Research article

Synthesis, characterization and dose dependent antimicrobial and anti-cancerous activity of phycogenic silver nanoparticles against human hepatic carcinoma (HepG2) cell line

  • In the present study silver nanoparticles (AgNPs) were successfully synthesized using aqueous extract of sea weed, Gracilaria corticata. The aqueous callus extract (5%) treated with 1 mM silver nitrate solution resulted in the formation of AgNPs and the surface plasmon resonance (SPR) of the formed AgNPs was recorded at 405 nm using UV-Visible spectrophotometer. The molecules involved in the formation of AgNPs were identified by Fourier transform infrared spectroscopy (FT-IR), surface morphology was studied by using scanning electron microscopy (SEM), and X-ray diffraction spectroscopy (XRD) was used to determine the crystalline structure. SEM micrograph clearly revealed the size of the AgNPs was in the range of 20–55 nm with spherical, hexagonal in shape and poly-dispersed nature. High positive Zeta potential (22.9 mV) of formed AgNPs indicates the stability and XRD pattern revealed the crystal structure of the AgNPs by showing the Bragg’s peaks corresponding to (111), (200), (220) planes of face-centered cubic crystal phase of silver. The synthesized AgNPs exhibited effective anticancerous activity (at doses 6.25 and 12.5 µg/ml of AgNPs) against human hepatic carcinoma cell line (HepG2).

    Citation: N. Supraja, T.N.V.K.V. Prasad, M. Soundariya, R. Babujanarthanam. Synthesis, characterization and dose dependent antimicrobial and anti-cancerous activity of phycogenic silver nanoparticles against human hepatic carcinoma (HepG2) cell line[J]. AIMS Bioengineering, 2016, 3(4): 425-440. doi: 10.3934/bioeng.2016.4.425

    Related Papers:

    [1] Mahya Mohammadi, M. Soltani, Cyrus Aghanajafi, Mohammad Kohandel . Investigation of the evolution of tumor-induced microvascular network under the inhibitory effect of anti-angiogenic factor, angiostatin: A mathematical study. Mathematical Biosciences and Engineering, 2023, 20(3): 5448-5480. doi: 10.3934/mbe.2023252
    [2] Urszula Ledzewicz, Helmut Maurer, Heinz Schättler . Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. Mathematical Biosciences and Engineering, 2011, 8(2): 307-323. doi: 10.3934/mbe.2011.8.307
    [3] Avner Friedman, Kang-Ling Liao . The role of the cytokines IL-27 and IL-35 in cancer. Mathematical Biosciences and Engineering, 2015, 12(6): 1203-1217. doi: 10.3934/mbe.2015.12.1203
    [4] Luis L. Bonilla, Vincenzo Capasso, Mariano Alvaro, Manuel Carretero, Filippo Terragni . On the mathematical modelling of tumor-induced angiogenesis. Mathematical Biosciences and Engineering, 2017, 14(1): 45-66. doi: 10.3934/mbe.2017004
    [5] John D. Nagy, Dieter Armbruster . Evolution of uncontrolled proliferation and the angiogenic switch in cancer. Mathematical Biosciences and Engineering, 2012, 9(4): 843-876. doi: 10.3934/mbe.2012.9.843
    [6] Shuo Wang, Heinz Schättler . Optimal control of a mathematical model for cancer chemotherapy under tumor heterogeneity. Mathematical Biosciences and Engineering, 2016, 13(6): 1223-1240. doi: 10.3934/mbe.2016040
    [7] Urszula Ledzewicz, Shuo Wang, Heinz Schättler, Nicolas André, Marie Amélie Heng, Eddy Pasquier . On drug resistance and metronomic chemotherapy: A mathematical modeling and optimal control approach. Mathematical Biosciences and Engineering, 2017, 14(1): 217-235. doi: 10.3934/mbe.2017014
    [8] Donggu Lee, Sunju Oh, Sean Lawler, Yangjin Kim . Bistable dynamics of TAN-NK cells in tumor growth and control of radiotherapy-induced neutropenia in lung cancer treatment. Mathematical Biosciences and Engineering, 2025, 22(4): 744-809. doi: 10.3934/mbe.2025028
    [9] Filippo Cacace, Valerio Cusimano, Alfredo Germani, Pasquale Palumbo, Federico Papa . Closed-loop control of tumor growth by means of anti-angiogenic administration. Mathematical Biosciences and Engineering, 2018, 15(4): 827-839. doi: 10.3934/mbe.2018037
    [10] Yuyang Xiao, Juan Shen, Xiufen Zou . Mathematical modeling and dynamical analysis of anti-tumor drug dose-response. Mathematical Biosciences and Engineering, 2022, 19(4): 4120-4144. doi: 10.3934/mbe.2022190
  • In the present study silver nanoparticles (AgNPs) were successfully synthesized using aqueous extract of sea weed, Gracilaria corticata. The aqueous callus extract (5%) treated with 1 mM silver nitrate solution resulted in the formation of AgNPs and the surface plasmon resonance (SPR) of the formed AgNPs was recorded at 405 nm using UV-Visible spectrophotometer. The molecules involved in the formation of AgNPs were identified by Fourier transform infrared spectroscopy (FT-IR), surface morphology was studied by using scanning electron microscopy (SEM), and X-ray diffraction spectroscopy (XRD) was used to determine the crystalline structure. SEM micrograph clearly revealed the size of the AgNPs was in the range of 20–55 nm with spherical, hexagonal in shape and poly-dispersed nature. High positive Zeta potential (22.9 mV) of formed AgNPs indicates the stability and XRD pattern revealed the crystal structure of the AgNPs by showing the Bragg’s peaks corresponding to (111), (200), (220) planes of face-centered cubic crystal phase of silver. The synthesized AgNPs exhibited effective anticancerous activity (at doses 6.25 and 12.5 µg/ml of AgNPs) against human hepatic carcinoma cell line (HepG2).


    [1] Ramanathan R, O’Mullane AP, Parikh RY, et al. (2011) Bacterial kinetics-controlled shape-directed biosynthesis of silver nanoplates using Morganella psychrotolerans. Langmuir 27: 714–719. doi: 10.1021/la1036162
    [2] Ahmad A, Mukherjee P, Senapati S, et al. (2003) Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporium. Colloids Surf B Interface 28: 313–318. doi: 10.1016/S0927-7765(02)00174-1
    [3] Mohanpuria P, Rana NK, Yadav SK (2008) Biosynthesis of nanoparticles: technological concepts and future applications. J Nanopart Res 10: 507–517. doi: 10.1007/s11051-007-9275-x
    [4] Kumar P, Senthamil Selvi S, Lakshmi Praba A, et al. (2012b) Synthesis of silver nanoparticles from Sargassum tenerrimum and screening phytochemicals for its anti-bacterial activity. Nano Biomed Eng 4: 12–16.
    [5] Prasad TNVKV, Subba Rao K, Venkata Ravi N (2011) A Critical Review on Biogenic Silver Nanoparticles and their Antimicrobial Activity. Curr Nanosci 7: 531–544.
    [6] Bellantone M, Coleman NJ, Hench LL (2000) Bacteriostatic action of a novel four-component bioactive glass. J Biomed Mater Res 51: 484–490.
    [7] Kanchana A, Balakrishna M (2011) Anti-cancer effect of saponins isolated from Solanum trilobatum leaf extract and induction of apoptosis in human larynx cancer cell lines. Int J Pharm Pharm 3: 356–364.
    [8] Unno Y, Shino Y, Kondo F, et al. (2005) Oncolytic viral therapy for cervical and ovarian cancer cells by sindbis virus AR339 strain. Clin Cancer Res 11: 4553–4560. doi: 10.1158/1078-0432.CCR-04-2610
    [9] Saraniya Devi J, Valentin Bhimba B (2012) Silver nanoparticles: Antibacterial activity against wound isolates & invitro cytotoxic activity on Human Caucasian colon adenocarcinoma. Asian Pac J Trop dise 2: 87–93.
    [10] Rosarin FS, Arulmozhi V, Nagarajan S, et al. (2013) Anti-proliferative effect of silver nanoparticles synthesized using amla on Hep2 cell line. Asian Pac J Trop Med 6: 1–10. doi: 10.1016/S1995-7645(12)60193-X
    [11] Devi JS, Bhimba BV, Ratnam K (2012) In vitro anticancer activity of silver nanoparticles synthesized using the extract of Gelidiella sp. Int J Pharm Pharm Sci 4: 710–715.
    [12] Devi JS and Bhimba BV (2012) Anti-cancer activity of silver nanoparticles synthesized by the seaweed Ulva lactuca invitro. Sci Rep 1: 242–246.
    [13] Renugadevi K, Inbakandan D, Bavanilatha M, et al. (2012) Cissus quadrangularis assisted biosynthesis of silver nanoparticles with antimicrobial and anticancer potentials. Int J Pharm Bio Sci 3: 437–445.
    [14] Kayal Vizhi D, Supraja N, Devipriya A, et al. (2016) Evaluation of antibacterial activity and cytotoxic effects of green AgNPs against Breast Cancer Cells (MCF 7). Adv Nano Res 4: 129–143. doi: 10.12989/anr.2016.4.2.129
    [15] Renn D (1997) Biotechnology and the red seaweed polysaccharide industry: status needs and prospects. Trends in Biotechnol 15: 9–14.
    [16] De Almeida CLF, De S Falcao H, De M Lima GR, et al. (2011) Bioactivities from Marine Algae of the Genus Gracilaria. Int J Mol Sci 12: 4550–4573.
    [17] Supraja N, Prasad TNVKV, Giridhara Krishna T, et al. (2015) Synthesis, characterization, and evaluation of the antimicrobial efficacy of Boswellia ovalifoliolata stem bark-extract-mediated zinc oxide nanoparticles. Appl Nanosci 6: 581–590.
    [18] Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65: 55–63.
    [19] Monks A, Scudiero D, Skehan P, et al. (1991) Feasibility of high flux anticancer drug screen using a diverse panel of cultured human tumour cell lines. J Natl Cancer Inst 83: 757–766. doi: 10.1093/jnci/83.11.757
    [20] Rajeshkumar S, Malarkodi C, Vanaja M, et al. (2016) Anticancer and enhanced antimicrobial activity of biosynthesized silver nanoparticles against clinical pathogens. J Mol Struct 1116: 165–173. doi: 10.1016/j.molstruc.2016.03.044
  • This article has been cited by:

    1. Urszula Ledzewicz, Alberto d’Onofrio, Heinz Schättler, 2013, Chapter 11, 978-1-4614-4177-9, 311, 10.1007/978-1-4614-4178-6_11
    2. T model of growth and its application in systems of tumor-immunedynamics, 2013, 10, 1551-0018, 925, 10.3934/mbe.2013.10.925
    3. Lance L. Munn, Christian Kunert, J. Alex Tyrrell, 2013, Chapter 5, 978-1-4614-4177-9, 117, 10.1007/978-1-4614-4178-6_5
    4. Heinz Schättler, Urszula Ledzewicz, 2015, Chapter 5, 978-1-4939-2971-9, 171, 10.1007/978-1-4939-2972-6_5
    5. Heinz Schättler, Urszula Ledzewicz, Behrooz Amini, Dynamical properties of a minimally parameterized mathematical model for metronomic chemotherapy, 2016, 72, 0303-6812, 1255, 10.1007/s00285-015-0907-y
    6. Arjan W. Griffioen, Andrea Weiss, Robert H. Berndsen, U. Kulsoom Abdul, Marije T. te Winkel, Patrycja Nowak-Sliwinska, The emerging quest for the optimal angiostatic combination therapy, 2014, 42, 0300-5127, 1608, 10.1042/BST20140193
    7. Urszula Ledzewicz, Heinz Schättler, 2014, Chapter 10, 978-1-4939-0457-0, 295, 10.1007/978-1-4939-0458-7_10
    8. Heinz Schättler, Urszula Ledzewicz, 2015, Chapter 8, 978-3-319-06916-6, 209, 10.1007/978-3-319-06917-3_8
    9. U. Ledzewicz, H. Schättler, Multi-input Optimal Control Problems for Combined Tumor Anti-angiogenic and Radiotherapy Treatments, 2012, 153, 0022-3239, 195, 10.1007/s10957-011-9954-8
    10. Kolade M. Owolabi, Kailash C. Patidar, Albert Shikongo, Numerical solution for a problem arising in angiogenic signalling, 2019, 4, 2473-6988, 43, 10.3934/Math.2019.1.43
    11. Gaowang Zhang, Feng Wang, Jian Chen, Huayi Li, Fixed-time sliding mode attitude control of a flexible spacecraft with rotating appendages connected by magnetic bearing, 2022, 19, 1551-0018, 2286, 10.3934/mbe.2022106
    12. Fernando Saldaña, Amira Kebir, José Ariel Camacho-Gutiérrez, Maíra Aguiar, Optimal vaccination strategies for a heterogeneous population using multiple objectives: The case of L1− and L2−formulations, 2023, 366, 00255564, 109103, 10.1016/j.mbs.2023.109103
    13. Martin Dodek, Zuzana Vitková, Anton Vitko, Jarmila Pavlovičová, Eva Miklovičová, Personalization of Optimal Chemotherapy Dosing Based on Estimation of Uncertain Model Parameters Using Artificial Neural Network, 2025, 15, 2076-3417, 3145, 10.3390/app15063145
  • Reader Comments
  • © 2016 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(7932) PDF downloads(1420) Cited by(24)

Article outline

Figures and Tables

Figures(9)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog