[1]
|
Moriya H (2015) Quantitative nature of overexpression experiments. Mol Biol Cell 26: 3932-3939. doi: 10.1091/mbc.E15-07-0512
|
[2]
|
Eguchi Y, Makanae K, Hasunuma T, et al. (2018) Estimating the protein burden limit of yeast cells by measuring the expression limits of glycolytic proteins. Elife 7: e34595. doi: 10.7554/eLife.34595
|
[3]
|
Piatkevich KD, Verkhusha VV (2011) Guide to red fluorescent proteins and biosensors for flow cytometry. Method Cell Biol 102: 431-461. doi: 10.1016/B978-0-12-374912-3.00017-1
|
[4]
|
Ansari AM, Ahmed AK, Matsangos AE, et al. (2016) Cellular GFP toxicity and immunogenicity: potential confounders in in vivo cell tracking experiments. Stem Cell Rev Rep 12: 553-559. doi: 10.1007/s12015-016-9670-8
|
[5]
|
Kintaka R, Makanae K, Moriya H (2016) Cellular growth defects triggered by an overload of protein localization processes. Sci Rep 6: 1-11. doi: 10.1038/srep31774
|
[6]
|
Geiler-Samerotte KA, Dion MF, Budnik BA, et al. (2011) Misfolded proteins impose a dosage-dependent fitness cost and trigger a cytosolic unfolded protein response in yeast. P Natl Acad Sci 108: 680-685. doi: 10.1073/pnas.1017570108
|
[7]
|
Kafri M, Metzl-Raz E, Jona G, et al. (2016) The cost of protein production. Cell Rep 14: 22-31. doi: 10.1016/j.celrep.2015.12.015
|
[8]
|
Shah P, Ding Y, Niemczyk M, et al. (2013) Rate-limiting steps in yeast protein translation. Cell 153: 1589-1601. doi: 10.1016/j.cell.2013.05.049
|
[9]
|
Kats I, Khmelinskii A, Kschonsak M, et al. (2018) Mapping degradation signals and pathways in a eukaryotic N-terminome. Mol Cell 70: 488-501. doi: 10.1016/j.molcel.2018.03.033
|
[10]
|
Kudla G, Murray AW, Tollervey D, et al. (2009) Coding-sequence determinants of gene expression in Escherichia coli. Science 324: 255-258. doi: 10.1126/science.1170160
|
[11]
|
Chen X, Zaro JL, Shen WC (2013) Fusion protein linkers: property, design and functionality. Adv Drug Deliver Rev 65: 1357-1369. doi: 10.1016/j.addr.2012.09.039
|
[12]
|
Kalderon D, Roberts BL, Richardson WD, et al. (1984) A short amino acid sequence able to specify nuclear location. Cell 39: 499-509. doi: 10.1016/0092-8674(84)90457-4
|
[13]
|
Xu D, Marquis K, Pei J, et al. (2015) LocNES: a computational tool for locating classical NESs in CRM1 cargo proteins. Bioinformatics 31: 1357-1365. doi: 10.1093/bioinformatics/btu826
|
[14]
|
Yarimizu T, Nakamura M, Hoshida H, et al. (2015) Synthetic signal sequences that enable efficient secretory protein production in the yeast Kluyveromyces marxianus. Microb Cell Fact 14: 20. doi: 10.1186/s12934-015-0203-y
|
[15]
|
Einhauer A, Jungbauer A (2001) The FLAG™ peptide, a versatile fusion tag for the purification of recombinant proteins. J Biochem Biophys Methods 49: 455-465. doi: 10.1016/S0165-022X(01)00213-5
|
[16]
|
Hochuli E (1990) Purification of recombinant proteins with metal chelate adsorbent. Genetic Engineering Boston: Springer, 87-98. doi: 10.1007/978-1-4613-0641-2_6
|
[17]
|
Royant A, Noirclerc-Savoye M (2011) Stabilizing role of glutamic acid 222 in the structure of Enhanced Green Fluorescent Protein. J Struct Biol 174: 385-390. doi: 10.1016/j.jsb.2011.02.004
|
[18]
|
Baker Brachmann C, Davies A, Cost GJ, et al. (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14: 115-132. doi: 10.1002/(SICI)1097-0061(19980130)14:2<115::AID-YEA204>3.0.CO;2-2
|
[19]
|
Makanae K, Kintaka R, Makino T, et al. (2013) Identification of dosage-sensitive genes in Saccharomyces cerevisiae using the genetic tug-of-war method. Genome Res 23: 300-311. doi: 10.1101/gr.146662.112
|
[20]
|
Amberg DC, Burke D, Strathern JN (2005) Methods in Yeast Genetics: A Cold Spring Harbor Laboratory Course Manual Plainview: Cold Spring Harbor Laboratory Press.
|
[21]
|
Kevin RO, Vo KT, Michaelis S, et al. (1997) Recombination-mediated PCR-directed plasmid construction in vivo in yeast. Nucleic Acids Res 25: 451-452. doi: 10.1093/nar/25.2.451
|
[22]
|
Moriya H, Shimizu-Yoshida Y, Kitano H (2006) In vivo robustness analysis of cell division cycle genes in Saccharomyces cerevisiae. PLoS Genet 2: e111. doi: 10.1371/journal.pgen.0020111
|
[23]
|
Cormack BP, Bertram G, Egerton M, et al. (1997) Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans. Microbiology 143: 303-311. doi: 10.1099/00221287-143-2-303
|
[24]
|
Moriya H, Makanae K, Watanabe K, et al. (2012) Robustness analysis of cellular systems using the genetic tug-of-war method. Mol BioSyst 8: 2513-2522. doi: 10.1039/c2mb25100k
|
[25]
|
Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31: 3406-3415. doi: 10.1093/nar/gkg595
|
[26]
|
Sabi R, Volvovitch Daniel R, Tuller T (2017) stAIcalc: tRNA adaptation index calculator based on species-specific weights. Bioinformatics 33: 589-591.
|
[27]
|
Almagro Armenteros JJ, Sønderby CK, Sønderby SK, et al. (2017) DeepLoc: prediction of protein subcellular localization using deep learning. Bioinformatics 33: 3387-3395. doi: 10.1093/bioinformatics/btx431
|
[28]
|
Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: 105-132. doi: 10.1016/0022-2836(82)90515-0
|
[29]
|
Krogh A, Larsson BÈ, Von Heijne G, et al. (2001) Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 305: 567-580. doi: 10.1006/jmbi.2000.4315
|
[30]
|
Drozdetskiy A, Cole C, Procter J, et al. (2015) JPred4: a protein secondary structure prediction server. Nucleic Acids Res 43: W389-W394. doi: 10.1093/nar/gkv332
|
[31]
|
Park SH, Kukushkin Y, Gupta R, et al. (2003) PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell 154: 134-145. doi: 10.1016/j.cell.2013.06.003
|
[32]
|
Ford AE, Denicourt C, Morano KA (2019) Thiol stress–dependent aggregation of the glycolytic enzyme triose phosphate isomerase in yeast and human cells. Mol Biol Cell 30: 554-565. doi: 10.1091/mbc.E18-10-0616
|
[33]
|
Stein KC, Frydman J (2019) The stop-and-go traffic regulating protein biogenesis: How translation kinetics controls proteostasis. J Biol Chem 294: 2076-2084. doi: 10.1074/jbc.REV118.002814
|