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Abstract: Nucleotide and amino acid sequences at the N-terminus affect the expression level and
cytotoxicity of proteins; however, their effects are not fully understood yet. Here, N-terminal 30
nucleotide/10 amino acid (N10) sequences that affect the expression level and cytotoxicity of a green
fluorescent protein were systematically isolated in the budding yeast Saccharomyces cerevisiae. The
expression per gene (EPG) and gene copy number limit (CNL) relationships were examined to assess
the effects of the N10 sequence. The isolated N10 nucleotide sequences suggested that codon
optimality is the major determinant of the protein expression level. A higher number of hydrophobic
or cysteine residues in the N10 sequence seemed to increase the cytotoxicity of the protein.
Therefore, a high frequency of specific amino acid residues in the outside of the main tertiary
structure of proteins might not be preferable.
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Abbreviations: GFP: green fluorescent protein; EPG: expression per gene; CNL: gene copy number
limit; SC: synthetic complete

1. Introduction
Some proteins are considered cytotoxic because their overexpression causes cellular growth

defects. However, toxicity is a relative quantity that can only be defined by comparison. The
expression limit of a protein, namely, the protein expression level that results in growth defects, may
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be considered as an index for protein cytotoxicity [1]. In the model eukaryote Saccharomyces
cerevisiae, fluorescent proteins and glycolytic enzymes have the highest expression limits, which
means that they are the least cytotoxic in this organism [2], while reports suggest that fluorescent
proteins could be cytotoxic in other cells [3,4]. The cytotoxicity of fluorescent proteins can be
increased (i.e., their expression limits are decreased) by adding localization signals or mutations that
cause misfolding [5,6]. The mechanism determining the expression limit of a non-toxic protein is
recognized as the “protein burden/cost effect,” in which cellular protein production resources are
overloaded by extreme overexpression of the protein [1,7]. In S. cerevisiae, the limit that triggers
protein burden is about 15% of the total protein content [2].

The nucleotide sequence that corresponds to the N-terminal of the protein strongly affects the
expression level of the protein by modulating the efficiency of translation [8]. The N-terminal amino
acid sequences of proteins also affect the stability and thus the expression levels of the protein [9].
N-terminal amino acid sequences also affect the cytotoxicity of proteins because they often transmit
localization signals [5]. Although there are several systematic analyses revealing the relationship
between amino acid sequences and expression levels [9,10], predicting the effect of the N-terminal
sequence on the expression level and cytotoxicity of the protein remains challenging.

In this study, the effects of the N-terminal sequence on the expression level and cytotoxicity of
green fluorescent protein (GFP) were systematically analyzed. Random 30 nucleotides (i.e., ten
amino acids) were inserted into the coding sequence for the N-terminal region of GFP. This length
was chosen because peptide sequences shorter than ten amino acid length could be linkers
connecting different proteins [11], protein localization signals [12—14], and protein tags [15,16] used
for protein engineering. GFP consists of a beta-barrel structure as its main tertiary structure [17], and
additional N-terminal sequences should be located outside of the main structure.

The effects of the sequence on the expression level and GFP cytotoxicity were assessed using
the expression per gene (EPG) and gene copy number limit (CNL) relationship. Several sequences
that would decrease the expression level or increase the cytotoxicity were isolated. The lower
expression level was associated with codon optimality, and cytotoxicity was increased by the
existence of hydrophobic or cysteine residues.

2. Materials and Method
2.1. Strain, plasmid, media, and growth conditions

The S. cerevisiae strain BY4741 (MATa his341 leu2A0 met1 540 ura340) [18] was used in all
experiments. pTOW40836-TDH3pro-yEGFP (Figure 1A) [19] was used as the base plasmid. The
cultivation and transformation of yeast were performed as previously described [20]. Saccharomyces
cerevisiae cells were grown in synthetic complete (SC) medium without uracil (—Ura) or without
leucine and uracil (—Leu/Ura) conditions. The SC medium was made using the yeast nitrogen base
(4027-512, MP Biomedicals), glucose (16806—25, Nacalai tesque), the —His/~Leu/~Ura drop-out
mix (630423, Clontech), histidine (18116-92, Nacalai tesque), and leucine (20327-75, Nacalai
tesque).
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Figure 1. Experimental framework isolating N10 sequences affecting the expression
level and cytotoxicity of N10-GFPs. (A) Plasmid construct used in this study. Thirty
random nucleotides (ten amino acids) were inserted into the N-terminal of yEGFP.
Constructed N10-GFPs were expressed under the control of the TDH3 promoter
(TDH3pro). The base plasmid used was a multicopy plasmid pTOW40836, whose copy
number may be controlled by culture conditions. (B) The experimental procedure of
gTOW, with the principle of how copy number limit (CNL) of the target gene is
determined by the gTOW. The detail of the figure is explained in the main text.

2.2. Preparation of yeast strains with N10-GFP plasmids

Two DNA fragments were amplified with the primers OHM1002 (5 '
-CATTTTGTTTGTTTATGTGT-3' ) - OSBI851 (5’ -ATGAGTATTCAACATTTCCG-3' ) and
OHMB600 (5" -ATGTCTAAAGGTGAAGAATT-3' ) -0SBI850 (5" -TTACCAATGCTTAATCAGTG-3' )
using pTOW40836-TDH3pro-yEGFP as a template. The N10 DNA fragment was prepared via
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single-cycle amplification of the template DNA (OHM1000: 5

-TAAACACACATAAACAAACAAAATGNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNTC
TAAAGGTGAAGAATTATTCACTG-3 ' ) using the primer OHM1001 (5 '

-CAGTGAATAATTCTTCACCTTTAGA-3 ' ). The DNA fragments were amplified using
KOD-Plus-NEO (KOD-401, TOYOBO). All three DNA fragments were simultaneously introduced
into BY4741 cells to join them, and the transformants were cultured on an SC-Ura plate. The
N10-GFP plasmids were constructed by homologous recombination-based cloning in vivo [21].
Randomly-chosen 94 colonies of the transformants were picked-up and used for further analysis.

2.3. Measurement of growth rate, GFP fluorescence, and plasmid copy number

Each yeast strain was cultivated in 200 L SC—Ura media in each well of a 96-well plate (161093,
Thermo) at 30 °C for overnight to prepare the preculture. The precultured cells (5 L each) were
transferred into 200 P of SC—-Ura or SC—Leu/Ura medium in 96-well plates, and grown at 30 °C
without agitation. The cell density (absorbance 595 nm) and GFP fluorescence (485 nm excitation — 535
emission) were measured every 30 min for 50 hours using the Infinite F200 microplate reader (TECAN).
The maximum growth rate (min %) during the 270 min interval was calculated from the cell density
measurements, and the maximum GFP fluorescence (AU) was obtained from the GFP fluorescence
measurements. After cell cultivation, cells were collected, and the plasmid copy number in the cell (copies
per cell) was measured via real-time PCR as described previously [22]. The expression per gene (EPG,
AU) of each N10-GFP was calculated by dividing the maximum GFP fluorescence in SC—Ura by the
plasmid copy number in SC-Ura. The plasmid copy number in SC—Leu/Ura was considered as the
copy number limit (CNL) of each N10-GFP as the reason described in Results.

2.4. Bioinformatic analysis

The folding energy of mRNA AG (kcal/mol) containing the N10 sequence (from —4 nt to +37 nt)
was calculated using the mfold web server (http://unafold.rna.albany.edu/?g=mfold). Codon
optimality was calculated as the tRNA adaptation index (tAl) wusing the stALcalc
(http://tau-tai.azurewebsites.net/). The existence of a localization signal was predicted using
DeepLoc-1.0 (http://www.cbs.dtu.dk/services/DeepLoc/). The GRAVY value was calculated using
the GRAVY calculator (http://www.gravy-calculator.de/). The distribution of expected GRAVY
values in the 10 amino acid sequences translated from random 30 nucleotide sequences (mean = —0.254
and standard deviation = 0.950) were estimated from the 100,000 randomly generated sequences.
The existence of the transmembrane domain (TM) and secondary structure in the N-terminal 30 a.a.
were predicted using TMHMM server v. 2.0 (http://www.cbs.dtu.dk/servicess TMHMMY/) and Jpred4
(http://www.compbio.dundee.ac.uk/jpred/), respectively. The statistical analyses were performed
using Microsoft Excel (version 16.36).

3. Results
3.1. Isolation of N-terminal sequences that modulate the expression level and GFP cytotoxicity

Figure 1A shows the plasmid used to assess the effects of the N-terminal sequences on the
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expression level and GFP cytotoxicity. A yeast codon-optimized enhanced GFP (yEGFP3) [23] was
the GFP used. After the N-terminal methionine, random 30 nucleotides encoding 10 amino acids (N10
sequences) were inserted by homologous recombination-based cloning in S. cerevisiae. The resulting
N10-GFPs were expressed under the control of the strong TDH3 promoter (TDH3pro). pTOW40836
was used as a backbone plasmid. The copy number of pTOW40836 in S. cerevisiae cells cultured
without leucine and uracil (—Leu/Ura) reflects the CNL of the gene. Under such conditions, the
overexpressed gene product inhibits the growth of the cell owing to the genetic tug-of-war (gTOW)
effect [22,24].

The principle of how CNL is determined by the gTOW is explained as follows (Figure 1B). A
target gene is cloned into a plasmid for gTOW (Step 1 in Figure 1B), and is used to transform an
ura3A leu2A strain (Step 2 in Figure 1B). In this study, we used TDH3pro_N10-GFP, pTOW40836,
and BY4741 as the target, the plasmid for gTOW, and the host strain, respectively. Because of 24
ORI on the plasmid, the copy number of the plasmid becomes multicopy and diverse among the
population. When the cells are transferred into the —Leu/Ura media, the plasmid copy number
becomes >100 copies per cell (Step 3 in Figure 1B). This is performed due to leu2-89 on the plasmid,
which is an allele of LEU2 harboring a large deletion within its promoter and thus weakly expressed.
A higher copy number of leu2-89 is required to fulfill the demand of Leu2 protein to synthesize an
essential nutrient leucine (red line in Figure 1B). However, if the target gene has the expression limit
to cause cellular defects, the gene copy number and thus the plasmid copy number should be less
than the limit, because overexpression of the target beyond the limit causes growth defects (blue line
in Figure 1B). The resulting tug-of-war of selection biases between leu2-89 and the target gene (blue
and red arrows in Figure 1B) determines the plasmid’s copy number, which is determined by the
real-time PCR (Step4 in Figure 1B). Because the bias of leu2-89 is always the same, the copy
number should reflect the copy number limit (CNL) of the target gene.
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Figure 2. The GFP expression level per gene (EPG) and gene copy number limit (CNL)
are inversely proportional. See the main text for the details.
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Our framework for identifying N10 sequences affecting the expression level and GFP
cytotoxicity is explained as follows. The GFP EPG and CNL of the gene should be inversely
proportional because the expression limit of GFP (EPG < CNL) is constant; for example, if there are
three genes encoding the same GFP, but their EPGs are low, medium, and high, their CNLs should be
high, medium, and low, respectively (Figure 2A). The inversely proportional curve is considered as
the frontier line in the EGP—CNL space made by the expression limit of GFP (Figure 2B). If an N10
sequence simply changes the EPG of the N10-GFPs, but not its cytotoxicity and expression limit, the
EPG-CNL relationship should be on the same frontier line. Conversely, if an N10 sequence increases
the cytotoxicity, thus reducing the expression limit of N10-GFPs, the EPG—CNL relationship should
shift to the left (Figure 2B, white arrow). Therefore, N10 sequences, which may alter the expression
level and GFP cytotoxicity, can be systematically isolated by analyzing the EPG—CNL relationship.
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Overall, 94 yeast colonies containing the N10-GFP plasmid were randomly isolated. Then, their
growth rates, level of fluorescence, and plasmid copy numbers without uracil (-Ura) and —Leu/Ura
conditions (Table S1) were measured. If analyzed N10-GFPs are under the gTOW regime described
above, the growth rates and copy numbers in —Leu/Ura conditions should be on the linear red line
created by the relationship between the growth rate and copy number of leu2-89 (Figure 1B). The
relationship between the growth rates and copy numbers among the 94 isolates was r = 0.82 (Table
S1), suggesting that they are under the gTOW regime, and thus the plasmid copy number under —
Leu/Ura conditions was considered as the gene CNL. The GFP EPG was calculated by dividing the
level of GFP fluorescence by the plasmid copy number. To calculate the EPG, the level of GFP
fluorescence and plasmid copy number obtained under —Ura conditions were used, wherein GFP
overexpression produces less growth defects. As shown in Figure 3A, the 94 isolates exhibited
various EPG—CNL relationships, which indicates that the N10 sequences modulated the expression
levels and toxicities of GFP. Importantly, the EPG—CNL relationships created a frontier line (dotted
line in Figure 3A) as it is theoretically predicted in Figure 2B. Most of the N10-GFPs were located
around the frontier line, suggesting that most N10 sequences just modulate the expression level of
GFP but not the cytotoxicity. Sixteen representative isolates were selected (Figure 3A), and the N10
sequences of each were determined. Seven isolates (#6, #44, #2, #20, #90, #1, and #85) were on the
frontier line, but their locations were different, which suggests that their N10 sequences modulated
the expression levels of GFP. Four isolates (#15, #75, #80, and #82) were located inside the frontier
line, which suggests that their N10 sequences were cytotoxic. Three toxic non-fluorescent isolates (#51,
#52, and #64) and two non-toxic non-fluorescent isolates (#55 and #74) were also analyzed.

Table 1 presents the sequencing results. First, toxic non-fluorescent isolates (#51, #52, and #64),
but not N10-GFPs, contained the TDH3 gene. Therefore, the plasmids were probably constructed
through homologous recombination between the base plasmid and TDH3 within the S. cerevisiae
genome. Because Tdh3 has a lower expression limit than GFP [19], isolates expressing Tdh3 should
have exhibited EPG-CNL relationships that differed from those of GFP. Second, non-toxic
non-fluorescent isolates (#55 and #74) had nonsense codons within their N10 sequences, indicating
that the genes do not encode any proteins. Third, isolates showing the highest EPGs (#6 and #44) did
not contain the N10 sequence but rather GFP alone; these isolates were probably constructed by
self-ligation of the base plasmid. Because #6 and #44 are located on the top of the frontier line,
inserting an N10 sequence seemed to reduce the expression level or increase the GFP cytotoxicity.
The other nine isolates contained various N10 sequences; among these, five (#2, #20, #90, #1, and
#85) decreased the expression level, whereas four (#15, #75, #70, and #82) increased cytotoxicity as
shown in Figure 3A. Figure 3B shows the CNLs and EPGs of the representative isolates.

Table 1. Isolated N10 sequences.

Clone # Category Nucleotide sequence Amino acid sequence
#6 High nontoxic without N10 sequence
#44 High nontoxic without N10 sequence
#2 middle nontoxic ATGAGCATGATACGGGAGGTTGATGAATGTTTA MSMIREVDECL
#20 middle nontoxic ATG TGTACTGGACTCGATGTTGGCCCCGTCCAA MCTGLDVGPVQ
#90 middle nontoxic ATGTCCGCAGCTGCGATCGGGTGCGGGTATGTA MSAAAIGCGYV

Continued on next page
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Clone # Category Nucleotide sequence Amino acid sequence

#1 Low nontoxic ATGGGATGGCTGCCGAAAGGGTTCTTAGAAGAG MGWLPKGFLEE
#85 Low nontoxic ATGGTGGTGGTGGGTTGGCAGCCCCCGGGTGGG MVVVGWQPPGG
#15 toxic ATGTGCTTCGGGGTAATGAGGGGTATCTGGCTG MCFGVMRGIWL
#75 toxic ATGTGCACTGAGCTGTGTTTTCTTCTCGGTGTC MCTELCFLLGV
#80 toxic ATGCCGGTGATTGGGTATTTTGATGGCTTGTTA MPVIGYFDGLL
#82 toxic ATGGATCCATTGTGCCAGTTGATGGGTGTGCTA MDPLCQLMGVL
#51 No expression, without N10 sequence, TDH3

toxic
#52 no expression, without N10 sequence, TDH3

toxic
#64 no expression, without N10 sequence, TDH3

toxic
#55 no expression, ATGTCCTCTGCTCATTCGTTGCCGGTATAGGGT MSSAHSLPV*G

nontoxic

#74 no expression, ATGTAGAAATTTACGGTTGCGATCGCCAGAGTG M*KFTVAIARV

nontoxic

3.2. Codon optimality of the N10 sequence affects the expression level
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Figure 4. Effect of codon optimization on the EPGs and CNLs of N10-GFPs. Scatterplot
between EPGs and CNLs of original and codon-optimized N10-GFPs. Arrows indicate
the changes by codon optimization. The dotted line indicates the predicted protein burden
frontier line the same as shown in Figure 3A. Averages of four biological replicates are

shown.
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To reveal the sequence property that determines the expression level of N10-GFPs, the mRNA
folding energy [25] and codon optimality (tRNA adaptation index; tAl) [26] were calculated (Table
S2). The existence of localization signals [27] was also predicted. Although no significantly
associated values with the expression level and cytotoxicity were noted, the tAls of isolated N10
sequences were found to be lower than those of GFP (0.320). Their codon usage was thus optimized
to that of the highly expressed TDH3. Codon optimization altered the EPG—CNL relationship
profiles of N10-GFPs (Figure 4). Most importantly, the optimization increased the EPGs of isolates
with low expression levels of N10-GFPs (#1 and #85), which suggests that codon optimality is
responsible for their low EPGs. Thus, codon optimality of the N10 sequences seemed to be the most
important contributing factor to the expression levels of N10-GFPs.

3.3. Existence of hydrophobic and cysteine residues in the N10 sequence might increase N10-GFP
cytotoxicity

p=0.028
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Figure 5. Characteristics of toxic N10 sequences. (A) GRAVY values of the non-toxic
and toxic N10 sequences. The p-value of the Student t-test between the GRAVY scores
of the non-toxic and toxic N10 sequences is presented. (B) Frequency of appearance of
each amino acid in the toxic N10 sequences. The frequency was calculated as the
appeared over the expected frequency. The p-value of the chi-square test is shown.

Next, the relationship between the amino acid composition in the N10 sequence and N10-GFP
cytotoxicity was analyzed. First, the grand average of hydropathy (GRAVY) value of the amino acid
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sequence [28] (Table S2) was calculated, which has a positive relationship with hydrophobicity. The
toxic N10 sequences had significantly higher GRAVY values than those of the non-toxic N10
sequences (p = 0.028, Student t-test, Figure 5A). The probability of obtaining four N10 sequences
with GRAVY values of >0.696 is <0.0006, which suggests that hydrophobic residues contribute to
the cytotoxicity of the N10 sequences. Next, the frequency of each amino acid in the four toxic N10
sequences (#15, #75, #80, and #82) was calculated and compared with the expected frequencies in
the codon table (Figure 5B). The quantities of cysteine, methionine, and tryptophan residues were
over two-fold of the expected frequencies. The p-value of the appearance of cysteine was 0.006
according to the results of the chi-square test, which was slightly insignificant under the false
discovery rate <0.05 (p < 0.003). Therefore, we concluded that cysteine residues were
over-represented in toxic N10-GFPs. Structural analyses of the N-terminal 30 a.a. containing N10
sequences and the N-terminal of GFP were also performed (Table S2). A transmembrane domain
prediction by TMHMM (v2.0) [29] did not give any transmembrane domain in the sequences, and a
secondary structure prediction by Jpred4 [30] gave some structures, but there was no structural
consistency within the toxic and non-toxic N10 sequences.

4. Discussions

The nucleotide sequence encoding the N-terminal of a protein plays a substantial role in protein
production because it is where ribosomes are assembled and translation is initiated. The secondary
structure of mRNA and codon optimality affect the initiation of translation [8]. In this study, it was
confirmed that codon optimality was a major factor in reducing the expression level of GFP, although
MRNA stability did not affect the expression level. A question that was raised during this study
focused on the mechanism causing cytotoxicity of N10 sequences. A possible explanation for this
phenomenon is the artificial creation of localization signals; this occurs because the addition of
localization signals at the N-terminal of GFP increases its cytotoxicity [5]. However, three out of the
four toxic N10 sequences did not have any signature localization signal. Moreover, no localization of
toxic N10-GFPs (data not shown) was observed. Aggregative sequences also increase the
cytotoxicity of proteins [31]; however, no aggregation of toxic N10-GFPs (data not shown) was
noted. Although a small subset of toxic N10 sequences was analyzed here, they showed statistically
significant concentration of hydrophobic residues and a preferential appearance of cysteine residues.
Overexpression of cysteine-containing glycolytic enzymes constitutes the aggregates connected by
the S-S bond [2,32], and removal of cysteine from Tpil increases its expression limit [2]. Therefore,
the existence of unimportant cysteines might increase the cytotoxicity of highly expressed proteins
regardless of their positions. Hydrophobic residues seemed to increase the GFP cytotoxicity. This
may be owing to non-specific hydrophobic interactions, and therefore, they might not be preferred in
the outside of the main tertiary structure of proteins. Another possible mechanism to cause
cytotoxicity is the perturbation of translation. Sequences rich in proline and positively-charged
residues cause slowdown in translational elongation [33]. However, this might not be the case in this
analysis because any enrichment of proline or positively-charged residues (lysine or arginine) was
observed in the toxic N10 sequences (Figure 5B).
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