Loading [MathJax]/jax/output/SVG/jax.js
Research article

The mental health of the health care professionals in India during the COVID-19 pandemic: a cross-sectional study

Running title:Short title: COVID-19 and its impact on mental health
  • The COVID-19 pandemic has resulted in dramatic challenges to healthcare systems worldwide. There has been an increased awareness to protect frontline workers from COVID-19 exposure and its consequences. To assess the prevalence of healthcare professionals in India during the COVID-19, a cross-sectional web-based survey was conducted with healthcare professionals from medical colleges and hospitals from different states across the country. The study comprised 772 healthcare professionals aged ≥18 years. The main outcome measures studied were anxiety, depression, and stress. Among the healthcare professionals, 37.17%, 33.68%, and 23.7% were reported to have anxiety, depression, and stress respectively. The physicians, female, aged population, and professionals sleeping less than 7 hours are more prone to psychological problems. The results of this study predict the high levels of anxiety, depression, and stress among healthcare professionals in different states of India. Increased COVID-19 cases, high pressure, workload, and lack of training are the main reasons for the psychological problems in healthcare professionals. Proper strategies must be followed in healthcare settings to reduce the burden of stress.

    Citation: B Shivananda Nayak, Krishnamohan Surapaneni, Pradeep Kumar Sahu, Purnima Bhoi, K V N Dhananjay, Santhi Silambanan, C R Wilma Delphine Silvia, Dhanush Nayak, K Nagendra, M Balachandra Naidu, Akash S Nayak. The mental health of the health care professionals in India during the COVID-19 pandemic: a cross-sectional study[J]. AIMS Medical Science, 2022, 9(2): 283-292. doi: 10.3934/medsci.2022011

    Related Papers:

    [1] Meshari Alesemi . Innovative approaches of a time-fractional system of Boussinesq equations within a Mohand transform. AIMS Mathematics, 2024, 9(10): 29269-29295. doi: 10.3934/math.20241419
    [2] Azzh Saad Alshehry, Humaira Yasmin, Ali M. Mahnashi . Analyzing fractional PDE system with the Caputo operator and Mohand transform techniques. AIMS Mathematics, 2024, 9(11): 32157-32181. doi: 10.3934/math.20241544
    [3] Aisha Abdullah Alderremy, Rasool Shah, Nehad Ali Shah, Shaban Aly, Kamsing Nonlaopon . Comparison of two modified analytical approaches for the systems of time fractional partial differential equations. AIMS Mathematics, 2023, 8(3): 7142-7162. doi: 10.3934/math.2023360
    [4] Musawa Yahya Almusawa, Hassan Almusawa . Numerical analysis of the fractional nonlinear waves of fifth-order KdV and Kawahara equations under Caputo operator. AIMS Mathematics, 2024, 9(11): 31898-31925. doi: 10.3934/math.20241533
    [5] M. Mossa Al-Sawalha, Khalil Hadi Hakami, Mohammad Alqudah, Qasem M. Tawhari, Hussain Gissy . Novel Laplace-integrated least square methods for solving the fractional nonlinear damped Burgers' equation. AIMS Mathematics, 2025, 10(3): 7099-7126. doi: 10.3934/math.2025324
    [6] Aslı Alkan, Halil Anaç . The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method. AIMS Mathematics, 2024, 9(9): 25333-25359. doi: 10.3934/math.20241237
    [7] Reetika Chawla, Komal Deswal, Devendra Kumar, Dumitru Baleanu . A novel finite difference based numerical approach for Modified Atangana- Baleanu Caputo derivative. AIMS Mathematics, 2022, 7(9): 17252-17268. doi: 10.3934/math.2022950
    [8] Emad Salah, Ahmad Qazza, Rania Saadeh, Ahmad El-Ajou . A hybrid analytical technique for solving multi-dimensional time-fractional Navier-Stokes system. AIMS Mathematics, 2023, 8(1): 1713-1736. doi: 10.3934/math.2023088
    [9] Qasem M. Tawhari . Advanced analytical techniques for fractional Schrödinger and Korteweg-de Vries equations. AIMS Mathematics, 2025, 10(5): 11708-11731. doi: 10.3934/math.2025530
    [10] Ritu Agarwal, Mahaveer Prasad Yadav, Dumitru Baleanu, S. D. Purohit . Existence and uniqueness of miscible flow equation through porous media with a non singular fractional derivative. AIMS Mathematics, 2020, 5(2): 1062-1073. doi: 10.3934/math.2020074
  • The COVID-19 pandemic has resulted in dramatic challenges to healthcare systems worldwide. There has been an increased awareness to protect frontline workers from COVID-19 exposure and its consequences. To assess the prevalence of healthcare professionals in India during the COVID-19, a cross-sectional web-based survey was conducted with healthcare professionals from medical colleges and hospitals from different states across the country. The study comprised 772 healthcare professionals aged ≥18 years. The main outcome measures studied were anxiety, depression, and stress. Among the healthcare professionals, 37.17%, 33.68%, and 23.7% were reported to have anxiety, depression, and stress respectively. The physicians, female, aged population, and professionals sleeping less than 7 hours are more prone to psychological problems. The results of this study predict the high levels of anxiety, depression, and stress among healthcare professionals in different states of India. Increased COVID-19 cases, high pressure, workload, and lack of training are the main reasons for the psychological problems in healthcare professionals. Proper strategies must be followed in healthcare settings to reduce the burden of stress.



    The purpose of this paper is to study the global behavior of the following max-type system of difference equations of the second order with four variables and period-two parameters

    {xn=max{An,zn1yn2},yn=max{Bn,wn1xn2},zn=max{Cn,xn1wn2},wn=max{Dn,yn1zn2},  nN0{0,1,2,}, (1.1)

    where An,Bn,Cn,DnR+(0,+) are periodic sequences with period 2 and the initial values xi,yi,zi,wiR+ (1i2). To do this we will use some methods and ideas which stems from [1,2]. For a more complex variant of the method, see [3]. A solution {(xn,yn,zn,wn)}+n=2 of (1.1) is called an eventually periodic solution with period T if there exists mN such that (xn,yn,zn,wn)=(xn+T,yn+T,zn+T,wn+T) holds for all nm.

    When xn=yn and zn=wn and A0=A1=B0=B1=α and C0=C1=D0=D1=β, (1.1) reduces to following max-type system of difference equations

    {xn=max{α,zn1xn2},zn=max{β,xn1zn2},  nN0. (1.2)

    Fotiades and Papaschinopoulos in [4] investigated the global behavior of (1.2) and showed that every positive solution of (1.2) is eventually periodic.

    When xn=zn and yn=wn and An=Cn and Bn=Dn, (1.1) reduces to following max-type system of difference equations

    {xn=max{An,yn1xn2},yn=max{Bn,xn1yn2},  nN0. (1.3)

    Su et al. in [5] investigated the periodicity of (1.3) and showed that every solution of (1.3) is eventually periodic.

    In 2020, Su et al. [6] studied the global behavior of positive solutions of the following max-type system of difference equations

    {xn=max{A,yntxns},yn=max{B,xntyns},  nN0,

    where A,BR+.

    In 2015, Yazlik et al. [7] studied the periodicity of positive solutions of the max-type system of difference equations

    {xn=max{1xn1,min{1,pyn1}},yn=max{1yn1,min{1,pxn1}}, nN0, (1.4)

    where pR+ and obtained in an elegant way the general solution of (1.4).

    In 2016, Sun and Xi [8], inspired by the research in [5], studied the following more general system

    {xn=max{1xnm,min{1,pynr}},yn=max{1ynm,min{1,qxnt}},  nN0, (1.5)

    where p,qR+, m,r,tN{1,2,} and the initial conditions xi,yiR+ (1is) with s=max{m,r,t} and showed that every positive solution of (1.5) is eventually periodic with period 2m.

    In [9], Stević studied the boundedness character and global attractivity of the following symmetric max-type system of difference equations

    {xn=max{B,ypn1xpn2},yn=max{B,xpn1ypn2},  nN0,

    where B,pR+ and the initial conditions xi,yiR+ (1i2).

    In 2014, motivated by results in [9], Stević [10] further study the behavior of the following max-type system of difference equations

    {xn=max{B,ypn1zpn2},yn=max{B,zpn1xpn2},zn=max{B,xpn1ypn2}.  nN0, (1.6)

    where B,pR+ and the initial conditions xi,yi,ziR+ (1i2), and showed that system (1.6) is permanent when p(0,4).

    For more many results for global behavior, eventual periodicity and the boundedness character of positive solutions of max-type difference equations and systems, please readers refer to [11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30] and the related references therein.

    In this section, we study the global behavior of system (1.1). For any n1, write

    {x2n=A2nXn,y2n=B2nYn,z2n=C2nZn,w2n=D2nWn,x2n+1=A2n+1Xn,y2n+1=B2n+1Yn,z2n+1=C2n+1Zn,w2n+1=D2n+1Wn.

    Then, (1.1) reduces to the following system

    {Xn=max{1,C2n1Zn1A2nB2nYn1},Yn=max{1,D2n1Wn1B2nA2nXn1},Zn=max{1,A2nXnC2n+1D2n+1Wn1},Wn=max{1,B2nYnD2n+1C2n+1Zn1},Zn=max{1,A2n1Xn1C2nD2nWn1},Wn=max{1,B2n1Yn1D2nC2nZn1},Xn=max{1,C2nZnA2n+1B2n+1Yn1},Yn=max{1,D2nWnB2n+1A2n+1Xn1},  nN0. (2.1)

    From (2.1) we see that it suffices to consider the global behavior of positive solutions of the following system

    {un=max{1,bvn1aAUn1},Un=max{1,BVn1aAun1},vn=max{1,aunbBVn1},Vn=max{1,AUnbBvn1},  nN0, (2.2)

    where a,b,A,BR+, the initial conditions u1,U1,v1,V1R+. If (un,Un,vn,Vn,a,A,b,B)=(Xn,Yn,Zn,Wn,A2n,B2n,C2n1,D2n1), then (2.2) is the first four equations of (2.1). If (un,Un,vn,Vn,a,A,b,B)=(Zn,Wn,Xn,Yn,C2n,D2n,A2n1,B2n1), then (2.2) is the next four equations of (2.1). In the following without loss of generality we assume aA and bB. Let {(un,Un,vn,Vn)}n=1 be a positive solution of (2.2).

    Proposition 2.1. If ab<1, then there exists a solution {(un,Un,vn,Vn)}n=1 of (2.2) such that un=vn=1 for any n1 and limnUn=limnVn=.

    Proof. Let u1=v1=1 and U1=V1=max{baA,aAB,abB}+1. Then, from (2.2) we have

    {u0=max{1,bv1aAU1}=1,U0=max{1,BV1aAu1}=BV1aA,v0=max{1,au0bBV1}=1,V0=max{1,AU0bBv1}=V1ab,

    and

    {u1=max{1,bv0aAU0}=max{1,bBV1}=1,U1=max{1,BV0aAu0}=max{1,BV1aAab}=BV1aAab,v1=max{1,au1bBV0}=max{1,aabbBV1}=1,V1=max{1,AU1bBv0}=max{1,V1(ab)2}=V1(ab)2.

    Suppose that for some kN, we have

    {uk=1,Uk=BV1aA(ab)k,vk=1,Vk=V1(ab)k+1.

    Then,

    {uk+1=max{1,bvkaAUk}=max{1,b(ab)kBV1}=1,Uk+1=max{1,BVkaAuk}=max{1,BV1aA(ab)k+1}=BV1aA(ab)k+1,vk+1=max{1,auk+1bBVk}=max{1,a(ab)k+1bBV1}=1,Vk+1=max{1,AUk+1bBvk}=max{1,V1(ab)k+2}=V1(ab)k+2.

    By mathematical induction, we can obtain the conclusion of Proposition 2.1. The proof is complete.

    Now, we assume that ab1. Then, from (2.2) it follows that

    {un=max{1,bvn1aAUn1},Un=max{1,BVn1aAun1},vn=max{1,abBVn1,vn1ABUn1Vn1},Vn=max{1,AbBvn1,Vn1abun1vn1},  nN0. (2.3)

    Lemma 2.1. The following statements hold:

    (1) For any nN0,

    un, Un, vn, Vn[1,+). (2.4)

    (2) If ab1, then for any kN and nk+2,

    {un=max{1,baAUn1,bvkaA(AB)nk1Un1Un2Vn2UkVk},Un=max{1,BaAun1,BVkaA(ab)nk1un1un2vn2ukvk},vn=max{1,abBVn1,vk(AB)nkUn1Vn1UkVk},Vn=max{1,AbBvn1,Vk(ab)nkun1vn1ukvk}. (2.5)

    (3) If ab1, then for any kN and nk+4,

    {1vnvn2,1VnAaVn2,1unmax{1,bBun2,bvkaA(AB)nk1},1Unmax{1,BbUn2,BVkaA(ab)nk1}. (2.6)

    Proof. (1) It follows from (2.2).

    (2) Since ABab1, it follows from (2.2) and (2.3) that for any kN and nk+2,

    un=max{1,bvn1aAUn1}=max{1,baAUn1max{1,abBVn2,vn2ABUn2Vn2}}=max{1,baAUn1,bvn2ABaAUn1Un2Vn2}=max{1,baAUn1,bABaAUn1Un2Vn2max{1,abBVn1,vn3ABUn3Vn3}}=max{1,baAUn1,bvn3(AB)2aAUn1Un2Vn2Un3Vn3}=max{1,baAUn1,bvkaA(AB)nk1Un1Un2Vn2UkVk}.

    In a similar way, also we can obtain the other three formulas.

    (3) By (2.5) one has that for any kN and nk+2,

    {unbaAUn1,UnBaAun1,vnabBVn1,VnAbBvn1,

    from which and (2.4) it follows that for any nk+4,

    {1unmax{1,bBun2,bvkaA(AB)nk1},1Unmax{1,BbUn2,BVkaA(ab)nk1},1vnmax{1,avn2A,vn2}=vn2,1Vnmax{1,AVn2a,Vn2}=AVn2a.

    The proof is complete.

    Proposition 2.2. If ab=AB=1, then {(un,Un,vn,Vn)}+n=1 is eventually periodic with period 2.

    Proof. By the assumption we see a=A and b=B. By (2.5) we see that for any kN and nk+2,

    {un=max{1,b3Un1,b3vkUn1Un2Vn2UkVk},Un=max{1,b3un1,b3Vkun1un2vn2ukvk},vn=max{1,a3Vn1,vkUn1Vn1UkVk},Vn=max{1,a3vn1,Vkun1vn1ukvk}. (2.7)

    (1) If a=b=1, then it follows from (2.7) and (2.4) that for any nk+4,

    {un=max{1,vkUn1Un2Vn2UkVk}max{1,vkUn2Un3Vn3UkVk}=un1,Un=max{1,Vkun1un2vn2ukvk}Un1,vn=max{1,vkUn1Vn1UkVk}vn1,Vn=max{1,Vkun1vn1ukvk}Vn1. (2.8)

    We claim that vn=1 for any n6 or Vn=1 for any n6. Indeed, if vn>1 for some n6 and Vm>1 for some m6, then

    vn=v1Un1Vn1U1V1>1,  Vm=V1um1vm1u1v1>1,

    which implies

    1v1Un1Vn1U1V1V1um1vm1u1v1=Vmvn>1.

    A contradiction.

    If vn=1 for any n6, then by (2.8) we see un=1 for any n10, which implies Un=Vn=V10.

    If Vn=1 for any n6, then by (2.8) we see Un=1 for any n10, which implies vn=un=v10.

    Then, {(un,Un,vn,Vn)}+n=1 is eventually periodic with period 2.

    (2) If a<1<b, then it follows from (2.7) that for any nk+4,

    {un=max{1,b3Un1,b3vkUn1Un2Vn2UkVk},Un=max{1,b3un1,b3Vkun1un2vn2ukvk},vn=max{1,vkUn1Vn1UkVk}vn1,Vn=max{1,Vkun1vn1ukvk}Vn1. (2.9)

    It is easy to verify vn=1 for any n6 or Vn=1 for any n6.

    If Vn=vn=1 eventually, then by (2.9) we have

    {1vkUn1Vn1UkVk eventually,1Vkun1vn1ukvk eventually.

    Since Unb3un1 and unb3Un1, we see

    {un=max{1,b3Un1,b3vkUn1Un2Vn2UkVk}=max{1,b3Un1}un2 eventually,Un=max{1,b3un1,b3Vkun1un2vn2ukvk}=max{1,b3un1}Un2 eventually,

    which implies

    {un2un=max{1,b3Un1}max{1,b3Un3}=un2 eventually,Un2Un=max{1,b3un1}max{1,b3un3}=Un2 eventually.

    If Vn>1=vn eventually, then by (2.9) we have

    {1vkUn1Vn1UkVk eventually,Vn=Vkun1vn1ukvk>1 eventually.

    Thus,

    {un=max{1,b3Un1,b3vkUn1Un2Vn2UkVk}=max{1,b3Un1}un2 eventually,Un=max{1,b3un1,b3Vkun1un2vn2ukvk}=max{1,b3Vkun1un2vn2ukvk}Un2 eventually,

    which implies

    {un2un=max{1,b3Un1}max{1,b3Un3}=un2 eventually,Un=1 eventually  or  b3Vk eventually.

    If Vn=1<vn eventually, then by (2.9) we have Un2=Un eventually and un=un1 eventually. By the above we see that {(un,Un,vn,Vn)}+n=1 is eventually periodic with period 2.

    (3) If b<1<a, then for any kN and nk+2,

    {un=max{1,b3vkUn1Un2Vn2UkVk}un1,Un=max{1,b3Vkun1un2vn2ukvk}Un1,vn=max{1,a3Vn1,vkUn1Vn1UkVk},Vn=max{1,a3vn1,Vkun1vn1ukvk}. (2.10)

    It is easy to verify un=1 for any n3 or Un=1 for any n3.

    If un=Un=1 eventually, then

    {1b3vkUn1Un2Vn2UkVk eventually,1b3Vkun1un2vn2ukvk eventually.

    Thus, by (2.6) we have

    {vn2vn=max{1,a3Vn1,vkUn1Vn1UkVk}=max{1,a3Vn1}vn2 eventually,Vn2Vn=max{1,a3vn1,Vkun1vn1ukvk}=max{1,a3vn1}Vn2 eventually.

    If un=1<Un eventually, then

    {1b3vkUn1Un2Vn2UkVk eventually,1<b3Vkun1un2vn2ukvk=Un eventually.

    Thus,

    {vn2vn=max{1,a3Vn1,vkUn1Vn1UkVk}=max{1,a3Vn1}vn2 eventually,Vn=max{1,a3vn1,Vkun1vn1ukvk}=max{1,Vkun1vn1ukvk}=1 eventually or Vk eventually.

    If un>1=Un eventually, then we have Vn=Vn2 eventually and vn=1 eventually or vn=vk eventually.

    By the above we see that {(un,Un,vn,Vn)}+n=1 is eventually periodic with period 2.

    Proposition 2.3. If ab=1<AB, then {(un,Un,vn,Vn)}+n=1 is eventually periodic with period 2.

    Proof. Note that UnBaAun1 and VnAbBvn1. By (2.5) we see that there exists NN such that for any nN,

    {un=max{1,b2AUn1}un2,Un=max{1,BaAun1,BVkaAun1un2vn2ukvk},vn=max{1,a2BVn1}vn2,Vn=max{1,AbBvn1,Vkun1vn1ukvk}. (2.11)

    It is easy to verify that un=1 for any nN+1 or vn=1 for any nN+1.

    If un=vn=1 eventually, then by (2.11) we see that Un=Un1 eventually and Vn=Vn1 eventually.

    If uM+2n>1=vn eventually for some MN, then by (2.11) and (2.4) we see that

    {uM+2n=b2AUM+2n1>1 eventually,UM+2n+1=max{1,BbUM+2n1,BVkaAuM+2nuM+2n1vM+2n1ukvk}BbUM+2n1 eventually,vn=max{1,a2BVn1}=1 eventually,Vn=max{1,AbBvn1,Vkun1vn1ukvk}Vn1 eventually.

    By (2.11) we see that Un is bounded, which implies B=b.

    If UM+2n1BVkaAuM+2nuM+2n1vM+2n1ukvk eventually, then

    UM+2n+1=BVkaAuM+2nuM+2n1vM+2n1ukvkUM+2n1 eventually.

    Thus, UM+2n+1=UM+2n1 eventually and uM+2n=uM+2n2 eventually. Otherwise, we have UM+2n+1=UM+2n1 eventually and uM+2n=uM+2n2 eventually. Thus, Vn=Vn1=max{1,AbB} eventually since limnVkun1vn1ukvk=0. By (2.2) it follows UM+2n=UM+2n2 eventually and uM+2n+1=uM+2n1 eventually.

    If vM+2n>1=un eventually for some MN, then we may show that {(un,Un,vn,Vn)}+n=1 is eventually periodic with period 2. The proof is complete.

    Proposition 2.4. If ab>1, then {(un,Un,vn,Vn)}+n=1 is eventually periodic with period 2.

    Proof. By (2.5) we see that there exists NN such that for any nN,

    {un=max{1,baAUn1},Un=max{1,BaAun1},vn=max{1,abBVn1},Vn=max{1,AbBvn1}. (2.12)

    If a<A, then for n2k+N with kN,

    vn=max{1,abBVn1}max{1,aAvn2}max{1,(aA)kvn2k},

    which implies vn=1 eventually and Vn=max{1,AbB} eventually.

    If a=A, then

    {vn=max{1,abBVn1}vn2 eventually,Vn=max{1,AbBvn1}Vn2 eventually.

    Which implies

    {vn2vn=max{1,abBVn1}max{1,abBVn3}=vn2 eventually,Vn2Vn=max{1,AbBvn1}max{1,AbBvn3}=Vn2 eventually.

    Thus, Vn,vn are eventually periodic with period 2. In a similar way, we also may show that Un,un are eventually periodic with period 2. The proof is complete.

    From (2.1), (2.2), Proposition 2.1, Proposition 2.2, Proposition 2.3 and Proposition 2.4 one has the following theorem.

    Theorem 2.1. (1) If min{A0C1,B0D1,A1C0,B1D0}<1, then system (1.1) has unbounded solutions.

    (2) If min{A0C1,B0D1,A1C0,B1D0}1, then every solution of system (1.1) is eventually periodic with period 4.

    In this paper, we study the eventual periodicity of max-type system of difference equations of the second order with four variables and period-two parameters (1.1) and obtain characteristic conditions of the coefficients under which every positive solution of (1.1) is eventually periodic or not. For further research, we plan to study the eventual periodicity of more general max-type system of difference equations by the proof methods used in this paper.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    Project supported by NSF of Guangxi (2022GXNSFAA035552) and Guangxi First-class Discipline SCPF(2022SXZD01, 2022SXYB07) and Guangxi Key Laboratory BDFE(FED2204) and Guangxi University of Finance and Economics LSEICIC(2022YB12).

    There are no conflict of interest in this article.


    Acknowledgments



    Authors would like to thank Dr. Shivanand Maharaj, Department of Surgery, Port of Spain General Hospital, Trinidad, for helping in preparing the questionnaire.

    Conflict of interest



    The authors declare no conflicts of interest in this paper.

    [1] Vizheh M, Qorbani M, Arzaghi SM, et al. (2020) The mental health of healthcare workers in the COVID-19 pandemic: A systematic review. J Diabetes Metab Disord 19: 1967-1978. https://doi.org/10.1007/s40200-020-00643-9
    [2] Ram VS, Babu GR, Prabhakaran D (2020) COVID-19 pandemic in India. Eur Heart J 41: 3874-3876. https://doi.org/10.1093/eurheartj/ehaa493
    [3] Sandesh R, Shahid W, Dev K, et al. (2020) Impact of COVID-19 on the mental health of healthcare professionals in Pakistan. Cureus 12: e8974. https://doi.org/10.7759/cureus.8974
    [4] Zhou Z, Xu S, Wang H, et al. (2020) COVID-19 in Wuhan: Immediate psychological impact on 5062 health workers. MedRxiv . https://doi.org/10.1101/2020.02.20.20025338
    [5] Selvaral P, Muthukanagaraj P, Saluja B, et al. (2020) Psychological impact of COVID-19 pandemic on health-care professionals in India—A multicentric cross-sectional study. Indian J Med Sci 72: 141-147. https://doi.org/10.25259/IJMS_193_2020
    [6] Mathur S, Sharma D, Solanki RK, et al. (2020) Stress-related disorders in health-care workers in COVID-19 pandemic: A cross-sectional study from India. India J Med Specialitie 11: 180-184. https://doi.org/10.4103/INJMS.INJMS_77_20
    [7] Basudan S, Binanzan N, Alhassan A (2017) Depression, anxiety and stress in dental students. Int J Med Educ 8: 179-186. https://doi.org/10.5116/ijme.5910.b961
    [8] Yusoff MSB, Fuad A, Rahim A, et al. (2013) Prevalence and associated factors of stress, anxiety and depression among prospective medical students. Asian J Psychiatr 6: 128-133. https://doi.org/10.1016/j.ajp.2012.09.012
    [9] Henry JD, Crawford JR (2005) The short-form version of the depression, anxiety, stress scales (DASS-21): construct validity and normative data in a large non-clinical sample. Br J Clin Psychol 44: 227-239. https://doi.org/10.1348/014466505X29657
    [10] Rehman U, Shahnawaz MG, Khan NH, et al. (2021) Depression, anxiety and stress among Indians in times of Covid-19 lockdown. Community Ment Health J 57: 42-48. https://doi.org/10.1007/s10597-020-00664-x
    [11] Sharma AJ, Subramanyam MA (2020) A cross-sectional study of psychological wellbeing of Indian adults during the Covid-19 lockdown: Different strokes for different folks. PLoS One 15: e0238761. https://doi.org/10.1371/journal.pone.0238761
    [12] Raj R, Koyalada S, Kumar A, et al. (2020) Psychological impact of the COVID-19 pandemic on healthcare workers in India: An observational study. J Family Med Prim Care 9: 5921-5926. https://doi.org/10.4103/jfmpc.jfmpc_1217_20
    [13] Barzilay R, Moore TM, Greenberg DM, et al. (2020) Resilience, COVID-19-related stress, anxiety and depression during the pandemic in a large population enriched for healthcare providers. Transl Psychiatry 10: 291. https://doi.org/10.1038/s41398-020-00982-4
    [14] Que J, Shi L, Deng J, et al. (2020) Psychological impact of the COVID-19 pandemic on healthcare workers: a cross-sectional study in China. Gen Psychiatr 33: e100259. https://doi.org/10.1136/gpsych-2020-100259
    [15] Si MY, Su XY, Jiang Y, et al. (2020) Psychological impact of COVID-19 on medical care workers in China. Infect Dis Poverty 9: 113. https://doi.org/10.1186/s40249-020-00724-0
    [16] Brooks SK, Webster RK, Smith LE, et al. (2020) The psychological impact of quarantine and how to reduce it: rapid review of the evidence. Lancet 395: 912-920. https://doi.org/10.1016/S0140-6736(20)30460-8
    [17] McAlonan GM, Lee AM, Cheung V, et al. (2007) Immediate and sustained psychological impact of an emerging infectious disease outbreak on health care workers. Can J Psychiatry 52: 241-247. https://doi.org/10.1177/070674370705200406
    [18] Nayak BS, Sahu PK, Ramsaroop K, et al. (2021) Prevalence and factors associated with depression, anxiety and stress among healthcare workers of Trinidad and Tobago during COVID-19 pandemic: a cross-sectional study. BMJ Open 11: e044397. https://doi.org/10.1136/bmjopen-2020-044397
    [19] Asnakew S, Amha H, Kassew T (2021) Mental health adverse effects of COVID-19 pandemic on health care workers in North West Ethiopia: A multicenter cross-sectional study. Neuropsychiatr Dis Treat 17: 1375-1384. https://doi.org/10.2147/NDT.S306300
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4752) PDF downloads(343) Cited by(1)

Figures and Tables

Figures(1)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog