy Compd 604: 317-324. doi: 10.1016/j.jallcom.2014.03.150
    [150] 151. Milošević S, Milanović I, Mamula BP, et al. (2013) Hydrogen desorption properties of MgH2 catalysed with NaNH2. Int J Hydrogen Energy 38: 12223-12229. doi: 10.1016/j.ijhydene.2013.06.083
    [151] 152. Li Y, Fang F, Song Y, et al. (2013) Hydrogen storage of a novel combined system of LiNH2-NaMgH3: synergistic effects of in situ formed alkali and alkaline-earth metal hydrides. Dalton Transactions 42: 1810-1819. doi: 10.1039/C2DT31923C
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (
通讯作者: 陈斌,
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索


Article views(6213) PDF downloads(1086) Cited by(5)

Article outline

Figures and Tables

Figures(2)  /  Tables(3)

Other Articles By Authors


DownLoad:  Full-Size Img  PowerPoint