
We study well-posedness of scalar conservation laws with moving flux constraints. In particular, we show the Lipschitz continuous dependence of BV solutions with respect to the initial data and the constraint trajectory. Applications to traffic flow theory are detailed.
Citation: Maria Laura Delle Monache, Paola Goatin. Stability estimates for scalar conservation laws with moving flux constraints[J]. Networks and Heterogeneous Media, 2017, 12(2): 245-258. doi: 10.3934/nhm.2017010
[1] | Maria Laura Delle Monache, Paola Goatin . Stability estimates for scalar conservation laws with moving flux constraints. Networks and Heterogeneous Media, 2017, 12(2): 245-258. doi: 10.3934/nhm.2017010 |
[2] | Abraham Sylla . Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model. Networks and Heterogeneous Media, 2021, 16(2): 221-256. doi: 10.3934/nhm.2021005 |
[3] | Felisia Angela Chiarello, Giuseppe Maria Coclite . Nonlocal scalar conservation laws with discontinuous flux. Networks and Heterogeneous Media, 2023, 18(1): 380-398. doi: 10.3934/nhm.2023015 |
[4] | Darko Mitrovic . Existence and stability of a multidimensional scalar conservation law with discontinuous flux. Networks and Heterogeneous Media, 2010, 5(1): 163-188. doi: 10.3934/nhm.2010.5.163 |
[5] | Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara . Interacting moving bottlenecks in traffic flow. Networks and Heterogeneous Media, 2023, 18(2): 930-945. doi: 10.3934/nhm.2023040 |
[6] | Shyam Sundar Ghoshal . BV regularity near the interface for nonuniform convex discontinuous flux. Networks and Heterogeneous Media, 2016, 11(2): 331-348. doi: 10.3934/nhm.2016.11.331 |
[7] | Adriano Festa, Simone Göttlich, Marion Pfirsching . A model for a network of conveyor belts with discontinuous speed and capacity. Networks and Heterogeneous Media, 2019, 14(2): 389-410. doi: 10.3934/nhm.2019016 |
[8] | Markus Musch, Ulrik Skre Fjordholm, Nils Henrik Risebro . Well-posedness theory for nonlinear scalar conservation laws on networks. Networks and Heterogeneous Media, 2022, 17(1): 101-128. doi: 10.3934/nhm.2021025 |
[9] | Raimund Bürger, Harold Deivi Contreras, Luis Miguel Villada . A Hilliges-Weidlich-type scheme for a one-dimensional scalar conservation law with nonlocal flux. Networks and Heterogeneous Media, 2023, 18(2): 664-693. doi: 10.3934/nhm.2023029 |
[10] | Christophe Chalons, Paola Goatin, Nicolas Seguin . General constrained conservation laws. Application to pedestrian flow modeling. Networks and Heterogeneous Media, 2013, 8(2): 433-463. doi: 10.3934/nhm.2013.8.433 |
We study well-posedness of scalar conservation laws with moving flux constraints. In particular, we show the Lipschitz continuous dependence of BV solutions with respect to the initial data and the constraint trajectory. Applications to traffic flow theory are detailed.
Motivated by the modeling of moving bottlenecks in traffic flow, which can be caused by a large, slow moving vehicle, we consider the Cauchy problem for a scalar conservation law with moving flux constraint
∂tρ+∂xf(ρ)=0,(t,x)∈R+×R, | (1a) |
ρ(0,x)=ρ0(x),x∈R, | (1b) |
f(ρ(t,y(t)))−˙y(t)ρ(t,y(t))≤˜Fα(˙y(t)),t∈R+, | (1c) |
where
˜Fα(˙y):=Fα(ρα(˙y))=fα(ρα(˙y))−˙yρα(˙y), | (2) |
with
Let us detail the meaning of inequality (1c). A moving flux constraint located at
∂t˜ρ+∂xF(˜ρ)=0,F(˜ρ)=f(˜ρ)−˙y˜ρ. | (3) |
In fact, let
F′α(ρα(˙y))=f′α(ρα(˙y))−˙y=0⇔f′α(ρα(˙y))=˙y, | (4) |
with
˙y(t)=f(ρ(t,y(t)±))ρ(t,y(t)±), |
since its left-hand side is
Problem (3), (1b), (1c), can therefore be recast in the framework of conservation laws with fix local constraint, first introduced in [10], then developed in [2,4] for scalar equations and extended in [3,14,13] to systems. Following [12,Definition 4.1] and [6,Definition 1 and 2], solutions of (1) are defined as follows.
Definition 1.1. Let
1.
∫R+∫R(|ρ−k|∂tφ+sgn(ρ−k)(f(ρ)−f(k))∂xφ)dx dt+∫R|ρo−k|φ(0,x) dx≥0 ; | (5a) |
2. for a. e.
(ρ(t,y(t)−),ρ(t,y(t)+))∈Gα(˙y(t)). | (5b) |
Notice that the left and right traces in (5b) do exist, see [4,Section 2].
The set
Definition 1.2. The admissibility germ
G1(˙y):={(cL,cR)∈[0,R]2:cL>cR, f(cL)−˙ycL=f(cR)−˙ycR=Fα(˙y)},G2(˙y):={(c,c)∈[0,R]2:f(c)−˙yc≤Fα(˙y)},G3(˙y):={(cL,cR)∈[0,R]2:cL<cR, f(cL)−˙ycL=f(cR)−˙ycR≤Fα(˙y)}. |
We refer the reader to Figure 2 for a graphical representation of
The equivalence between Definition 1.1 and [12,Definition 4.1] can be proved as in [4,Proposition 2.6].
Systems of the type (1) arise in the modeling of moving bottlenecks in traffic flows, see [12,16] and Section 3 below, where they are coupled with an ODE depending on the downstream traffic velocity and describing the trajectory of a slow moving vehicle (a bus or a truck) acting as a bottleneck.
This paper is a first step towards establishing well-posedness for the strongly coupled models [12,16]. Section 2 presents the main result, stating the
Let us fix the constraint trajectory
∂t˜ρ+∂xF(˜ρ)=0,(t,x)∈R+×R, | (6a) |
˜ρ(0,x)=ρ0(x+y0),x∈R, | (6b) |
F(˜ρ(t,0))≤˜Fα(˙y(t)),t∈R+, | (6c) |
in the sense of [4,Proposition 2.6(A)] where we have set
∫R+∫R(|˜ρ−k|∂tφ+Φ(˙y;˜ρ,k)∂xφ)dx dt+∫R|ρo(x+y0)−k|φ(0,x) dx≥0 , |
where we have set
Φ(˙y;a,b):=sgn(a−b)(f(a)−f(b))−˙y|a−b|,for a,b∈R, |
and
(˜ρ(t,0−),˜ρ(t,0+))∈Gα(˙y(t))for a. e. t>0, |
see [4,Proposition 2.6]. Moreover, we note that, since
˜Fα(˙y)=fα(ρα(˙y))−˙yρα(˙y)<f(ρα(˙y))−˙yρα(˙y)=maxρ∈[0,R]F(ρ). | (7) |
Remark 1. Solution to (6) are not in
We compare solutions of (6) corresponding to different constraint trajectories
Theorem 2.1. Assume
|˜ρ(t,⋅)−˜σ(t,⋅)|L1(R)≤|˜ρ0−˜σ0|L1(R)+(Ct+2R)‖˙y−˙z‖L1([0,t]). | (8) |
Proof. The two solutions
∂t|˜ρ−k|+∂xΦ(˙y;˜ρ,k)≤0, | (9) |
∂t|˜σ−k|+∂xΦ(˙z;˜σ,k)≤0, | (10) |
in
∂t|˜ρ−k|+∂xΦ(˙y;˜ρ,k)=∂t|˜ρ−k|+∂xΦ(˙z;˜ρ,k)+∂xΦ(˙y;˜ρ,k)−∂xΦ(˙z;˜ρ,k) |
therefore
∂t|˜ρ−k|+∂xΦ(˙z;˜ρ,k)≤∂xΦ(˙z;˜ρ,k)−∂xΦ(˙y;˜ρ,k)≤|˙y−˙z||∂x˜ρ|. | (11) |
Applying the classical Kružkov doubling of variables technique [15], with a test function
∫R+∫R(|˜ρ−˜σ|∂tψ+Φ(˙z;˜ρ,˜σ)∂xψ)dx dt+∫R|˜ρ0−˜σ0|ψ(0,x) dx+Ct|ψ|∞∫R+|˙y−˙z|dt≥0 , |
We now choose the test function
{(s,x):|x|≤M+L(t−s), 0≤s≤t} |
(where
∫M−M|˜ρ(t,x)−˜σ(t,x)|dx≤∫M+Lt−M−Lt|˜ρ0(x)−˜σ0(x)|dx+C∫t0|˙y(s)−˙z(s)|ds+∫t0(Φ(˙z;˜ρ(t,0+),˜σ(t,0+))−Φ(˙z;˜ρ(t,0−),˜σ(t,0−)))ds. |
By Lemma A.1, the last integrand can be bounded by
∫t0(Φ(˙z;˜ρ(t,0+),˜σ(t,0+))−Φ(˙z;˜ρ(t,0−),˜σ(t,0−)))ds≤2R∫t0|˙y(s)−˙z(s)|ds. | (12) |
Letting
We are now able to state the well-posedness of problem (1).
Corollary 1. Assume
|ρ(t,⋅)−σ(t,⋅)|L1(R)≤|ρ0−σ0|L1(R)+2Ct|y(0)−z(0)|+(2Ct+2R)‖˙y−˙z‖L1([0,t]). | (13) |
Proof. Setting
˜ρ(t,x)=ρ(t,x+y(t))and˜σ(t,x)=σ(t,x+z(t)), |
for any
∫R|ρ(t,x)−σ(t,x)|dx=∫R|ρ(t,x+z(t))−σ(t,x+z(t))|dx=∫R|ρ(t,x+z(t))∓ρ(t,x+y(t))−σ(t,x+z(t))|dx≤|y(t)−z(t)|TV(ρ(t,⋅))+∫R|˜ρ(t,x)−˜σ(t,x)|dx. |
Therefore, by (8), we get
∫R|ρ(t,x)−σ(t,x)|dx≤ Ct|y(t)−z(t)|+∫R|˜ρ0(x)−˜σ0(x)|dx+(Ct+2R)∫t0|˙y(s)−˙z(s)|ds≤ ∫R|ρ0(x)−σ0(x)|dx+|y(0)−z(0)|TV(ρ0)+Ct(|y(0)−z(0)|+∫t0|˙y(s)−˙z(s)|ds)+(Ct+2R)∫t0|˙y(s)−˙z(s)|ds= ∫R|ρ0(x)−σ0(x)|dx+2Ct|y(0)−z(0)|+(2Ct+2R)∫t0|˙y(s)−˙z(s)|ds, |
where we have used the estimate
Setting
f(ρ):=ρv(ρ), |
where
˜Fα(˙y)=αR4V(V−˙y)2. |
Let us suppose that a slow and large vehicle, like for example a bus or a truck moves on the road. The slow vehicle, that in the following we will refer as "the bus", reduces the road capacity and moves with a trajectory given by the following ODE:
{˙y(t)=ω(ρ(t,y(t)+)),t∈R+,y(0)=y0, | (14) |
where the velocity of the bus is given by the following traffic density dependent function (see Figure 3)
ω(ρ)={Vbif ρ≤ρ∗≐R(1−Vb/V),v(ρ)otherwise. | (15) |
This means that if the traffic is not too congested, the bus moves at its own maximal speed
Solutions of the coupled system (1), (14) for general initial data are defined as follows.
Definition 3.1. A couple
1.
∫R+∫R(|ρ−k|∂tφ+sgn(ρ−k)(f(ρ)−f(k))∂xφ)dx dt+∫R|ρo−k|φ(0,x) dx≥0 ; | (16a) |
2. for a. e.
(ρ(t,y(t)−),ρ(t,y(t)+))∈Gα(˙y(t)); | (16b) |
3.
y(t)=yo+∫t0ω(ρ(s,y(s)+)) ds . | (16c) |
The proof of existence of solutions for the general Cauchy problem (1) strongly coupled with the bus trajectory (14) with
ρ0(x)={ρLif x<0,ρRif x>0,y0=0. | (17) |
Denote by
ˇρ(˙y)=R2V(1−√1−α)(V−˙y),ˆρ(˙y)=R2V(1+√1−α)(V−˙y). | (18) |
Definition 3.2. The constrained Riemann solver
1. If
Rα(ρL,ρR)(x/t)={R(ρL,ˆρ(Vb))(x/t)if x<Vbt,R(ˇρ(Vb),ρR)(x/t)if x≥Vbt,andy(t)=Vbt. |
2. If
Rα(ρL,ρR)=R(ρL,ρR)andy(t)=Vbt. |
3. If
Rα(ρL,ρR)=R(ρL,ρR)andy(t)=v(ρR)t. |
Note that, when the constraint is enforced (point 1. in the above definition), a non-classical shock arises between
Remark 2. Unfortunately, no result about the Lipschitz continuous dependence of the solution
Lemma A.1 For any
Φ(˙z;ρ+,σ+)−Φ(˙z;ρ−,σ−)≤2R|˙y−˙z|. |
Proof. First of all, let us remark that
Φ(˙z;ρ+,σ+)−Φ(˙z;ρ−,σ−)=sgn(ρ+−σ+)(f(ρ+)−˙zρ+−f(σ+)+˙zσ+) | (19) |
−sgn(ρ−−σ−)(f(ρ−)−˙zρ−−f(σ−)+˙zσ−)=(λ(ρ+,σ+)−˙z)|ρ+−σ+|−(λ(ρ−,σ−)−˙z)|ρ−−σ−|, | (20) |
where
λ(ρ,σ)=f(ρ)−f(σ)ρ−σ. |
Without loss of generality, we can assume
Fα(˙y)−Fα(˙z)≥ρα(˙z)(˙z−˙y)>0. | (21) |
We distinguish the following cases:
1.
ρ−=ˆρ, ρ+=ˇρandf(ρ−)−˙yρ−=f(ρ+)−˙yρ+=Fα(˙y). |
Depending on the values of
1.1
(19)=(Fα(˙y)+˙yρ+−˙zρ+−Fα(˙z))−(Fα(˙y)+˙yρ−−˙zρ−−Fα(˙z))=(ρ−−ρ+)(˙z−˙y)≤R|˙y−˙z|. |
1.2
σ:=σ−=σ+andf(σ)−˙zσ=:F(σ)≤Fα(˙z). |
The following cases can occur:
●
(19)=(Fα(˙y)+˙yρ+−˙zρ+−F(σ))−(Fα(˙y)+˙yρ−−˙zρ−−F(σ))=(ρ−−ρ+)(˙z−˙y)≤R|˙y−˙z|. |
●
(19)=−(Fα(˙y)+˙yρ+−˙zρ+−F(σ))−(Fα(˙y)+˙yρ−−˙zρ−−F(σ))=2F(σ)−2Fα(˙y)+(ρ++ρ−)(˙z−˙y)≤2Fα(˙z)−2Fα(˙y)+2R(˙z−˙y)=−2ρα(˙z)(˙z−˙y)+2R(˙z−˙y)≤2R|˙y−˙z|. |
●
(19)=−(Fα(˙y)+˙yρ+−˙zρ+−F(σ))+(Fα(˙y)+˙yρ−−˙zρ−−F(σ))=(ρ+−ρ−)(˙z−˙y)≤0. |
1.3
f(σ−)−˙zσ−=f(σ+)−˙zσ+=:F(σ)≤Fα(˙z). |
We observe that
(19)=−(Fα(˙y)+˙yρ+−˙zρ+−F(σ))−(Fα(˙y)+˙yρ−−˙zρ−−F(σ))=2F(σ)−2Fα(˙y)+(ρ++ρ−)(˙z−˙y)≤2Fα(˙z)−2Fα(˙y)+2R(˙z−˙y)=−2ρα(˙z)(˙z−˙y)+2R(˙z−˙y)≤2R|˙y−˙z|. |
2.
ρ:=ρ−=ρ+andf(ρ)−˙yρ=:F(ρ)≤Fα(˙y). |
as illustrated in Figure 6.
2.1
●
(19)=−(F(ρ)+˙yρ−˙zρ−Fα(˙z))+(F(ρ)+˙yρ−˙zρ−Fα(˙z))=0. |
●
(19)=(F(ρ)+˙yρ−˙zρ−Fα(˙z))+(F(ρ)+˙yρ−˙zρ−Fα(˙z))=2F(ρ)−2Fα(˙z)+2ρ(˙y−˙z)≤2(Fα(˙y)−Fα(˙z))≤2ρα(˙y)(˙z−˙y)≤2αR|˙y−˙z|. |
●
(19)=(F(ρ)+˙yρ−˙zρ−Fα(˙z))−(F(ρ)+˙yρ−˙zρ−Fα(˙z))=0. |
2.2
We observe that
(19)=sgn(ρ−σ)[(F(ρ)+˙yρ−˙zρ−F(σ))−(F(ρ)+˙yρ−˙zρ−F(σ))]=0. |
2.3
(19)=sgn(ρ−σ+)[(F(ρ)+˙yρ−˙zρ−F(σ))−(F(ρ)+˙yρ−˙zρ−F(σ))]=0. |
Otherwise, we have that
λ(ρ+,σ+)−˙z=f(σ+)−f(ρ)σ+−ρ−f(σ+)−f(σ−)σ+−σ−≤0,λ(ρ−,σ−)−˙z=f(σ−)−f(ρ)σ−−ρ−f(σ+)−f(σ−)σ+−σ−≥0, |
by the concavity of
3.
f(ρ−)−˙yρ−=f(ρ+)−˙yρ+=:F(ρ)≤Fα(˙y). |
See Figure 7, for a graphical representation.
3.1
(19)=(F(ρ)+˙yρ+−˙zρ+−Fα(˙z))+(F(ρ)+˙yρ−−˙zρ−−Fα(˙z))=2F(ρ)−2Fα(˙z)+(ρ++ρ−)(˙y−˙z)≤2(Fα(˙y)−Fα(˙z))≤2ρα(˙y)(˙z−˙y)≤2αR|˙y−˙z|. |
3.2
(19)=sgn(ρ+−σ)[(F(ρ)+˙yρ+−˙zρ+−F(σ))−(F(ρ)+˙yρ−−˙zρ−−F(σ))]≤(ρ+−ρ−)(˙z−˙y)≤R|˙y−˙z|. |
Otherwise as shown in Figure 7b, we have that
λ(ρ+,σ+)−˙z≤λ(ρ+,σ+)−˙y=f(ρ+)−f(σ)ρ+−σ−f(ρ+)−f(ρ−)ρ+−ρ−≤0. |
Moreover, we observe that
λ(ρ−,σ−)−˙y=f(ρ−)−f(σ)ρ−−σ−f(ρ+)−f(ρ−)ρ+−ρ−≥0. |
Therefore, by (20)
(19)≤R|˙y−˙z|. |
3.3
We observe that one of the following relations must hold
ρ−≤σ−<σ+≤ρ+,σ−≤ρ−<σ+≤ρ+,σ−≤ρ−<ρ+≤σ+. |
For an example see Figure 7c. Therefore
λ(ρ+,σ+)−˙z=f(ρ+)−f(σ+)ρ+−σ+−f(σ+)−f(σ−)σ+−σ−≤0,λ(ρ−,σ−)−˙z=f(ρ−)−f(σ−)ρ−−σ−−f(σ+)−f(σ−)σ+−σ−≥0, |
again by concavity of
The authors are grateful to Boris Andreianov for suggesting links with the results in [6]. The authors also thank the two anonymous referees for the careful revision and the insightful comments, which were of great help in improving the paper.
[1] |
Existence and nonexistence of TV bounds for scalar conservation laws with discontinuous flux. Comm. Pure Appl. Math. (2011) 64: 84-115. ![]() |
[2] | Riemann problems with non-local point constraints and capacity drop. Math. Biosci. Eng. (2015) 12: 259-278. |
[3] |
A second-order model for vehicular traffics with local point constraints on the flow. Math. Models Methods Appl. Sci. (2016) 26: 751-802. ![]() |
[4] |
Finite volume schemes for locally constrained conservation laws. Numer. Math. (2010) 115: 609-645, With supplementary material available online. ![]() |
[5] |
A theory of ![]() |
[6] |
Well-posedness for a one-dimensional fluid-particle interaction model. SIAM J. Math. Anal. (2014) 46: 1030-1052. ![]() |
[7] |
Kružkov's estimates for scalar conservation laws revisited. Trans. Amer. Math. Soc. (1998) 350: 2847-2870. ![]() |
[8] | A. Bressan, Hyperbolic Systems of Conservation Laws, vol. 20 of Oxford Lecture Series in Mathematics and its Applications, Oxford University Press, Oxford, 2000, The one-dimensional Cauchy problem. |
[9] |
Uniqueness for discontinuous ODE and conservation laws. Nonlinear Anal. (1998) 34: 637-652. ![]() |
[10] |
A well posed conservation law with a variable unilateral constraint. J. Differential Equations (2007) 234: 654-675. ![]() |
[11] |
A Hölder continuous ODE related to traffic flow. Proc. Roy. Soc. Edinburgh Sect. A (2003) 133: 759-772. ![]() |
[12] |
Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result. J. Differential Equations (2014) 257: 4015-4029. ![]() |
[13] |
The Aw-Rascle traffic model with locally constrained flow. J. Math. Anal. Appl. (2011) 378: 634-648. ![]() |
[14] | M. Garavello and S. Villa, The Cauchy problem for the Aw-Rascle-Zhang traffic model with locally constrained flow, Preprint, 2016. |
[15] | First order quasilinear equations with several independent variables. Mat. Sb. (N.S.) (1970) 81: 228-255. |
[16] | S. Villa, P. Goatin and C. Chalons, Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model, 2016, URL https://hal.archives-ouvertes.fr/hal-01347925, preprint. |
1. | Gabriella Bretti, Emiliano Cristiani, Corrado Lattanzio, Amelio Maurizi, Benedetto Piccoli, Two algorithms for a fully coupled and consistently macroscopic PDE-ODEsystem modeling a moving bottleneck on a road, 2018, 1, 2640-3501, 55, 10.3934/Mine.2018.1.55 | |
2. | Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli, 2022, Chapter 3, 978-3-030-93014-1, 39, 10.1007/978-3-030-93015-8_3 | |
3. | Paola Goatin, Chiara Daini, Maria Laura Delle Monache, Antonella Ferrara, Interacting moving bottlenecks in traffic flow, 2023, 18, 1556-1801, 930, 10.3934/nhm.2023040 | |
4. | Mauro Garavello, Paola Goatin, Thibault Liard, Benedetto Piccoli, A multiscale model for traffic regulation via autonomous vehicles, 2020, 269, 00220396, 6088, 10.1016/j.jde.2020.04.031 | |
5. | Abraham Sylla, A LWR model with constraints at moving interfaces, 2022, 56, 2822-7840, 1081, 10.1051/m2an/2022030 | |
6. | Abraham Sylla, Influence of a slow moving vehicle on traffic: Well-posedness and approximation for a mildly nonlocal model, 2021, 16, 1556-181X, 221, 10.3934/nhm.2021005 | |
7. | Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli, 2022, Chapter 5, 978-3-030-93014-1, 111, 10.1007/978-3-030-93015-8_5 | |
8. | Mohamed Benyahia, Massimiliano D. Rosini, Lack of BV bounds for approximate solutions to a two‐phase transition model arising from vehicular traffic, 2020, 43, 0170-4214, 10381, 10.1002/mma.6304 | |
9. | Mohamed Benyahia, Carlotta Donadello, Nikodem Dymski, Massimiliano D. Rosini, An existence result for a constrained two-phase transition model with metastable phase for vehicular traffic, 2018, 25, 1021-9722, 10.1007/s00030-018-0539-1 | |
10. | Thibault Liard, Benedetto Piccoli, Well-Posedness for Scalar Conservation Laws with Moving Flux Constraints, 2019, 79, 0036-1399, 641, 10.1137/18M1172211 | |
11. | Thibault Liard, Raphael Stern, Maria Laura Delle Monache, A PDE-ODE model for traffic control with autonomous vehicles, 2023, 18, 1556-1801, 1190, 10.3934/nhm.2023051 | |
12. | Han Wang, Zhe Fu, Jonathan W. Lee, Hossein Nick Zinat Matin, Arwa Alanqary, Daniel Urieli, Sharon Hornstein, Abdul Rahman Kreidieh, Raphael Chekroun, William Barbour, William A. Richardson, Dan Work, Benedetto Piccoli, Benjamin Seibold, Jonathan Sprinkle, Alexandre M. Bayen, Maria Laura Delle Monache, Hierarchical Speed Planner for Automated Vehicles: A Framework for Lagrangian Variable Speed Limit in Mixed-Autonomy Traffic, 2025, 45, 1066-033X, 111, 10.1109/MCS.2024.3499212 |