Citation: Chenwei Song, Rui Xu, Ning Bai, Xiaohong Tian, Jiazhe Lin. Global dynamics and optimal control of a cholera transmission model with vaccination strategy and multiple pathways[J]. Mathematical Biosciences and Engineering, 2020, 17(4): 4210-4224. doi: 10.3934/mbe.2020233
[1] | A. Alam, R. C. LaRocque, J. B. Harris, C. Vanderspurt, E. T. Ryan, F. Qadri, et al., Hyperinfectivity of human-passaged Vibrio cholerae can be modeled by growth in the infant mouse, Infect. Immun., 73 (2005), 6674-6679. doi: 10.1128/IAI.73.10.6674-6679.2005 |
[2] | A. A. King, E. L. Lonides, M. Pascual, M. J. Bouma, Inapparent infections and cholera dynamics, Nature, 454 (2008), 877-880. |
[3] | T. R. Hendrix, The pathophysiology of cholera, Bull. N. Y. Acad. Med., 47 (1971), 1169-1180. |
[4] | M. Ghosh, P. Chandra, P. Sinha, J. B. Shukla, Modelling the spread of carrier dependent infectious diseases with environmental effect, Appl. Math. Comput., 152 (2004), 385-402. |
[5] | World Health Organzation, 2019. Available from: http://www.emro.who.int/som/somalianews/cholera-vaccination-drive-begins-in-high-risk-districts-in-somalia.html?format=html. |
[6] | R. P. Sanches, C. P. Ferreira, R. A. Kraenkel, The role of immunity and seasonality in cholera epidemics, Bull. Math. Biol., 73 (2011), 2916-2931. |
[7] | R. R. Colwell, A. Huq, Environmental reservior of Vibrio cholerae, the causative agent of cholera, Ann. N.Y. Acad. Sci., 740 (1994), 44-53. |
[8] | D. M. Hartley, J. G. Morris Jr, D. L. Smith, Hyperinfectivity: a critical element in the ability of V. cholerae to cause epidemics?, PLoS Med., 3 (2006), 63-69. |
[9] | Z. Mukandavire, S. Liao, J. Wang, H. Gaff, D. L. Smith, J. G. Morris Jr, Estimating the reproductive numbers for the 2008-2009 cholera outbreak in Zimbabwe, Proc. Natl. Acad. Sci. USA, 108 (2011), 8767-8772. |
[10] | D. S. Merrell, S. M. Butler, F. Qadri, N. A. Dolganov, A. Alam, M. B. Cohen, et al., Host-induced epidemic spread of the cholera bacterium, Nature, 417 (2002), 642-645. doi: 10.1038/nature00778 |
[11] | Z. Mukandavire, A. Tripathi, C. Chiyaka, G. Musuka, F. Nyabadza, H. G. Mwambi, Modelling and analysis of the intrinsic dynamics of cholera, Differ. Equ. Dyn. Syst., 19 (2011), 253-256. |
[12] | E. J. Nelson, J. B. Harris, J. G. Morris, S. B. Calderwood, A. Camilli, Cholera transmission:the host, pathogen and bacteriophage dynamics, Nat. Rev. Microbiol., 7 (2009), 693-702. |
[13] | J. H. Tien, D. J. D. Earn, Multiple transmission pathways and disease dynamics in a waterborne pathogen model, Bull. Math. Biol., 72 (2010), 1506-1533. |
[14] | World Health Organization, Cholera vaccines: WHO position paper, Weekly Epidemiol. Rec., 85 (2010), 117-128. |
[15] | C. Modnak, J. Wang, Z. Mukandavire, Simulating optimal vaccination times during cholera outbreaks, Int. J. Biomath., 7 (2014), 1450014. |
[16] | C. Modnak, A model of cholera transmission with hyperinfectivity and its optimal vaccination control, Int. J. Biomath., 10 (2017), 1750084. |
[17] | X. H. Tian, R. Xu, J. Z. Lin, Mathematical analysis of a cholera infection model with vaccination strategy, Appl. Math. Comput., 361 (2019), 517-535. |
[18] | D. Posny, J. Wang, Z. Mukandavire, C. Modnak, Analyzing transmission dynamics of cholera with public health interventions, Math. Biosci., 264 (2015), 38-53. |
[19] | P. van den Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29-48. |
[20] | M. Martcheva, An Introduction to Mathematical Epidemiology, Spinger, 2015. |
[21] | S. Oluwaseun, M. Tufail, Optimal control in epidemiology, Ann. Oper. Res., 251 (2017), 55-71. |
[22] | World Health Organization, 2019. Available from: http://www.emro.who.int/healthtopics/cholera-outbreak/cholera-outbreaks.html. |
[23] | R. L. M. Neilan, E. Schaefer, H. Gaff, R. Fister, S. Lenhart, Modeling Optimal Intervention Strategies for Cholera, Bull. Math. Biol., 72 (2010), 2004-2018. |
[24] | S. Marino, I. B. Hogue, C. J. Ray, D. E. Kirschner, A methodology for performing global uncertainty and sensitivity analysis in systems biology, J. Theor. Biol., 254 (2008), 178-196. |