Loading [MathJax]/jax/output/SVG/jax.js

General constrained conservation laws. Application to pedestrian flow modeling

  • We extend the results on conservation laws with local flux constraint obtained in [2, 12] to general (non-concave) flux functions and non-classical solutions arising in pedestrian flow modeling [15]. We first provide a well-posedness result based on wave-front tracking approximations and the Kružhkov doubling of variable technique for a general conservation law with constrained flux. This provides a sound basis for dealing with non-classical solutions accounting for panic states in the pedestrian flow model introduced by Colombo and Rosini [15]. In particular, flux constraints are used here to model the presence of doors and obstacles. We propose a "front-tracking" finite volume scheme allowing to sharply capture classical and non-classical discontinuities. Numerical simulations illustrating the Braess paradox are presented as validation of the method.

    Citation: Christophe Chalons, Paola Goatin, Nicolas Seguin. General constrained conservation laws. Application to pedestrian flow modeling[J]. Networks and Heterogeneous Media, 2013, 8(2): 433-463. doi: 10.3934/nhm.2013.8.433

    Related Papers:

    [1] Divakar Dahiya, Hemant Sharma, Arun Kumar Rai, Poonam Singh Nigam . Application of biological systems and processes employing microbes and algae to Reduce, Recycle, Reuse (3Rs) for the sustainability of circular bioeconomy. AIMS Microbiology, 2022, 8(1): 83-102. doi: 10.3934/microbiol.2022008
    [2] Matthew E. Bechard, Payam Farahani, Dina Greene, Anna Pham, Andrew Orry, Madeline E. Rasche . Purification, kinetic characterization, and site-directed mutagenesis of Methanothermobacter thermautotrophicus RFAP Synthase Produced in Escherichia coli. AIMS Microbiology, 2019, 5(3): 186-204. doi: 10.3934/microbiol.2019.3.186
    [3] Allison Yaguchi, Dyllan Rives, Mark Blenner . New kids on the block: emerging oleaginous yeast of biotechnological importance. AIMS Microbiology, 2017, 3(2): 227-247. doi: 10.3934/microbiol.2017.2.227
    [4] Ananya Mukherjee, Puja Bhattacharjee, Rituparna Das, Arundhati Pal, Amal K. Paul . Endophytic bacteria with plant growth promoting abilities from Ophioglossum reticulatum L.. AIMS Microbiology, 2017, 3(3): 596-612. doi: 10.3934/microbiol.2017.3.596
    [5] Malin Bomberg, Mari Raulio, Sirpa Jylhä, Carsten W. Mueller, Carmen Höschen, Pauliina Rajala, Lotta Purkamo, Riikka Kietäväinen, Lasse Ahonen, Merja Itävaara . CO2 and carbonate as substrate for the activation of the microbial community in 180 m deep bedrock fracture fluid of Outokumpu Deep Drill Hole, Finland. AIMS Microbiology, 2017, 3(4): 846-871. doi: 10.3934/microbiol.2017.4.846
    [6] Jhuma Biswas, Amal K. Paul . Optimization of factors influencing exopolysaccharide production by Halomonas xianhensis SUR308 under batch culture. AIMS Microbiology, 2017, 3(3): 564-579. doi: 10.3934/microbiol.2017.3.564
    [7] Sugenendran Supramani, Rahayu Ahmad, Zul Ilham, Mohamad Suffian Mohamad Annuar, Anita Klaus, Wan Abd Al Qadr Imad Wan-Mohtar . Optimisation of biomass, exopolysaccharide and intracellular polysaccharide production from the mycelium of an identified Ganoderma lucidum strain QRS 5120 using response surface methodology. AIMS Microbiology, 2019, 5(1): 19-38. doi: 10.3934/microbiol.2019.1.19
    [8] Alexandra Soares, Ana Azevedo, Luciana C. Gomes, Filipe J. Mergulhão . Recombinant protein expression in biofilms. AIMS Microbiology, 2019, 5(3): 232-250. doi: 10.3934/microbiol.2019.3.232
    [9] Heather Galbraith, Deborah Iwanowicz, Daniel Spooner, Luke Iwanowicz, David Keller, Paula Zelanko, Cynthia Adams . Exposure to synthetic hydraulic fracturing waste influences the mucosal bacterial community structure of the brook trout (Salvelinus fontinalis) epidermis. AIMS Microbiology, 2018, 4(3): 413-427. doi: 10.3934/microbiol.2018.3.413
    [10] Vakhtang V. Dzhavakhiya, Elena V. Glagoleva, Veronika V. Savelyeva, Natalia V. Statsyuk, Maksim I. Kartashov, Tatiana M. Voinova, Alla V. Sergeeva . New bacitracin-resistant nisin-producing strain of Lactococcus lactis and its physiological characterization. AIMS Microbiology, 2018, 4(4): 608-621. doi: 10.3934/microbiol.2018.4.608
  • We extend the results on conservation laws with local flux constraint obtained in [2, 12] to general (non-concave) flux functions and non-classical solutions arising in pedestrian flow modeling [15]. We first provide a well-posedness result based on wave-front tracking approximations and the Kružhkov doubling of variable technique for a general conservation law with constrained flux. This provides a sound basis for dealing with non-classical solutions accounting for panic states in the pedestrian flow model introduced by Colombo and Rosini [15]. In particular, flux constraints are used here to model the presence of doors and obstacles. We propose a "front-tracking" finite volume scheme allowing to sharply capture classical and non-classical discontinuities. Numerical simulations illustrating the Braess paradox are presented as validation of the method.


    Since a basic within-host viral infection model introduced by Nowak et al. [1], the dynamics of viral infection such as hepatitis B virus (HBV), hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infection models have been widely studied by incorporating various biological factors. Consider age as a continuous variable, writing the production rate of viral particles and the death rate of productively infected cells as two continuous functions of age, Nelson et al. [2] studied a HIV infection model with infection-age, the model is described as follows:

    $ {dT(t)dt=Λμ1T(t)βT(t)V(t),(t+a)i(t,a)=δ(a)i(t,a),dV(t)dt=0p(a)i(t,a)daμ2V(t) $ (1.1)

    with the boundary and initial condition

    $ {i(t,0)=βT(t)V(t),T(0)=T0>0,  V(0)=V0>0  and  i(0,a)=i0(a)L1+(0,), $ (1.2)

    where $ T(t) $ and $ V(t) $ denote the densities of uninfected target cell and free viruses at time $ t $, respectively; $ i(t, a) $ denote the density of infected cells at time $ t $ with infection-age $ a $. The parameters of model (1.1) are biologically explained in Table 1.

    Table 1.  Parameters and their biological meaning in model (1.1). All these parameters are assumed to be positive.
    Parameter Interpretation
    $ \Lambda $ Constant recruitment rate;
    $ \beta $ Virus infection rate;
    $ \mu_1 $ Mortality rate of uninfected target cell;
    $ \mu_2 $ Mortality rate of free viruses;
    $ \delta(a) $ Mortality rate of infected cell with age a;
    $ p(a) $ Production rate of viral particles.

     | Show Table
    DownLoad: CSV

    Nelson et al. analyzed the local stability of the model by evaluating eigenvalues and its related characteristic equation. In [3], Rong et al. extended the model with combination antiretroviral therapy, and analyzed the local stability of the model. Huang et al. [4] have been further investigated the global stability of the model (1.1) with (1.2) by using Lyapunov direct method and LaSalle invariance principle. For some recent works on viral models with age structure, we refer readers to the papers[5,6,7,8,9,10,11,12,13].

    Recently, experimental work [14] shows that direct cell-to-cell transmission also contributes to the viral persistence. In a more recent work [15], the authors reveals that environmental restrictions limit infection by cell-free virions but promote cell-associated HIV-1 transmission. In fact, cell-to-cell transmission could be also found in other viral infection for human and animals. For example, hepatitis C virus [16]; bovine viral diarrhea virus [17]; vaccinia virus [18]. Due to this fact, Lai and Zou [19] formulated a HIV-1 viral model with direct cell-to-cell transmission and studied the global threshold dynamics. Yang et al. [20] studied a cell-to-cell virus model with three distributed delays, they also obtained the global stability of each equilibrium for the model. Wang et al. [21] investigated an age-structured HIV model with virus-to-cell infection and cell-to-cell transmission, the model takes the following form:

    $ {dT(t)dt=Λμ1T(t)βT(t)V(t)0k(a)T(t)i(t,a)da,(t+a)i(t,a)=δ(a)i(t,a),dV(t)dt=0p(a)i(t,a)daμ2V(t), $ (1.3)

    with the boundary and initial condition

    $ {i(t,0)=βT(t)V(t)+0k(a)T(t)i(t,a)da,T(0)=T0>0,  V(0)=V0>0  and  i(0,a)=i0(a)L1+(0,). $ (1.4)

    By constructing suitable Lyapunov functional, Wang et al. were able to complete a global analysis for the model (1.3). In [22], Zhang and Liu studied the Hopf bifurcation of an age-structured HIV model with cell-to-cell transmission and logistic growth.

    In viral infection, the host immune system play a critical part on the progress of the infection. The role of the immune system is to fight off pathogenic organisms within the host, for example, cytotoxic T lymphocyte cells (CTLs) attack infected cells, and antibody cells attack viruses (humoral immunity response). In [23], Murase et al. studied an viral infection model with humoral immunity response:

    $ {dT(t)dt=Λμ1T(t)βT(t)V(t),dI(t)dt=βT(t)V(t)aI(t),dV(t)dt=arI(t)μ2V(t)kV(t)Z(t),dZ(t)dt=hV(t)Z(t)μ3Z(t), $ (1.5)

    where $ T(t) $, $ I(t) $, $ V(t) $ and $ Z(t) $ denote the densities of uninfected cells, infected cells, free viruses and humoral immunity response released by B cells, respectively; the viruses are removed at rate $ k Z $ by the humoral immunity response; the humoral immunity response are activated in proportion to $ h V(t) $ and removed at rate $ \mu_3 $. The global dynamics of model (1.5) were obtain in [23]. Consider the delay between viral entry into a cell and the maturation delay of the newly produced viruses, Wang et al. [24] studied a virus model with two delays and humoral immunity response. They established the global dynamics based on two threshold parameters, and they found that the three equilibria are globally asymptotically stable under some conditions. For another delay, which is the time that antigenic stimulation needs for generating immunity response, Wang et al. [25] considered another virus model with delay and humoral immunity response, they found that this delay could lead to a Hopf bifurcation at the infected equilibrium with immunity. In [26], Kajiwara et al. proposed a age-structured viral infection model contains humoral immunity response and the effect of absorption of pathogens into uninfected cells, they also proved the global stability of each equilibria. Duan and Yuan [30] considered an infection-age viral model with saturation humoral immune response, the local and global stability of this model are obtained. Additionally, for the virus model with CTL immune response, we refer readers to the papers [27,28,29,31,32,33,34] and the reference therein.

    Based on the above facts, we propose an age-structured viral infection model with cell-to-cell transmission and general humoral immune response in this paper. Precisely, we study the following model:

    $ {dT(t)dt=Λμ1T(t)βT(t)V(t)0k(a)T(t)i(t,a)da,(t+a)i(t,a)=δ(a)i(t,a),dV(t)dt=0p(a)i(t,a)daμ2V(t)qV(t)f(Z(t)),dZ(t)dt=cV(t)f(Z(t))μ3Z(t) $ (1.6)

    with the boundary and initial condition

    $ {i(t,0)=βT(t)V(t)+0k(a)T(t)i(t,a)da,T(0)=T0>0,  V(0)=V0>0,  Z(0)=Z0>0  and  i(0,a)=i0(a)L1+(0,), $ (1.7)

    where $ L_+^1 $ is the set of integrable functions from $ (0, +\infty) $ into $ [0, +\infty) $. $ T(t) $, $ V(t) $ and $ Z(t) $ denote the densities of uninfected target cell, free viruses and antibody responses released from B cells at time $ t $, respectively; $ i(t, a) $ denotes the density of infected cells at time $ t $ with infection-age $ a $; $ k(a) $ denote the infection rate of productively infected cells with age a; $ q V(t)f(Z(t)) $ is the neutralization rate of viruses and $ c V(t)f(Z(t)) $ is the activation rate of antibody responses. The antibody responses vanish at rate $ \mu_3 $. Other parameters of model (1.6) have the same biological meaning in the Table 1.

    We made the following assumption on parameters and nonlinear function $ f: \mathbb{R}\rightarrow\mathbb{R} $.

    (A1) $ k(a), \ \delta(a), \ \theta(a), \ p(a), \ c(a)\in L_+^{\infty}(0, \infty) $, with respective essential supremums $ \bar{k}, \ \bar{\delta}, \bar{\theta}, \ \bar{p}, \ \bar{c} $ and respective essential infimums $ \tilde{k}, \ \tilde{\delta}, \ \tilde{\theta}, \ \tilde{p}, \ \tilde{c}. $

    (A2) $ f(Z)\geqslant 0 $ for $ Z\geqslant 0 $, $ f(Z) = 0 $ if and only if $ Z = 0 $; $ f $ is Lipschitz continuous on $ \mathbb{R}_+ $.

    (A3) $ f(Z) $ is differentiable such that $ f'(Z) > 0 $ and $ f(Z) $ is concave down on $ \mathbb{R}_+ $.

    Here are some examples on function $ f(Z) $ satisfies (A2) and (A3):

    (ⅰ) $ f(Z(t)) = Z(t) $ which is the bilinear function (see [23]);

    (ⅱ) Saturation immune response function $ f(Z(t)) = \frac{Z(t)}{h+Z(t)} $ (see [30]).

    The paper is organized as follows. In Section 2, we introduce the existence and uniqueness of the solutions to system (1.6), the steady state and reproduction numbers are also determined in this section; In Section 3, we show that system (1.6) is asymptotically smooth; Section 4 is devoted to proving the local stability of each steady state; uniform persistence and global stability of each steady state is considered in Section 5; We perform a numerical simulation of a special case in Section 6; Section 7 provide some brief discussions.

    In this section, we show the existence and uniqueness of the solutions to system (1.6) by a standard method [36] (see also [37,38]), which is to rewrite system (1.6) as an abstract Cauchy problem.

    For convenience, we first denote the following notations.

    $ \Gamma(a) = e^{-\int_0^a \delta(\tau) \text{d} \tau}, \ \ \mathcal{P} = \int_0^\infty p(a)\Gamma(a) \text{d} a, \ \ \mathcal{K} = \int_0^\infty k(a)\Gamma(a) \text{d} a. $

    It is easy to see that

    $ \Gamma(0) = 1\ \ \ \text{and}\ \ \ \Gamma'(a) = -\delta(a)\Gamma(a). $

    Set the following spaces:

    $ \mathcal{X}: = \mathbb{R} \times L^1(\mathbb{R}_+, \mathbb{R}) \times \mathbb{R} \times \mathbb{R}, \ \mathcal{X}_+: = \mathbb{R}_+ \times L_+^1(\mathbb{R}_+, \mathbb{R}) \times \mathbb{R}_+ \times \mathbb{R}_+, $

    with the following norm

    $ \|\varphi(\cdot), \phi_1, \phi_2, \phi_3\|_\mathcal{X} = \|\varphi\|_{L^1} + |\phi_1| + |\phi_2| + |\phi_3|, $

    Furthermore, define

    $ \mathcal{X}_0: = \{0\} \times L^1(\mathbb{R}_+, \mathbb{R}) \times \mathbb{R} \times \mathbb{R} \times \mathbb{R}, \ \mathcal{X}_{0+}: = \{0\} \times L_+^1(\mathbb{R}_+, \mathbb{R})\times \mathbb{R} \times \mathbb{R}_+ \times \mathbb{R}_+, $

    Let $ A: \text{Dom}(A)\subset \mathcal{X} \rightarrow \mathcal{X} $ be the following linear operator:

    $ A((0φ)ϕ1ϕ2ϕ3)=((φ(0)φδφ)μ1ϕ1μ2ϕ2μ3ϕ3) $ (2.1)

    with $ \text{Dom}(A) = \mathbb{R} \times \{0\} \times W^{1, 1}(0, +\infty) \times \mathbb{R} \times \mathbb{R}. $ In the following, we apply the method in [36] since $ \overline{ \text{Dom(A)}} = \mathcal{X}_0 $ is not dense in $ \mathcal{X} $. Consider the nonlinear map $ F: \text{Dom}(A)\rightarrow \mathcal{X} $ defined by

    $ F\left( \begin{array}{c}       \left(          \begin{array}{c}           0 \\            \varphi \\          \end{array} \right) \\ \phi_1 \\ \phi_2 \\ \phi_3 \\ \end{array} \right) = \left( \begin{array}{c}              \left(                  \begin{array}{c}                   \beta \phi_1\phi_2 + \int_0^\infty k(a) \phi_1 \varphi(a)  \text{d} a\\                    0 \\                  \end{array} \right) \\ \Lambda - \beta \phi_1\phi_2 - \int_0^\infty k(a) \phi_1 \varphi(a) \text{d} a\\ \int_0^\infty p(a) \varphi(a) \text{d} a - q \phi_2f(\phi_3)\\ c \phi_2f(\phi_3)\\ \end{array} \right). $

    One can see that $ F $ is Lipschitz continuous on bounded sets. Let

    $ u(t) = \left(T(t), \left( 0i(t,) \right), V(t), Z(t)\right)^ \text{T}, $

    where $ \text{T} $ represents transposition. Then we can rewrite system (1.6) as the following abstract Cauchy problem:

    $ {du(t)dt=Au(t)+F(u(t)),  t0,u(0)=u0X0+. $ (2.2)

    In order to use the method in [36], we need to show that $ A $ is a Hille-Yosida operator. Denote $ \rho(A) $ be the resolvent set of $ A $. The definition of Hille-Yosida operator is:

    Definition 2.1. (See [36,Definition 2.4.1]) A linear operator $ A: \text{Dom}(A)\subset \mathcal{X} \rightarrow \mathcal{X} $ on a Banach space $ (\mathcal{X}, \|\cdot\|) $ (densely defined or not) is called a Hille-Yosida operator if there exist real constants $ M\geqslant1 $, and $ \omega\in\mathbb{R} $, such that $ (\omega, +\infty)\subseteq\rho(A) $, and

    $ \|(\lambda-A)^{-n}\|\leqslant\frac{M}{(\lambda-\omega)^n}, \ \ \ \text{ for}\ \ n\in\mathbb{N}_+\ \ \text{ and all}\ \ \lambda \gt \omega. $

    Now, we prove the following lemma.

    Lemma 2.1. The operator $ A $ defined in (2.1) is a Hille-Yosida operator.

    Proof. Let

    $ (\lambda \mathbb{I} - A)^{-1} \left( \begin{array}{c}       \left(          \begin{array}{c}            \hat{\varphi}_0 \\            \hat{\varphi}(a) \\          \end{array} \right) \\ \hat{\phi}_1 \\ \hat{\phi}_2 \\ \hat{\phi}_3 \\ \end{array} \right) = \left( \begin{array}{c}       \left(          \begin{array}{c}          0 \\            \varphi \\          \end{array} \right) \\ \phi_1 \\ \phi_2 \\ \phi_3 \\ \end{array} \right), $

    by some simple calculations, we have

    $ \phi_1 = \frac{\hat{\phi_1}}{\lambda+\mu_1}, \ \ \phi_2 = \frac{\hat{\phi_2}}{\lambda+\mu_2}, \ \ \phi_3 = \frac{\hat{\phi_3}}{\lambda+\mu_3} $

    and

    $ \varphi(a) = \hat{\varphi}_0 e^{-\int_0^a(\lambda+\delta(s)) \text{d} s} + \int_0^\infty \hat{\varphi}(\tau) e^{-\int_\tau^a (\lambda + \delta(s)) \text{d} s} \text{d} \tau. $

    Denote $ \zeta = \left(\left(ˆφ0ˆφ(a) \right), \hat{\phi}_1, \hat{\phi}_2, \hat{\phi}_3\right)^ \text{T} $, then

    $ (λIA)1ζX=|0|+0φ(a)da+|ϕ1|+|ϕ2|+|ϕ3|=0φ(a)da+|ˆϕ1||λ+μ1|+|ˆϕ2||λ+μ2|+|ˆϕ3||λ+μ3||ˆφ0||λ+μ|+ˆφ(a)L1|λ+μ|+|ˆϕ1||λ+μ|+|ˆϕ2||λ+μ|+|ˆϕ3||λ+μ|=1λ+μζX. $

    where $ \mu = \min\{\mu_1, \mu_2, \mu_3, \tilde{\delta}\} $. By the Definition 2.1, the operator $ A $ is a Hille-Yosida operator. This ends the proof.

    Let $ X_0 = \left(T_0, \left(0i0 \right), V_0, Z_0\right)^ \text{T}\in \mathcal{X}_{0+}, $ by using [36,Theorem 5.2.7] (see also in [37,39]), we have the following theorem.

    Theorem 2.1. There exists a uniquely determined semi-flow $ \{U(t)\}_{t\geqslant 0} $ on $ \mathcal{X}_{0+} $ such that for each $ X_0 $, there exists a unique continuous map $ U\in C([0, +\infty), \mathcal{X}_{0+}) $ which is an integrated solution of Cauchy problem (2.2), that is

    $ {t0U(s)X0dsDom(A),  t0,U(t)X0=X0+At0U(s)X0ds+0F(U(s)X0)ds,  t0. $ (2.3)

    Let

    $ Ω={(T,(0,i()),V,Z)X0+ | T(t)++0i(t,a)daΛμ0, V(t)+qcZ(t)Λˉpμ0ˆμ}, $ (2.4)

    where $ \mu_0 = \min\{\mu_1, \tilde{\delta}\} $ and $ \hat{\mu} = \min\left\{\mu_2, \mu_3\right\} $. We show that $ \Omega $ is a positively invariant set under semi-flow $ \{U(t)\}_{t\geqslant 0}. $

    Theorem 2.2. $ \Omega $ is a positively invariant set under semi-flow $ \{U(t)\}_{t\geqslant 0}. $ Moreover the semi-flow $ \{U(t)\}_{t\geqslant 0} $ is point dissipative and $ \Omega $ attracts all positive solutions of (2.2) in $ \mathcal{X}_{0+} $.

    Proof. Integrating the second equation of (1.6) along the characteristic line $ t-a = $constant, yields

    $ i(t,a)={i(ta,0)Γ(a),  t>a>0,i0(at)Γ(a)Γ(at),  a>t>0. $ (2.5)

    Then

    $ 0i(t,a)da=t0i(ta,0)Γ(a)da+ti0(at)Γ(a)Γ(at)da=t0i(σ,0)Γ(tσ)dσ+0i0(a)Γ(t+a)Γ(a)da. $

    Note that $ \Gamma(0) = 1 $ and $ \Gamma'(a) = -\delta(a)\Gamma(a) $, thus

    $ ddt0i(t,a)da=tt0i(σ,0)Γ(tσ)dσ+ddt0i0(a)Γ(t+a)Γ(a)da=i(t,0)0δ(a)i(t,a)da. $

    One has that

    $ ddt(T(t)++0i(t,a)da)=Λμ1T(t)0δ(a)i(t,a)daΛμ0(T(t)0δ(a)i(t,a)da). $

    We have

    $ \limsup\limits_{t\rightarrow\infty} \left\{T(t) + \int_0^{\infty}i(t, a) \text{d}a\right\} \leqslant \frac{\Lambda}{\mu_0}, \ \ t\geqslant0. $

    From the third and forth equations of (1.6), it is easy to check

    $ \limsup\limits_{t\rightarrow\infty} \left(V(t) + \frac{q}{c}Z(t)\right)\leqslant \frac{\Lambda \bar{p}}{\mu_0\hat{\mu}}, \ \ t\geqslant0. $

    Hence

    $ \|U(t)X_0\|_{\mathcal{X}_+}\leqslant \Pi, $

    where $ \Pi = \frac{\Lambda}{\mu_0}\left(1 + \frac{\bar{p}}{\hat{\mu}} + \frac{c\bar{P}}{q\hat{\mu}}\right) $. Therefore, for any solution of (2.2) satisfying $ X_0\in \Omega $ and $ U(t)X_0\in \Omega $ for all $ t\geqslant0 $, $ \Omega $ is a positively invariant set under semi-flow $ \{U(t)\}_{t\geqslant 0}. $ Moreover the semi-flow $ \{U(t)\}_{t\geqslant 0} $ is point dissipative and $ \Omega $ attracts all positive solutions of (2.2) in $ \mathcal{X}_{0+} $.

    In this subsection, we concern with the existence of steady states for system (1.6). Obviously, the system (1.6) always has a virus-free steady state $ E_0 = (T_0, 0, 0, 0) = (\frac{\Lambda}{\mu_1}, 0, 0, 0) $. $ E^0 $ is the unique equilibrium if $ \Re_0 \leqslant 1 $, where $ \Re_0 = \frac{\beta T_0 \mathcal{P}}{\mu_2} + T_0 \mathcal{K} $ is the basic reproduction number of system (1.6). If $ \Re_0 > 1 $, there exists an immune-inactivated infection steady state $ E_1 = (T_1^*, i_1^*(a), V_1^*, 0), $ which is the same situation in [21], that is,

    $ T1=T00,   i1(a)=Λ(110)Γ(a),   V1=1μ20p(a)i1(a)da. $ (2.6)

    There also exists another immune-activated infection steady state $ E_2 = (T_2^*, i_2^*(a), V_2^*, Z_2^*), $ which is satisfies

    $ {Λμ1T2=i2(0)=βT2V2+0k(a)T2i2(a)da,di2(a)da=δ(a)i2(a),0p(a)i2(a)daϖ(Z2)V2=0,cV2f(Z2)μ3Z2=0, $ (2.7)

    where

    $ \varpi(Z_2^*) = \mu_2 + {q}f(Z_2^*). $

    By some calculations, we have

    $ i2(a)=i2(0)Γ(a). $ (2.8)

    From the third equation of (2.7), yields

    $ V2=0p(a)i2(a)daϖ(Z2). $ (2.9)

    Substituting (2.8) and (2.9) into the first equation of (2.7) one has that

    $ T2=ϖ(Z2)βP+ϖ(Z2)K $ (2.10)

    and

    $ i2(0)=Λμ1T2=Λϖ(Z2)βP+ϖ(Z2)K. $ (2.11)

    In the following, we show that $ Z_2^* > 0 $. In fact, combining the last two equations of (2.7) give us

    $ 0p(a)(Λμ1ϖ(Z2)βP+ϖ(Z2)K)Γ(a)daμ3Z2ϖ(Z2)cf(Z2)=0. $ (2.12)

    Denote

    $ \Phi(Z^*) = \int_0^\infty p(a)\left(\Lambda - \frac{\mu_1\varpi(Z_2^*)}{\beta \mathcal{P} + \varpi(Z_2^*) \mathcal{K}}\right)\Gamma(a) \text{d}a - \frac{\mu_3 Z_2^* \varpi(Z_2^*)}{c f(Z_2^*)} $

    and

    $ \Re_1 : = \frac{\Lambda c \mathcal{P} f'(0)}{\mu_2\mu_3}\left(1-\frac{1}{\Re_0}\right). $

    Then

    $ \lim\limits_{Z_2^*\rightarrow0}\Phi(Z_2^*) \gt 0 \Leftrightarrow \Re_1 \gt 1. $

    It is easy to check $ \frac{ \text{d} \Phi(Z^*)}{ \text{d} Z^*} < 0 $ and $ \lim_{Z^* \rightarrow +\infty}\Phi(Z^*) \rightarrow -\infty $. Hence, there is only one positive root for (2.12) if $ \Re_1 > 1 $. By the expressions of $ \Re_0 $ and $ \Re_1 $, we have $ \Re_1 > 0 \Rightarrow \Re_0 > 1, $ then there is the following theorem on the existence of steady states.

    Theorem 2.3. For system (1.6), there are two threshold parameters $ \Re_0 $ and $ \Re_1 $ such that

    (ⅰ) if $ \Re_0 \leq 1, $ there exists only one positive steady state $ E_0 $;

    (ⅱ) if $ \Re_1 < 1 < \Re_0, $ there exists two positive steady states $ E_0 $ and $ E_1^* $;

    (ⅲ) if $ \Re_1 > 1, $ there exists three positive steady states $ E_0, $ $ E_1^* $ and $ E_2^* $.

    The following lemma on immune-inactivated infection steady state and immune-activated infection steady state will be used in the proof of global stability.

    Lemma 2.2. The immune-inactivated infection steady state $ (T_1^*, i_1^*(a), V_1^*, 0) $ satisfies

    $ 0[βT1μ2p(a)i1(a)(1i1(0)T(t)V(t)i(t,0)T1V1)+T1k(a)i1(a)(1i1(0)T(t)i(t,a)i1(t,0)T1i1(a))]da=0, $ (2.13)

    and immune-activated infection steady state $ (T_2^*, i_2^*(a), V_2^*, Z_2^*) $ satisfies

    $ 0[βT2μ2+qf(Z2)p(a)i2(a)(1i2(0)T(t)V(t)i(t,0)T2V2)+T2k(a)i2(a)(1i2(0)T(t)i(t,a)i2(t,0)T2i2(a))]da=0. $ (2.14)

    Proof. For the immune-inactivated infection steady state $ (T_1^*, i_1^*(a), V_1^*, 0) $, it follows from the third equation of (2.6), we have

    $ 0βT1μ2p(a)i1(a)i1(0)T(t)V(t)i(t,0)T1V1da= βi1(0)T(t)V(t)i(t,0)μ2V10p(a)i1(a)da= βT(t)V(t)i(0)i(t,0). $

    Recall that $ i(t, 0) = \beta T(t) V(t) + \int_0^\infty k(a)T(t)i(t, a) \text{d}a $ in (1.7), hence

    $  0βT1μp(a)i1(a)i1(0)T(t)V(t)i(t,0)T1V1da+0T1k(a)i1(a)i1(0)T(t)i(t,a)ii(t,0)T1i1(a)da= βT(t)V(t)i1(0)i(t,0)+T(t)0k(a)i(t,a)dai1(0)i(t,0)= i1(0)= βT1V1+0k(a)T1i1(a)da, $

    Thus, (2.13) holds true. The proof of Eq (2.14) is similar to (2.13), so we omitted it. This ends the proof.

    In this section, we show that the semi-flow $ \{U(t)\}_{t\geqslant0} $ is asymptotically smooth. Since the state space $ \mathcal{X}_{0+} $ is the infinite dimensional Banach space, we need the semi-flow $ \{U(t)\}_{t\geqslant0} $ is asymptotically smooth to proof the global stability of each steady states. Rewrite $ U: = \Phi+\Psi $, where

    $ Φ(t)X0:=(0,ϖ1(,t),0,0), $ (3.1)
    $ Ψ(t)X0:=(T(t),ϖ2(,t),V(t),Z(t)), $ (3.2)

    with

    $ ϖ1(,t)={0,         t>a0,i(t,a),   at0,   and   ϖ2(,t)={i(t,a),   t>a0,0,         at0. $

    We are now in the position to prove the following theorem.

    Theorem 3.1. For any $ X_0\in \Omega $, $ \{U(t)X_0: t\geqslant0\} $ has compact closure in $ \mathcal{X} $ if the following two conditions hold:

    (ⅰ) There exists a function $ \Delta: \mathbb{R}_+\times\mathbb{R}_+\rightarrow\mathbb{R}_+ $ such that for any $ r > 0 $, $ \lim_{t\rightarrow\infty}\Delta(t, r) = 0 $, and if $ X_0\in\Omega $ with $ \|X_0\|_{\mathcal{X}}\leqslant r $, then $ \|\Phi(t)X_0\|_{\mathcal{X}}\leqslant \Delta (t, r) $ for $ t\geqslant0 $;

    (ⅱ) For $ t\geqslant0 $, $ \Psi(t)X_0 $ maps any bounded sets of $ \Omega $ into sets with compact closure in $ \mathcal{X} $.

    Proof. Step Ⅰ, to show that (ⅰ) holds.

    Let $ \Delta(t, r): = e^{-\tilde{\delta}t}r $, it is obvious that $ \lim_{t\rightarrow\infty}\Delta(t, r) = 0 $. Then for $ X_0\in\Omega $ satisfying $ \|X_0\|_{\mathcal{X}}\leqslant r $, we have

    $ Φ(t)X0X=|0|+0|ϖ1(a,t)da|+|0|+|0|=t|i0(at)Γ(a)Γ(at)|da=0|i0(s)Γ(s+t)Γ(s)|dse˜δt0|i0(s)|dse˜δtX0XΔ(t,r),  t0. $

    This completes the proof of condition (ⅰ).

    Step Ⅱ, to show that (ⅱ) holds.

    We just have to show that $ \varpi_2(t, a) $ remains in a precompact subset of $ L_+^1(0, \infty). $ In order to prove it, we should show the following conditions hold [40,Theorem B.2]:

    (a) The supremum of $ \int_0^\infty \varpi_2(t, a) \text{d}a $ with respect to $ X_0\in \Omega $ is finite;

    (b) $ \lim_{u\rightarrow\infty} \int_u^\infty \varpi_2(t, a) \text{d}a = 0 $ uniformly with respect to $ X_0\in \Omega $;

    (c) $ \lim_{u\rightarrow0^+} \int_0^\infty (\varpi_2(t, a+u)-\varpi_2(t, a) \text{d}a = 0 $ uniformly with respect to $ X_0\in \Omega $;

    (d) $ \lim_{u\rightarrow0^+} \int_u^\infty \varpi_2(t, a) \text{d}a = 0 $ uniformly with respect to $ X_0\in \Omega $.

    Conditions (a), (b) and (d) hold since $ \varpi_2(t, a)\leqslant \left(\frac{\beta \bar{p}}{\hat{\mu}}+\bar{k}\right)\frac{\Lambda^2}{\mu_0^2} $. Next, we verify condition (c). For sufficiently small $ u\in(0, t), $ set $ K(t) = \int_0^\infty k(a)i(t, a) \text{d}a $, we have

    $ 0|ϖ2(t,a+u)ϖ2(t,a)|da=tu0|(βT(tau)V(tau)+K(tau)T(tau))Γ(a+u)(βT(ta)V(ta)+K(ta)T(ta))Γ(a)|da+ttu|0βT(ta)V(ta)+K(ta)T(ta))Γ(a)|datu0(βT(tau)V(tau)+K(tau)T(tau))|Γ(a+u)Γ(a)|da+tu0|βT(tau)V(tau)βT(ta)V(ta)|Γ(a)da+tu0|K(tau)T(tau)K(ta)T(ta)|Γ(a)da+u(Λμ0)2(βˉpˆμ+˜k). $

    Since $ \Gamma(a) $ is non-increasing function with respect to $ a $ and $ 0\leqslant\Gamma(a)\leqslant1 $, we have

    $ tu0|Γ(a+u)Γ(a)|da=tu0(Γ(a)Γ(a+u))da=tu0Γ(a)datuΓ(a)datu0Γ(a)da+utuΓ(a)dau. $

    Then

    $ \int_0^\infty |\varpi_2(t, a+u)-\varpi_2(t, a)| \text{d}a \leqslant 2u\left(\frac{\Lambda}{\mu_0}\right)^2\left(\frac{\beta \bar{p}}{\hat{\mu}}+\bar{k}\right) + \Xi, $

    where

    $ Ξ=tu0|βT(tau)V(tau)βT(ta)V(ta)|Γ(a)da+tu0|K(tau)T(tau)K(ta)T(ta)|Γ(a)da. $

    Thanks to the argument in [41,Proposition 6], $ T(\cdot)V(\cdot) $ and $ T(\cdot)K(\cdot) $ are Lipschitz on $ \mathbb{R}_+ $. Let $ M_1 $ and $ M_2 $ be the Lipschitz coefficients of $ T(\cdot)V(\cdot) $ and $ T(\cdot)K(\cdot) $ respectively. Then

    $ \Xi\leqslant (\beta M_1+M_2)u\int_0^{t-u}\Gamma(a) \text{d}a\leqslant(\beta M_1+M_2)u\int_0^{t-u}\Gamma(a) \text{d}a\leqslant \frac{u(\beta M_1+M_2)}{\tilde{\delta}}. $

    Hence

    $ \int_0^\infty |\varpi_2(t, a+u)-\varpi_2(t, a)| \text{d}a \leqslant 2u\left(\frac{\Lambda}{\mu_0}\right)^2\left(\frac{\beta \bar{p}}{\mu_2}+\bar{k}\right) + \frac{u(\beta M_1+M_2)}{\tilde{\delta}}, $

    which converges to 0 as $ u\rightarrow0^+ $, the condition (c) holds. Let $ \mathcal{Y}\subset\mathcal{X} $ be a bounded closed set and $ B $ be a bound for $ \mathcal{Y} $, where $ B\geqslant A $. It is easy to check $ M_1 $ and $ M_2 $ are only depend on $ A $, that is $ M_1 $ and $ M_2 $ are independent on $ \mathcal{X} $. Consequently, $ \varpi_2(t, a) $ remains in a precompact subset $ \mathcal{Y} $ of $ L_1^+(0, +\infty) $ and thus

    $ \Psi(t, \mathcal{Y})\subseteq [0, B] \times Y \times [0, B] \times [0, B], $

    which has compact closure in $ \mathcal{X} $. The proof is completed.

    In this section, we show the local stability of system (1.6) at each steady states.

    Theorem 4.1. If $ \Re_0 < 1 $, then the virus-free steady state $ E_0 $ of system (1.6) is locally asymptotically stable.

    Proof. Denote $ \bar{T}_1(t) = T(t) - T_0 $, $ \bar{i}_1(t, a) = i(t, a) $, $ \bar{V}_1(t) = V(t) $ and $ \bar{Z}_1(t) = Z(t) $, the linearized equation of (1.6) at $ E_0 $ as follows:

    $ {dˉT1(t)dt=μ1ˉT1(t)βT0ˉV1(t)0T0k(a)ˉi1(t,a)da,(t+a)ˉi1(t,a)=δ(a)ˉi1(t,a),dˉV1(t)dt=0p(a)ˉi1(t,a)daμ2ˉV1(t),dˉZ1(t)dt=μ3ˉZ1(t),ˉi1(t,0)=βT0ˉV1(t)+0T0k(a)ˉi1(t,a)da. $ (4.1)

    Let the solution of (4.1) has the following exponential form:

    $ \bar{T}_1(t) = \bar{T}_1 e^{\lambda t}, \ \ \bar{V}_1(t) = \bar{V}_1 e^{\lambda t}, \ \ \bar{Z}_1(t) = \bar{Z}_1 e^{\lambda t}\ \ \text{and}\ \ \bar{i}_1(t, a) = \bar{i}_1(a) e^{\lambda t}, $

    then

    $ {λˉT1=μ1ˉT1βT0ˉV10T0k(a)ˉi1(a)da,λˉi1(a)+dˉi1(a)da=δ(a)ˉi1(a),λˉV1=0p(a)ˉi1(a)daμ2ˉV1,λˉZ1=μ3ˉZ1,ˉi1(0)=βT0ˉV1+0T0k(a)ˉi1(a)da. $ (4.2)

    Solve the second equation of (4.2) yields

    $ \bar{i}_1(a) = \bar{i}_1(0) e^{-\lambda a} \Gamma(a). $

    We can write the characteristic equation as following

    $ |λ+μ1T00k(a)eλaΓ(a)daβT001T00k(a)eλaΓ(a)daβT000p(a)eλaΓ(a)daλ+μ2|=Δ(λ)(λ+μ1)=0, $

    where

    $ \Delta(\lambda): = \lambda+\mu_2-\lambda T_0\int_0^\infty k(a) e^{-\lambda a} \Gamma(a) \text{d}a-\mu_2T_0\int_0^\infty k(a) e^{-\lambda a} \Gamma(a) \text{d}a -\beta T_0\int_0^\infty p(a) e^{-\lambda a} \Gamma(a) \text{d}a. $

    Since $ \lambda = - \mu_1 < 0 $, then we only need to consider the root of $ \Delta(\lambda) = 0 $. By way of contradiction, we assume that it has an eigenvalue $ \lambda_0 $ with $ Re(\lambda_0)\geqslant 0. $ We have

    $ |λ+μ2|= |(λ+μ2)T00k(a)eλaΓ(a)da+βT00p(a)eλaΓ(a)da| |λ+μ2||T00k(a)eλaΓ(a)da+βT00p(a)eλaΓ(a)daλ+μ2| |λ+μ2|(T00k(a)Γ(a)da+βT00p(a)Γ(a)daμ2). $

    Hence,

    $ T_0\int_0^\infty k(a)\Gamma(a) \text{d}a + \frac{\beta T_0 \int_0^\infty p(a)\Gamma(a) \text{d}a}{\mu_2}\geqslant1, $

    which is impossible because $ \Re_0 = \frac{\beta T_0 \mathcal{P}}{\mu_2} + T_0 \mathcal{K} < 1. $ This completes the proof.

    Theorem 4.2. If $ \Re_1 < 1 < \Re_0 $, then the immune-inactivated steady state $ E^*_1 $ of system (1.6) is locally asymptotically stable.

    Proof. Denote $ \bar{T}_2(t) = T(t) - T_1^* $, $ \bar{i}_2(t, a) = i(t, a)-i^*_1(a) $, $ \bar{V}_1(t) = V(t)-V_1^* $ and $ \bar{Z}_2(t) = Z(t) $, the linearized equation of (1.6) at $ E_1^* $ as follows:

    $ {dˉT2(t)dt=βT1ˉV2(t)0T1k(a)ˉi2(t,a)da(βV1+μ1+0i1(a)k(a)da)ˉT2(t),(t+a)ˉi2(t,a)=δ(a)ˉi1(t,a),dˉV2(t)dt=0p(a)ˉi2(t,a)daμ2ˉV2(t)qf(0)V1ˉZ2(t),dˉZ2(t)dt=cf(0)V1ˉZ2(t)μ3ˉZ2(t),ˉi2(t,0)=βT1ˉV2(t)+βV1ˉT2(t)+0T1k(a)ˉi2(t,a)da+0i1(a)k(a)ˉT2(t)da. $ (4.3)

    Let $ \bar{T}_2(t) = \bar{T}_2 e^{\lambda t} $, $ \bar{V}_2(t) = \bar{V}_2 e^{\lambda t} $, $ \bar{Z}_2(t) = \bar{Z}_2 e^{\lambda t} $ and $ \bar{i}_2(t, a) = \bar{i}_2(a) e^{\lambda t} $, thus we have the following characteristic equation:

    $ 0= (λcf(0)V1+μ3)(λ+μ1)(λ+μ2)(1T10k(a)eλaΓ(a)da) (λcf(0)V1+μ3)(λ+μ1)βT10p(a)eλaΓ(a)da +(λcf(0)V1+μ3)(λ+μ2)(βV1+0k(a)i1(a)da). $

    Note that $ \Re_1 < 1 $ and using (2.6), we can obtain that $ \mu_3-cf'(0)V_1^* > 0 $, then the characteristic equation is equivalent to

    $ 0=(λ+μ1)[(λ+μ2)(1T10k(a)eλaΓ(a)da)βT10p(a)eλaΓ(a)da]+(λ+μ2)(βV1+0k(a)i1(a)da). $ (4.4)

    By way of contradiction, we assume that it has an eigenvalue $ \lambda_0 $ with $ Re(\lambda_0)\geqslant 0. $ Obviously, $ \lambda = -\mu_1 $ and $ \lambda = -\mu_2 $ are not the roots of (4.4) and note that

    $ i1(0)= T10k(a)i1(a)da+βT1μ20p(a)i1(a)da= T10k(a)i1(0)Γ(a)da+βT1μ20p(a)i1(0)Γ(a)da. $

    Then we have

    $ |1+βV1+0k(a)i1(a)daλ0+μ1|=|T10k(a)eλ0aΓ(a)da+1λ0+μ2βT10p(a)eλ0aΓ(a)da||T10k(a)Γ(a)da+βT1μ20p(a)Γ(a)da|=1, $

    which is impossible since $ V_1^* > 0 $ and $ i_1^*(a) > 0 $. Accordingly, the immune-inactivated steady state $ E^*_1 $ of system (1.6) is local asymptotically stable if $ \Re_1 < 1 < \Re_0 $.

    Theorem 4.3. If $ \Re_1 > 1 $, then the immune-activated steady state $ E^*_2 $ of system (1.6) is locally asymptotically stable.

    Proof. Applying similar method in the proof of the Theorem (4.2), we have the characteristic equation as following:

    $ (λ+μ1)[(λ+μ2+qf(Z2))(λcV2f(Z2)+μ3)+qcV2f(Z2)f(Z2)](10T2k(a)eλΓ(a)da)+(λ+μ1)(λcV2f(Z2)+μ3)βT20p(a)eλaΓ(a)da=[(λ+μ2+qf(Z2))(λcV2f(Z2)+μ3)+qcV2f(Z2)f(Z2)](βV2+0k(a)i2(a)da). $ (4.5)

    By way of contradiction, we assume that it has an eigenvalue $ \lambda_0 $ with $ Re(\lambda_0)\geqslant 0. $ From the concavity of function $ f $ in (A2), we have $ \mu_3 - cV_2^*f'(Z_2^*) \geqslant 0 $ since $ \mu_3Z_2^* - cV_2^*f(Z_2^*) = 0 $. Note that $ \lambda = -\mu_1 $, $ \lambda = -(\mu_2+qf(Z_2^*)) $ and $ \lambda = cV_2^*f'(Z_2^*)-\mu_3 $ are not the roots of (4.5), then we can rewrite (4.5) as

    $ 1+Ξ=0T2k(a)eλaΓ(a)da. $ (4.6)

    where

    $ Ξ=(10T2k(a)eλaΓ(a)da)qcV2f(Z2)f(Z2)(λ+μ2+qf(Z2))(λcV2f(Z2)+μ3)+βT20p(a)eλaΓ(a)daλ+μ2+qf(Z2)+βV2+0k(a)i2(a)daλ+μ1+qcV2f(Z2)f(Z2)(βV2+0k(a)i2(a)da)(λ+μ2+qf(Z2))(λcV2f(Z2)+μ3). $

    Then

    $ |1+Ξ|=|0T2k(a)eλaΓ(a)da|<|1i2(0)(0i2(0)T2k(a)eλaΓ(a)da+βT2μ2+qf(Z2)0i2(0)p(a)Γ(a)da)|1, $

    which is contradictory. Here we use the fact:

    $ 1-\int_0^\infty T_2^* k(a)e^{-\lambda a}\Gamma(a) \text{d}a = \frac{1}{i_2^*(0)}\left(\beta T_2^* V_2^* + \int_0^\infty T^*_2k(a)\left[1-e^{-\lambda a}\right]i^*_2(a)\right) \gt 0. $

    This completes the proof.

    In this section, we discuss the global stability of system (1.6) by using Lyapunov direct method and LaSalle invariance principle. We first give the result on uniform persistence.

    Theorem 5.1. Assume that $ \Re_0 > 1 $. Then there exists a constant $ \zeta > 0 $ such that

    $ \liminf\limits_{t\rightarrow+\infty}T(t)\geqslant\zeta, \ \ \liminf\limits_{t\rightarrow+\infty}\|i(\cdot, t)\|_{L^1}\geqslant\zeta, \ \ \liminf\limits_{t\rightarrow+\infty}V(t)\geqslant\zeta $

    for each $ X_0\in\mathcal{X} $.

    The proof of Theorem 5.1 is similar with that in [21,Section 4] or [30], so we omit the details. In the following, we proof the global stability of each steady states.

    Theorem 5.2. The virus-free steady state $ E_0 $ of system (1.6) is globally asymptotically stable if $ \Re_0 < 1 $.

    Proof. Let

    $ α1(a):=a(βT0μ2p(ϵ)+T0k(ϵ))eϵaδ(s)dsdϵ; $ (5.1)
    $ g(x):=x1lnx. $ (5.2)

    By direct calculations, we have $ \alpha_1(0) = \Re_0 $ and $ \alpha_1'(a) = \delta(a)\alpha(a) - \left(\frac{\beta T^0}{\mu_2}p(a) + T^0 k(a)\right) $. Define the following Lyapunov functional:

    $ H(t) = H_1(t) + H_2(t), $

    where

    $ H1(t)=T0g(T(t)T0)+βT0μ2V(t)+qβT0cμ2Z(t), $ (5.3)
    $ H2(t)=0α1(a)i(t,a)da. $ (5.4)

    Calculating the derivatives of $ H_1(t) $ and $ H_2(t) $ along system (1.6), we have

    $ dH1(t)dt=(1T0T(t))dT(t)dt+βT0μ2dV(t)dt+qβT0cμ2dZ(t)dt=μ1T0(2T0T(t)T(t)T0)i(t,0)qβT0μ3cμ2Z(t)+0k(a)T0i(t,a)da+βT0μ20p(a)i(t,a)da, $

    and

    $ dH2(t)dt=0α1(a)i(t,a)tda=0α1(a)i(t,a)ada0α1(a)δ(a)i(t,a)da=0i(t,0)0(βT0μ2p(a)+T0k(a))i(t,a)da, $

    thus

    $ dH(t)dt=μ1T0(2T0T(t)T(t)T0)+(01)i(t,0)qβT0μ3cμ2Z(t)0 $ (5.5)

    if $ \Re_0 < 1 $. Note that $ \frac{ \text{d}H(t)}{ \text{d}t}|_{(1.6)} = 0 $ implies that $ T(t) = T_0 $, $ i(t, 0) = 0 $ and $ Z(t) = 0 $, then the largest invariant subset of $ \left\{\frac{ \text{d}H(t)}{ \text{d}t}|_{(1.6)} = 0\right\} $ is $ \{E_0\} $. Therefore, the virus-free steady state $ E_0 $ of system (1.6) is global asymptotically stable if $ \Re_0 < 1 $ by Lyapunov-LaSalle theorem. This ends the proof.

    Theorem 5.3. The immune-inactivated steady state $ E_1^* = (T_1^*, i_1^*(a), V_1^*, 0) $ of system (1.6) is globally asymptotically stable if $ \Re_1 < 1 < \Re_0 $.

    Proof. Let

    $ α2(a):=a(βT1μ2p(ϵ)+T1k(ϵ))eϵaδ(s)dsdϵ. $ (5.6)

    Define the following Lyapunov functional:

    $ W(t): = W_1(t)+W_2(t)+W_3(t), $

    where

    $ W1(t):=T1g(T(t)T1); $ (5.7)
    $ W2(t):=0α2(a)i1(a)g(i(t,a)i1(a))da; $ (5.8)
    $ W3(t):=βT1μ2V1g(V(t)V1)+qβT1cμ2Z(t). $ (5.9)

    The derivative of $ W_1(t) $ is calculated as follows:

    $ dW1(t)dt=(1T1T(t))dT1(t)dt=(1T1T(t))(Λμ1T(t)βT(t)V(t)0k(a)T(t)i(t,a)da)=μ1T1(2T1T(t)T(t)T1)+(i1(0)i(t,0))(1T1T(t)). $

    Note that

    $ i1(a)dda(i(t,a)i1(a)1lni(t,a)i1(a))=(1i1(a)i(t,a))i(t,a)a+δ(a)i(t,a)(1i1(a)i(t,a)), $ (5.10)

    which leads to

    $ 0α2(a)(1i1(a)i(t,a))i(t,a)ada=α2(a)i1(a)(i(t,a)i1(a)1lni(t,a)i1(a))|a=a=0+0α(a)δ(a)[i1(a)i(t,a))]da0(i(t,a)i1(a)1lni(t,a)i1(a))(dα2(a)dai1(a)+α2(a)i1(a)a)da=limaα2(a)i(a)g(i(t,a)i(a))α2(0)i1(0)g(i(t,0)i(0))+0α2(a)δ(a)[i1(a)i(t,a))]da0g(i(t,a)i(a))(dα2(a)dai1(a)+α2(a)di1(a)da)da. $

    By some calculations, we have

    $ \alpha_2(0) = 1, \ \ \ \alpha'_2(a) = \delta(a)\alpha_2(a) -\left(\frac{\beta T^*_1}{\mu_2}p(a) + T^*_1k(a)\right), $

    and using the fact that

    $ \frac{ \text{d}i_1^*(a)}{ \text{d}a} = -\delta(a) i_1^*(a). $

    Hence

    $ 0α2(a)(1i1(a)i(t,a))i(t,a)ada=limaα2(a)i(a)g(i(t,a)i(a))i1(0)g(i(t,0)i(0))+0α2(a)δ(a)[i1(a)i(t,a))]da+0(T1k(a)i(a)+βT1μ2p(a)i(a))g(i(t,a)i(a))da. $

    Then we have the derivative of $ W_2(t) $ as follows:

    $ dW2(t)dt=0α(a)(1i(a)i(t,a))i(t,a)tda=0α(a)(1i(a)i(t,a))(i(t,a)a+δ(a)i(t,a))da=limaα(a)i(a)g(i(t,a)i(a))+i(0)g(i(t,0)i(0))0T1k(a)i(a)g(i(t,a)i(a))da0βT1μ2p(a)i(a)g(i(t,a)i(a))da. $

    For $ W_3(t) $, we have

    $ dW3(t)dt=βT1μ2(1V1V(t))dV(t)dt+qβT1cμ2dZ(t)dt=βT1μ20p(a)i(t,a)daβT1μ2μ2V(t)βT1μ2V1V(t)0p(a)i(t,a)da+βT1μ2μ2V1+qβT1μ2V1f(Z(t))qβT1cμ2μ3Z(t). $

    Hence,

    $ dW(t)dt=μ1T1(2T1T(t)T(t)T1)βT1V1T1T(t)0k(a)T1i1(a)T1T(t)da+0k(a)T1i(t,a)dalimaα(a)i1(a)g(i(t,a)i1(a))i1(0)lni(t,0)i1(0)0p(a)i1(a)g(i(t,a)i1(a))da+βT1μ20p(a)i(t,a)daβT1μ2V1V(t)0p(a)i(t,a)da+βT1μ2μ2V1+qβT1μ2V1f(Z(t))qβT1cμ2μ3Z(t). $ (5.11)

    Recalling that $ V_1^* = \int_0^\infty \frac{p(a)}{\mu_2}i_1^*(a) \text{d}a $ and $ i_1^*(0) = \beta T_1^* V_1^* + \int_0^\infty k(a)T_1^*i_1^*(a) \text{d}a $. Substituting (2.13) into (5.11), after some calculations and rearranging the equation yield

    $ dW(t)dt=μ1T1(2T1T(t)T(t)T1)limaα(a)i1(a)g(i(t,a)i1(a))+0βT1μ2p(a)i1(a)(2T1T(t)V1i(t,a)V(t)i1(a)lni(t,0)i1(0)+lni(t,a)i1(a))da+0T1k(a)i1(a)(1T1T(t)lni(t,0)i1(0)+lni(t,a)i1(a))da+0βT1μ2p(a)i1(a)(1i1(0)T(t)V(t)i(t,0)T1V1)da+0T1k(a)i1(a)(1i1(0)T(t)i(t,a)i(t,0)T1i1(a))da=μ1T1(2T1T(t)T(t)T1)limaα(a)i1(a)g(i(t,a)i1(a))0βT1μ2p(a)i(a){g(T1T(t))+g(V1i(t,a)V(t)i1(a))+g(i1(0)T(t)V(t)i(t,0)T1V1)}da0T1k(a)i1(a){g(T1T(t))+g(i1(0)T(t)i(t,a)i(t,0)T1i1(a))}da+qβT1μ2V1f(Z(t))qβT1cμ2μ3Z(t). $

    Note that

    $ qβT1μ2V1f(Z(t))qβT1cμ2μ3Z(t)qβT1cμ2[ΛcPf(0)μ2μ3(110)1]=qβT1cμ2(11). $

    Thus $ \frac{ \text{d}W(t)}{ \text{d}t}|_{(1.6)} \leqslant 0 $ when $ \Re_1 < 1 < \Re_0 $, $ \frac{ \text{d}W(t)}{ \text{d}t} = 0 $ if and only if $ (T(t), i(t, a), V(t), Z(t)) = (T_1^*, i_1^*(a), V_1^*, 0). $ Applying Lyapunov-LaSalle theorem, the immune-inactivated steady state $ E_1^* = (T_1^*, i_1^*(a), V_1^*, 0) $ of system (1.6) is globally asymptotically stable if $ \Re_1 < 1 < \Re_0 $.

    Theorem 5.4. The immune-activated steady state $ E_2^* = (T_2^*, i_2^*(a), V_2^*, Z_2^*) $ of system (1.6) is globally asymptotically stable if $ \Re_1 > 1 $.

    Proof. Let

    $ α3(a):=a(βT2ϖ(Z2)p(ϵ)+T2k(ϵ))eϵaδ(s)dsdϵ. $ (5.12)

    Define the Lyapunov functional as follows

    $ L(t): = L_1(t)+L_2(t)+L_3(t)+L_4(t), $

    where

    $ L1(t):=T2g(T(t)T2);L2(t):=0α3(a)i2(a)g(i(t,a)i2(a))da;L3(t):=βT2μ2V2g(V(t)V2)+qβT2cμ2(Z(t)Z2Z(t)Z2f(Z2)f(τ)dτ). $

    Using the results in the proof of Theorem (5.3), after some calculations, we have the derivative of $ L(t) $ as follows:

    $ dL(t)dt=μ1T2(2T2T(t)T(t)T2)limaα3(a)i2(a)g(i(t,a)i2(a))0βT2ϖ(Z2)p(a)i2(a){g(T2T(t))+g(V2i(t,a)V(t)i2(a))+g(i2(0)T(t)V(t)i(t,0)T2V2)}da0T2k(a)i2(a){g(T2T(t))+g(i2(0)T(t)i(t,a)i(t,0)T2i2(a))}da+qβT2V2f(Z2)ϖ(Z2)(Z(t)Z2f(Z(t))f(Z2))(f(Z2)f(Z(t))1). $

    It follows from follows (A2) and (A3) that $ \left(\frac{Z(t)}{Z_2^*}-\frac{f(Z(t))}{f(Z_2^*)}\right)\left(\frac{f(Z_2^*)}{f(Z(t))}-1\right)\leqslant0 $, thus $ \frac{ \text{d}L(t)}{ \text{d}t}|_{(1.6)} \leqslant 0 $ and $ \frac{ \text{d}L(t)}{ \text{d}t} = 0 $ if and only if $ (T(t), i(t, a), V(t), Z(t)) = (T_2^*, i_2^*(a), V_2^*, Z_2^*). $ Therefore, the immune-activated steady state $ E_2 $ of system (1.6) is global asymptotically stable if $ \Re_1 > 1 $ by Lyapunov-LaSalle theorem.

    In this subsection, as special case for the age-infection model (1.6) and (1.7) with general nonlinear immune response $ f(Z) $, we introduce the following age-infection model with saturation immune response function, which have been used for modeling HIV infection in [30,42].

    $ {dT(t)dt=Λμ1T(t)βT(t)V(t)0k(a)T(t)i(t,a)da,(t+a)i(t,a)=δ(a)i(t,a),dV(t)dt=0p(a)i(t,a)daμ2V(t)qV(t)Z(t)h+Z(t),dZ(t)dt=cV(t)Z(t)h+Z(t)μ3Z(t) $ (6.1)

    with the boundary and initial condition

    $ {i(t,0)=βT(t)V(t)+0k(a)T(t)i(t,a)da,T(0)=T0>0,  V(0)=V0>0,  Z(0)=Z0>0  and  i(0,a)=i0(a)L1+(0,). $ (6.2)

    The model without cell-to-cell transmission of system (6.1) with (6.2) has been studied in [30]. It is easy to see that $ f(Z) = \frac{Z(t)}{h+Z(t)} $ satisfy (A2) and (A3). System (6.1) with (6.2) is a special case of the original system (1.6) and (1.7).

    The virus-free equilibrium of system (6.1) with (6.2) is similar to the previous one, $ E_{01} = (T_0, 0, 0, 0) $, where $ T_0 = \frac{\Lambda}{\mu_1} $. By some calculation, we obtain the basic reproduction number and immune-activated reproduction number of system (6.1) with (6.2) as $ \Re_{01} = \frac{\beta T_0 \mathcal{P}}{\mu_2} + T_0 \mathcal{K} $ and $ \Re_{11} = \frac{\Lambda c \mathcal{P}}{h\mu_2\mu_3}\left(1-\frac{1}{\Re_0}\right) $, respectively. We have the following corollary:

    Corollary 6.1. For system (6.1) with (6.2), there are two threshold parameters $ \Re_{01} $ and $ \Re_{11} $ with $ \Re_{01} > \Re_{11} $ such that

    (ⅰ) If $ \Re_{01} < 1 $, there exists a virus-free steady state $ E_{01} $, and $ E_{01} $ is globally asymptotically stable;

    (ⅱ) If $ \Re_{11} < 1 < \Re_{01} $, there exists a immune-inactivated steady state $ E_{11} $ which is globally asymptotically stable;

    (ⅲ) If $ \Re_{11} > 1 $, there exists a immune-activated steady state $ E_{21} $ which is globally asymptotically stable.

    In this subsection, we perform some numerical simulations to the validity of the theoretical result of this paper. Specifically, we focus on the age-infection model with saturation immune response function (see model (6.1)).

    The parameter values will be used in numerical simulation are listed in Table 2. Furthermore, we set the maximum age for the viral production as $ a^† = 10 $ and we set

    $ \delta(a) = 0.03\left(1+\sin\frac{(a-5)\pi}{10}\right), \ \ \ p(a) = 2.9\left(1+\sin\frac{(a-5)\pi}{10}\right) $
    Table 2.  Parameter values for numerical simulations.
    Parameter Value Unite Case 1 Case 2 Case 3 Ref.
    $ \Lambda $ $ 0\sim100 $ cells ml-day$ ^{-1} $ 1.2 8 100 [44]
    $ \beta $ $ 5 \times 10^{-7}\sim0.5 $ ml virion-day$ ^{-1} $ $ 0.001 $ 0.001 0.001 [42]
    $ \mu_1 $ $ 0.007\sim0.1 $ day $ ^{-1} $ 0.01 0.01 0.01 [44]
    $ \mu_2 $ $ 2.4\sim3 $ day $ ^{-1} $ 6 6 6 [44]
    $ \mu_3 $ $ 0.3 $ day $ ^{-1} $ 0.3 0.3 0.3 [45]
    $ q $ $ 0.006 $ ml cell$ ^{-1} $ day $ ^{-1} $ 0.006 0.006 0.006 [45]
    $ c $ $ 0.1 $ ml virion$ ^{-1} $day $ ^{-1} $ 0.1 0.1 0.1 [45]
    $ h $ $ 1\sim100 $ Saturation constant 10 10 100 Assumed

     | Show Table
    DownLoad: CSV

    and

    $ k(a) = 0.0003\left(1+\sin\frac{(a-5)\pi}{10}\right). $

    Thus, the averages of $ \delta(a) $, $ p(a) $ and $ k(a) $ are $ 0.03 $, $ 2.9 $ and $ 0.0003 $, which are the same in [43,20].

    Numerical simulation shows the following three cases:

    Case 1: Choose parameter values as in Case 1 of Table 2, then we can calculate the basic reproduction number as $ \Re_0\approx0.8093 < 1 $. Corollary 1 asserts that the virus-free steady state of system (6.1) with (6.2) is globally asymptotically stable. From Figure 1, one can observe that the levels of all compartmental individuals tend to stable values, where $ T(t) $, $ V(t) $, $ i(t, a) $ and $ Z(t) $ converge to a virus-free steady states (100, 0, 0, 0).

    Figure 1.  The long time dynamical behaviors of system (6.1) with (6.2) for $ \Re_0 = 0.8093 < 1 $, that is, the virus-free steady state of system (6.1) with (6.2) is globally asymptotically stable.

    Case 2: Choose parameter values as in Case 2 of Table 2. By some computing, we can obtain that $ \Re_0 \approx 5.3952 > 1 > \Re_1\approx 0.9040 $. From Corollary 1, we derive that immune-inactivated infection steady state is globally asymptotically stable. Numerical simulation illustrates this fact (see Figure 2).

    Figure 2.  The long time dynamical behaviors of system (6.1) with (6.2) for $ \Re_0 \approx 5.3952 $ and $ \Re_1\approx 0.9040 $, that is, the immune-activated steady state of system (6.1) with (6.2) is globally asymptotically stable.

    Case 3: Choose parameter values as in Case 3 of Table 2. Similarly, we can obtain that $ \Re_0 \approx 29.9893 > 1 $ and $ \Re_1\approx 1.3408 > 1 $. Numerical simulation shows that the levels of all compartmental individuals tend to stable values (see Figure 3), that is, immune-inactivated infection steady state is globally asymptotically stable.

    Figure 3.  The long time dynamical behaviors of system (6.1) with (6.2) for $ \Re_0 \approx 29.9893 > 1 $ and $ \Re_1\approx 1.3408 > 1 $, that is, the immune-activated steady state of system (6.1) with (6.2) is globally asymptotically stable.

    In this paper, we proposed and investigated an age-structured within-host viral infection model with cell-to-cell transmission and general humoral immunity response. We have shown that the global stability of equilibria of model (1.6) are determined by the corresponding basic reproduction numbers $ \Re_0 $ and the basic immune reproductive number $ \Re_1 $. That is, when $ \Re_0 < 1 $, the virus-free steady state is globally asymptotically stable, which means that the viruses are cleared and immune response is not active; when $ \Re_1 < 1 < \Re_0 $, the immune-inactivated infection steady state exists and is globally asymptotically stable, which means that viral infection becomes chronic and humoral immune response would not be activated; and when $ \Re_1 > 1 $, the immune-activated infection steady state exists and is globally asymptotically stable, in this case the infection causes a persistent humoral immune response and is chronic.

    Now, we show the relevance of model formulations between our age-structured model (1.6) and the standard ODE models. We consider $ \delta(a)\equiv\delta $, $ k(a)\equiv k $ and $ p(a)\equiv p $ in model (1.6). Letting

    $ I(t) = \int_0^\infty i(t, a) \text{d}a. $

    Recall that

    $ i(t, 0) = \beta T(t)V(t) + kT(t)I(t), $

    then we have

    $ dI(t)dt=0i(t,a)tda= 0(i(t,a)a+δi(t,a))da= i(t,0)0δi(t,a)da= βT(t)V(t)+kT(t)I(t)δI(t), $

    here we assume that $ \lim_{a\rightarrow\infty}i(t, a) = 0 $, which means that there is no biological individual can live forever. Thus, system (1.6) is equivalent to the following ODE model as

    $ {dT(t)dt=Λμ1T(t)βT(t)V(t)kT(t)I(t),dI(t)dt=βT(t)V(t)+kT(t)I(t)δI(t),dV(t)dt=pI(t)μ2V(t)qV(t)f(Z(t)),dZ(t)dt=cV(t)f(Z(t))μ3Z(t), $ (7.1)

    which is the model studied by [23] when $ f(Z) = Z $ and $ k = 0 $. In fact, we have not found the above model in any existing literatures, but we think it has the same dynamic behavior with (1.6).

    It is necessary to mention it here, in the proof of Lemma 4.1, there may exists zero eigenvalue if $ R_0 = 1 $, and it may lead to more complex dynamic behavior. For example, Qesmi et al. [46] propose a mathematical model describing the dynamics of hepatitis B or C virus infection with age-structure, and they found that when $ \Re_0 = 1 $, the system may undergo a backward bifurcation. In a recent work [22], Zhang and Liu studied an age-structured HIV model with cell-to-cell transmission and logistic growth in uninfected cells. They have shown that there exists Hopf bifurcation of the model by using the Hopf bifurcation theory for semilinear equations with non-dense domain. Introducing logistic growth in uninfected cells to model (1.6), it will be interesting to investigate the existence of a Hopf bifurcation. We leave the above two studies for future consideration.

    The authors are very grateful to the editors and two reviewers for their valuable comments and suggestions that have helped us improving the presentation of this paper. The authors were supported by Natural Science Foundation of China (11871179; 11771374).

    All authors declare no conflicts of interest in this paper.

    [1] B. Andreianov and N. Seguin, Analysis of a Burgers equation with singular resonant source term and convergence of well-balanced schemes, Discrete Contin. Dyn. Syst., 32 (2012), 1939-1964. doi: 10.3934/dcds.2012.32.1939
    [2] B. Andreianov, P. Goatin and N. Seguin, Finite volume schemes for locally constrained conservation laws, With supplementary material available online, Numer. Math., 115 (2010), 609-645. doi: 10.1007/s00211-009-0286-7
    [3] B. Andreianov, K. H. Karlsen and N. H. Risebro, A theory of $L^1$-dissipative solvers for scalar conservation laws with discontinuous flux, Arch. Ration. Mech. Anal., 201 (2011), 27-86. doi: 10.1007/s00205-010-0389-4
    [4] D. Braess, Über ein Paradoxon aus der Verkehrsplanung, Unternehmensforschung, 12 (1968), 258-268.
    [5] A. Bressan, "Hyperbolic Systems of Conservation Laws. The One-Dimensional Cauchy Problem," Oxford Lecture Series in Mathematics and its Applications, Vol. 20, Oxford University Press, Oxford, 2000.
    [6] R. Bürger, A. García, K. H. Karlsen and J. D. Towers, A family of numerical schemes for kinematic flows with discontinuous flux, J. Engrg. Math., 60 (2008), 387-425. doi: 10.1007/s10665-007-9148-4
    [7] C. Cancès and N. Seguin, Error estimate for Godunov approximation of locally constrained conservation laws, SIAM J. Numer. Anal., 50 (2012), 3036-3060. doi: 10.1137/110836912
    [8] C. Chalons, Numerical approximation of a macroscopic model of pedestrian flows, SIAM J. Sci. Comput., 29 (2007), 539-555 (electronic). doi: 10.1137/050641211
    [9] C. Chalons and P. Goatin, Godunov scheme and sampling technique for computing phase transitions in traffic flow modeling, Interfaces Free Bound., 10 (2008), 197-221. doi: 10.4171/IFB/186
    [10] G.-Q. Chen and H. Frid, Divergence-measure fields and hyperbolic conservation laws, Arch. Ration. Mech. Anal., 147 (1999), 89-118. doi: 10.1007/s002050050146
    [11] P. Colella, Glimm's method for gas dynamics, SIAM J. Sci. Statist. Comput., 3 (1982), 76-110. doi: 10.1137/0903007
    [12] R. M. Colombo and P. Goatin, A well posed conservation law with a variable unilateral constraint, J. Differential Equations, 234 (2007), 654-675. doi: 10.1016/j.jde.2006.10.014
    [13] R. M. Colombo, P. Goatin and M. D. Rosini, Conservation laws with unilateral constraints in traffic modeling, Applied and Industrial Mathematics in Italy III, Ser. Adv. Math. Appl. Sci., 82, World Sci. Publ., Hackensack, NJ, (2010), 244-255. doi: 10.1142/9789814280303_0022
    [14] _______, On the modelling and management of traffic, ESAIM Math. Model. Numer. Anal., 45 (2011), 853-872. doi: 10.1051/m2an/2010105
    [15] R. M. Colombo and M. D. Rosini, Pedestrian flows and non-classical shocks, Math. Methods Appl. Sci., 28 (2005), 1553-1567. doi: 10.1002/mma.624
    [16] _______, Existence of nonclassical solutions in a pedestrian flow model, Nonl. Analysis: RWA, 10 (2009), 2716-2728. doi: 10.1016/j.nonrwa.2008.08.002
    [17] M. G. Crandall and L. Tartar, Some relations between nonexpansive and order preserving mappings, Proc. AMS, 78 (1980), 385-390. doi: 10.1090/S0002-9939-1980-0553381-X
    [18] C. M. Dafermos, Polygonal approximations of solutions of the initial value problem for a conservation law, J. Math. Anal. Appl., 38 (1972), 33-41. doi: 10.1016/0022-247X(72)90114-X
    [19] M. L. Delle Monache and P. Goatin, Scalar conservation laws with moving density constraints arising in traffic flow modeling, INRIA Research Report, no. 8119, October 2012.
    [20] R. Eymard, T. Gallouët and R. Herbin, Finite volume methods, in "Handbook of Numerical Analysis," Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, (2000), 713-1020.
    [21] M. Garavello and P. Goatin, The Aw-Rascle traffic model with locally constrained flow, J. Math. Anal. Appl., 378 (2011), 634-648. doi: 10.1016/j.jmaa.2011.01.033
    [22] M. Garavello and B. Piccoli, "Traffic Flow on Networks. Conservation Laws Models," AIMS Series on Applied Mathematics, 1, American Institute of Mathematical Sciences (AIMS), Springfield, MO, 2006.
    [23] I. M. Gel'fand, Some problems in the theory of quasi-linear equations, Uspehi Mat. Nauk, 14 (1959), 87-158.
    [24] D. Helbing, A. Johansson, and H. Z. Al-Abideen, Dynamics of crowd disasters: An empirical study, Physical Review E, 75 (2007). doi: 10.1103/PhysRevE.75.046109
    [25] H. Holden and N. H. Risebro, "Front Tracking for Hyperbolic Conservation Laws," Applied Mathematical Sciences, Vol. 152, Springer-Verlag, New York, 2002. doi: 10.1007/978-3-642-56139-9
    [26] S. N. Kružhkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.), 81 (1970), 228-255.
    [27] P. G. LeFloch, "Hyperbolic Systems of Conservation Laws. The Theory of Classical and Nonclassical Shock Waves," Lectures in Mathematics ETH Zürich, Birkhäuser Verlag, Basel, 2002. doi: 10.1007/978-3-0348-8150-0
    [28] T. P. Liu, The Riemann problem for general systems of conservation laws, J. Differential Equations, 18 (1975), 218-234. doi: 10.1016/0022-0396(75)90091-1
    [29] J. Málek, J. Nečas, M. Rokyta and M. Růžička, "Weak and Measure-Valued Solutions to Evolutionary PDEs," Applied Mathematics and Mathematical Computation, 13, Chapman & Hall, London, 1996.
    [30] E. Yu. Panov, Existence of strong traces for quasi-solutions of multidimensional conservation laws, J. Hyperbolic Differ. Equ., 4 (2007), 729-770. doi: 10.1142/S0219891607001343
    [31] M. D. Rosini, Nonclassical interactions portrait in a macroscopic pedestrian flow model, J. Differential Equations, 246 (2009), 408-427. doi: 10.1016/j.jde.2008.03.018
    [32] B. Temple, Global solution of the Cauchy problem for a class of $2\times 2$ nonstrictly hyperbolic conservation laws, Adv. in Appl. Math., 3 (1982), 335-375. doi: 10.1016/S0196-8858(82)80010-9
    [33] A. I. Vol'pert, Spaces $BV$ and quasilinear equations, Mat. Sb. (N.S.), 73(115) (1967), 255-302.
  • This article has been cited by:

    1. Maoxin Liao, Yanjin Liu, Shinan Liu, Ali M. Meyad, Stability and Hopf bifurcation of HIV-1 model with Holling II infection rate and immune delay, 2021, 1751-3758, 1, 10.1080/17513758.2021.1895334
    2. Lili Han, Qiuhui Pan, Baolin Kang, Mingfeng He, Effects of masks on the transmission of infectious diseases, 2021, 2021, 1687-1847, 10.1186/s13662-021-03321-z
    3. Zhongzhong Xie, Xiuxiang Liu, Global dynamics in an age-structured HIV model with humoral immunity, 2021, 14, 1793-5245, 2150047, 10.1142/S1793524521500479
    4. Lili Liu, Jian Zhang, Ran Zhang, Hongquan Sun, Hopf Bifurcation of an Age-Structured Epidemic Model with Quarantine and Temporary Immunity Effects, 2021, 31, 0218-1274, 2150183, 10.1142/S0218127421501832
    5. Jinhu Xu, Dynamic analysis of a cytokine-enhanced viral infection model with infection age, 2023, 20, 1551-0018, 8666, 10.3934/mbe.2023380
    6. Xin Jiang, Global Dynamics for an Age-Structured Cholera Infection Model with General Infection Rates, 2021, 9, 2227-7390, 2993, 10.3390/math9232993
    7. Zakaria Yaagoub, Karam Allali, Fractional HBV infection model with both cell-to-cell and virus-to-cell transmissions and adaptive immunity, 2022, 165, 09600779, 112855, 10.1016/j.chaos.2022.112855
    8. Zakaria Yaagoub, Marya Sadki, Karam Allali, A generalized fractional hepatitis B virus infection model with both cell-to-cell and virus-to-cell transmissions, 2024, 112, 0924-090X, 16559, 10.1007/s11071-024-09867-3
    9. Yuequn Gao, Ning Li, Fractional order PD control of the Hopf bifurcation of HBV viral systems with multiple time delays, 2023, 83, 11100168, 1, 10.1016/j.aej.2023.10.032
    10. Tingting Zheng, Yantao Luo, Zhidong Teng, Spatial dynamics of a viral infection model with immune response and nonlinear incidence, 2023, 74, 0044-2275, 10.1007/s00033-023-02015-8
  • Reader Comments
  • © 2013 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4837) PDF downloads(119) Cited by(30)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog