Citation: Chiara Ceresa, Maurizio Rinaldi, Letizia Fracchia. Synergistic activity of antifungal drugs and lipopeptide AC7 against Candida albicans biofilm on silicone[J]. AIMS Bioengineering, 2017, 4(2): 318-334. doi: 10.3934/bioeng.2017.2.318
[1] | Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza . Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29(1): 1625-1639. doi: 10.3934/era.2020083 |
[2] | Yazhou Wang, Yuzhu Wang . Regularity criterion of three dimensional magneto-micropolar fluid equations with fractional dissipation. Electronic Research Archive, 2024, 32(7): 4416-4432. doi: 10.3934/era.2024199 |
[3] | Xiuli Xu, Lian Yang . Global well-posedness of the 3D nonlinearly damped Boussinesq magneto-micropolar system without heat diffusion. Electronic Research Archive, 2025, 33(4): 2285-2294. doi: 10.3934/era.2025100 |
[4] | Noelia Bazarra, José R. Fernández, Ramón Quintanilla . Numerical analysis of a problem in micropolar thermoviscoelasticity. Electronic Research Archive, 2022, 30(2): 683-700. doi: 10.3934/era.2022036 |
[5] | J. Bravo-Olivares, E. Fernández-Cara, E. Notte-Cuello, M.A. Rojas-Medar . Regularity criteria for 3D MHD flows in terms of spectral components. Electronic Research Archive, 2022, 30(9): 3238-3248. doi: 10.3934/era.2022164 |
[6] | Jie Zhang, Gaoli Huang, Fan Wu . Energy equality in the isentropic compressible Navier-Stokes-Maxwell equations. Electronic Research Archive, 2023, 31(10): 6412-6424. doi: 10.3934/era.2023324 |
[7] | Anatoliy Martynyuk, Gani Stamov, Ivanka Stamova, Yulya Martynyuk–Chernienko . Regularization scheme for uncertain fuzzy differential equations: Analysis of solutions. Electronic Research Archive, 2023, 31(7): 3832-3847. doi: 10.3934/era.2023195 |
[8] | Cheng He, Changzheng Qu . Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28(4): 1545-1562. doi: 10.3934/era.2020081 |
[9] | Xun Wang, Qunyi Bie . Energy equality for the multi-dimensional nonhomogeneous incompressible Hall-MHD equations in a bounded domain. Electronic Research Archive, 2023, 31(1): 17-36. doi: 10.3934/era.2023002 |
[10] | Lin Shen, Shu Wang, Yongxin Wang . The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28(2): 691-719. doi: 10.3934/era.2020036 |
In this paper we present some regularity criteria for weak solutions of the following magneto-micropolar fluid system in three space dimensions:
{ut+u⋅∇u+∇(p+12|b|2)=(μ+χ)Δu+b⋅∇b+χ∇×w,wt+u⋅∇w=γΔw+κ∇(∇⋅w)+χ∇×u−2χw,bt+u⋅∇b=νΔb+b⋅∇u,∇⋅u=∇⋅b=0,u(⋅,0)=u0(⋅),w(⋅,0)=w0(⋅),b(⋅,0)=b0(⋅), | (1) |
where
Let us list some recent papers which discuss regularity of weak solutions of the magneto-micropolar equations (1) and systems that are particular cases of these equations as, for example, the classical Navier-Stokes equations.
In
∫T0‖u(t)‖βαdt<∞,where 3α+2β≤1,3<α≤∞, |
or
∫T0‖∇u(t)‖βαdt<∞,where 3α+2β≤2,32<α≤∞, |
provided that the initial data
In 2013, Y. Wang [14] showed that a weak solution
∫T0‖∂3u(t)‖βαdt<∞where 3α+2β≤1,α≥3, | (2) |
provided that
The papers [14] and [18] (see also [3,8,12,13,15,17,19,20,22,23,24,28,29]), raised our interest to obtain regularity criteria for weak solutions of the magneto-micropolar system (1), which involve only one component of the velocity field
Note that the magneto-micropolar system
First, Z. Zhang and X. Yang [22] present a regularity criterion for the Navier-Stokes equations involving the gradient of one component of the velocity field. Precisely, if
∫T0‖∇u3(t)‖3272dt<∞, | (3) |
then
The second paper we cite is [23]. Z. Zhang and X. Yang [23] deal with one component of the gradient of one component of the velocity field. More precisely, regularity of a weak solution
∂3u3(t)∈L∞(0,T;L2(R3)). | (4) |
Theorem 1.2 below establishes an extension of criterion (4) from the Navier-Stokes equations to the magneto-micropolar system (1).
Further regularity results for weak solutions of the Navier-Stokes equations are established in [1,4,5,6,7,10,25,26].
The main results of the current paper are:
Theorem 1.1. Let
(u,w,b)∈C([0,T);H1(R3))∩C((0,T);H2(R3)) | (5) |
denote a weak solution of the magneto-micropolar equations (1) in
∇u3,∇hw,∇hb∈L327(0,T;L2(R3)), | (6) |
then
Theorem 1.2. Let
(u,w,b)∈C([0,T);H1(R3))∩C((0,T);H2(R3)) | (7) |
denote a weak solution of the magneto-micropolar equations (1) in
∂3u3,∂3w,∂3b∈L∞(0,T;L2(R3)), | (8) |
then
An outline of the paper follows: There are two sections after the Introduction. In Section 2, we list definitions and notations used throughout the paper and recall results that play an important role in our proofs of the main results. Section 3 presents the proofs of Theorems
We introduce notations and definitions used in the paper.
● Boldface letters denote vector fields; for example,
a=a(x,t)=(a1(x,t),a2(x,t),a3(x,t)),x∈R3,t≥0. |
● The Euclidean norm of any vector
● The notation
‖a‖α:=(∫R3|a(x)|αdx)1α,1≤α<∞, |
and
‖a‖∞:=ess supx∈R3{|a(x)|}, |
where
(a,b)2:=∫R3a(x)⋅b(x)dx, |
where
● Let
● The horizontal gradient is denoted by
● Here
●
● Denote
●
● The horizontal Laplacian is denoted by
● Let (
● We define a weak solution of (1) as follows: Let
1.
2. the system (1) is satisfied in the sense of distributions;
3. the energy inequality holds, i.e.,
‖(u,w,b)(t)‖22+2(μ+χ)∫t0‖∇u(τ)‖22dτ+2γ∫t0‖∇w(τ)‖22dτ+2ν∫t0‖∇b(τ)‖22dτ+2κ∫t0‖∇⋅w(τ)‖22dτ+2χ∫t0‖w(τ)‖22dτ≤‖(u0,w0,b0)‖22, | (9) |
for all
● For brevity, dependencies on the variables
Now, we enunciate the lemmas that will be applied in the proofs of our main results. The first one is proved in [16].
Lemma 2.1 (see [16]). Let
f,g,∂ig,∂jg,h,∂jh,∂kh∈L2(R3). |
Then,
∫R3fghdx≤C‖f‖2‖g‖142‖∂ig‖122‖∂jg‖142‖h‖142‖∂kh‖122‖∂jh‖142. |
The second one was established in [23].
Lemma 2.2 (see [23]). Let
∫R3f2g2dx≤2√2‖f‖326‖∂3f‖122‖g‖2‖∇hg‖2. |
The third one was written in [2].
Lemma 2.3 (see [2]). Assume that
1≤θ,λ,ϑ<∞,1θ+2λ>1,1+3ϑ=1θ+2λ. |
Consider that
‖f‖ϑ≤C‖∂1f‖13λ‖∂2f‖13λ‖∂3f‖13θ. |
In particular, if
‖f‖3θ≤C‖∂1f‖132‖∂2f‖132‖∂3f‖13θ. |
In this section we prove Theorems 1.1 and 1.2. In both results, it is necessary to consider
First, notice that by applying the product
12ddt‖∇hu‖22+(μ+χ)‖∇∇hu‖22=(u⋅∇u,Δhu)2−(b⋅∇b,Δhu)2−χ(∇×w,Δhu)2. | (10) |
Similarly, from the second and third equations in
12ddt‖∇hw‖22+γ‖∇∇hw‖22+κ‖∇h(∇⋅w)‖22+2χ‖∇hw‖22=(u⋅∇w,Δhw)2−χ(∇×u,Δhw)2 | (11) |
and also
12ddt‖∇hb‖22+ν‖∇∇hb‖22=(u⋅∇b,Δhb)2−(b⋅∇u,Δhb)2. | (12) |
By adding the results
12ddt‖(∇hu,∇hw,∇hb)‖22+(μ+χ)‖∇∇hu‖22+γ‖∇∇hw‖22+ν‖∇∇hb‖22+κ‖∇h(∇⋅w)‖22+2χ‖∇hw‖22=(u⋅∇u,Δhu)2−(b⋅∇b,Δhu)2−χ(∇×w,Δhu)2+(u⋅∇w,Δhw)2−χ(∇×u,Δhw)2+(u⋅∇b,Δhb)2−(b⋅∇u,Δhb)2. | (13) |
Let us examine the terms on the right hand side of the above equality. We have
−(b⋅∇b,Δhu)2=−3∑i,j=12∑k=1∫R3bi∂ibj∂2kujdx=3∑i,j=12∑k=1∫R3∂kbi∂ibj∂kujdx+3∑i,j=12∑k=1∫R3bi∂k∂ibj∂kujdx. |
Similarly, we get
−(b⋅∇u,Δhb)2=−3∑i,j=12∑k=1∫R3bi∂iuj∂2kbjdx=3∑i,j=12∑k=1∫R3∂kbi∂iuj∂kbjdx−3∑i,j=12∑k=1∫R3bi∂k∂ibj∂kujdx, |
where we have used that
−(b⋅∇b,Δhu)2−(b⋅∇u,Δhb)2=3∑i,j=12∑k=1∫R3∂kbi∂ibj∂kujdx+3∑i,j=12∑k=1∫R3∂kbi∂iuj∂kbjdx≤C(∫R3|∇hb||∇b||∇hu|dx+∫R3|∇hb||∇u||∇hb|dx). |
Furthermore,
(u⋅∇w,Δhw)2=3∑i,j=12∑k=1∫R3ui∂iwj∂2kwjdx=−3∑i,j=12∑k=1∫R3∂kui∂iwj∂kwjdx−3∑i,j=12∑k=1∫R3ui∂k∂iwj∂kwjdx. |
On the other hand, by analysing the last term above it is easy to prove that it is actually null. In fact, since
−3∑i,j=12∑k=1∫R3ui∂k∂iwj∂kwjdx=3∑i,j=12∑k=1∫R3ui∂kwj∂i∂kwjdx. |
Therefore,
(u⋅∇w,Δhw)2≤C∫R3|∇hw||∇w||∇hu|dx. |
Similarly, we obtain
(u⋅∇b,Δhb)2≤C∫R3|∇hb||∇b||∇hu|dx. |
Also notice that, by applying Cauchy-Schwarz's inequality, one has
−χ(∇×u,Δhw)2−χ(∇×w,Δhu)2≤χ‖∇∇hu‖22+χ‖∇hw‖22. | (14) |
By [22], the following estimate holds:
(u⋅∇u,Δhu)2≤C∫R3|∇u3||∇u||∇hu|dx. |
Consequently, from
12ddt‖(∇hu,∇hw,∇hb)‖22+μ‖∇∇hu‖22+γ‖∇∇hw‖22+ν‖∇∇hb‖22+κ‖∇h(∇⋅w)‖22+χ‖∇hw‖22≤C∫R3|(∇u3,∇hw,∇hb)||(∇u,∇w,∇b)||(∇hu,∇hw,∇hb)|dx. |
By applying Lemma 2.1, one obtains
12ddt‖(∇hu,∇hw,∇hb)‖22+μ‖∇∇hu‖22+γ‖∇∇hw‖22+ν‖∇∇hb‖22+κ‖∇h(∇⋅w)‖22+χ‖∇hw‖22≤≤C‖(∇u3,∇hw,∇hb)‖2‖(∇hu,∇hw,∇hb)‖142‖(∇u,∇w,∇b)‖142×‖(∇∇hu,∇∇hw,∇∇hb)‖322. |
By using Young's inequality, it follows that
ddt‖(∇hu,∇hw,∇hb)‖22+α‖(∇∇hu,∇∇hw,∇∇hb)‖22+2κ‖∇h(∇⋅w)‖22+2χ‖∇hw‖22≤C‖(∇u3,∇hw,∇hb)‖42‖(∇hu,∇hw,∇hb)‖2×‖(∇u,∇w,∇b)‖2, |
where
‖(∇hu,∇hw,∇hb)(t)‖22+α∫tT∗−τ‖(∇∇hu,∇∇hw,∇∇hb)(s)‖22ds≤C+C∫tT∗−τ‖(∇u3,∇hw,∇hb)(s)‖42‖(∇hu,∇hw,∇hb)(s)‖2×‖(∇u,∇w,∇b)(s)‖2ds. | (15) |
In order to estimate the term
I(t):=sups∈[T∗−τ,t]{‖(∇hu,∇hw,∇hb)(s)‖2}+(∫tT∗−τ‖(∇∇hu,∇∇hw,∇∇hb)(s)‖22ds)12 | (16) |
and
J(t):=sups∈[T∗−τ,t]{‖(∇u,∇w,∇b)(s)‖2}+(∫tT∗−τ‖(Δu,Δw,Δb)(s)‖22ds)12, | (17) |
where
I2(t)≤2sups∈[T∗−τ,t]{‖(∇hu,∇hw,∇hb)(s)‖22} |
+2∫tT∗−τ‖(∇∇hu,∇∇hw,∇∇hb)(s)‖22ds≤C+CI(t)J(t)34∫tT∗−τ‖(∇u3,∇hw,∇hb)(s)‖42‖(∇u,∇w,∇b)(s)‖142ds≤C+CI(t)J(t)34∫T0‖(∇u3,∇hw,∇hb)(s)‖3272ds+CI(t)J(t)34∫T0‖(∇u,∇w,∇b)(s)‖22ds≤C+CI(t)J(t)34, |
where we have applied Young's inequality, (6) and (9). By using Young's inequality again, we get
I2(t)≤C+CJ32(t)+12I2(t), |
or equivalently,
I(t)≤C+CJ34(t),∀t∈(T∗−τ,T∗). | (18) |
The inequality (18) is useful to prove that
12ddt‖∇u‖22+(μ+χ)‖Δu‖22=(u⋅∇u,Δu)2−(b⋅∇b,Δu)2−χ(∇×w,Δu)2, |
12ddt‖∇w‖22+γ‖Δw‖22+κ‖∇(∇⋅w)‖22+2χ‖∇w‖22=(u⋅∇w,Δw)2−χ(∇×u,Δw)2 |
and also
12ddt‖∇b‖22+ν‖Δb‖22=(u⋅∇b,Δb)2−(b⋅∇u,Δb)2, |
where we used the fact that
12ddt‖(∇u,∇w,∇b)‖22+(μ+χ)‖Δu‖22+γ‖Δw‖22+ν‖Δb‖22+κ‖∇(∇⋅w)‖22+2χ‖∇w‖22=(u⋅∇u,Δu)2−(b⋅∇b,Δu)2−χ(∇×w,Δu)2+(u⋅∇w,Δw)2−χ(∇×u,Δw)2+(u⋅∇b,Δb)2−(b⋅∇u,Δb)2. | (19) |
Let us examine all the terms on the right hand side of the equality above. We have
(u⋅∇w,Δw)2=3∑i,j,k=1∫R3ui∂iwj∂2kwjdx=3∑j=12∑k=1∫R3u3∂3wj∂2kwjdx+3∑j,k=12∑i=1∫R3ui∂iwj∂2kwjdx+3∑j=1∫R3u3∂3wj∂23wjdx=:I1(t)+I2(t)+I3(t). | (20) |
Here
I1(t)=3∑j=12∑k=1∫R3u3∂3wj∂2kwjdx=−3∑j=12∑k=1∫R3∂ku3∂3wj∂kwjdx−3∑j=12∑k=1∫R3u3∂k∂3wj∂kwjdx=−3∑j=12∑k=1∫R3∂ku3∂3wj∂kwjdx+123∑j=12∑k=1∫R3∂3u3(∂kwj)2dx≤C∫R3|∇u||∇w||∇hw|dx+C∫R3|∇u||∇hw|2dx. |
Similarly,
I2(t)=3∑j,k=12∑i=1∫R3ui∂iwj∂2kwjdx=−3∑j,k=12∑i=1∫R3∂kui∂iwj∂kwjdx−3∑j,k=12∑i=1∫R3ui∂k∂iwj∂kwjdx=−3∑j,k=12∑i=1∫R3∂kui∂iwj∂kwjdx+123∑j,k=12∑i=1∫R3∂iui(∂kwj)2dx≤C∫R3|∇u||∇hw||∇w|dx+C∫R3|∇hu||∇w|2dx. |
By using that
I3(t)=3∑j=1∫R3u3∂3wj∂23wjdx=−123∑j=1∫R3∂3u3(∂3wj)2dx=123∑j=12∑k=1∫R3∂kuk(∂3wj)2dx≤C∫R3|∇hu||∇w|2dx. |
Therefore, using the above estimates, the equality
(u⋅∇w,Δw)2≤C∫R3|∇u||∇hw|2dx+C∫R3|∇u||∇hw||∇w|dx+C∫R3|∇hu||∇w|2dx. |
Following the same process, we conclude that
(u⋅∇b,Δb)2≤C∫R3|∇u||∇hb|2dx+C∫R3|∇u||∇hb||∇b|dx+C∫R3|∇hu||∇b|2dx. |
It is important to point out that the technique applied to
−(b⋅∇b,Δu)2−(b⋅∇u,Δb)2=−3∑i,j,k=1∫R3bi∂ibj∂2kujdx−3∑i,j,k=1∫R3bi∂iuj∂2kbjdx=3∑i,j,k=1∫R3∂kbi∂ibj∂kujdx+3∑i,j,k=1∫R3bi∂k∂ibj∂kujdx+3∑i,j,k=1∫R3∂kbi∂iuj∂kbjdx+3∑i,j,k=1∫R3bi∂k∂iuj∂kbjdx. |
Consequently,
−(b⋅∇b,Δu)2−(b⋅∇u,Δb)2=3∑i,j,k=1∫R3∂kbi∂ibj∂kujdx+3∑i,j,k=1∫R3bi∂k∂ibj∂kujdx+3∑i,j,k=1∫R3∂kbi∂iuj∂kbjdx−3∑i,j,k=1∫R3bi∂k∂ibj∂kujdx. |
By using
−(b⋅∇b,Δu)2−(b⋅∇u,Δb)2=3∑i,j,k=1[∫R3∂kbi∂ibj∂kujdx+∫R3∂kbi∂iuj∂kbjdx] | (21) |
=3∑j=12∑k=1[∫R3∂kb3∂3bj∂kujdx+∫R3∂kb3∂3uj∂kbjdx]+3∑j,k=12∑i=1[∫R3∂kbi∂ibj∂kujdx+∫R3∂kbi∂iuj∂kbjdx]+3∑j=1[∫R3∂3b3∂3bj∂3ujdx+∫R3∂3b3∂3uj∂3bjdx]=:J1(t)+J2(t)+J3(t). | (22) |
Let us estimate each term
J1(t)=3∑j=12∑k=1[∫R3∂kb3∂3bj∂kujdx+∫R3∂kb3∂3uj∂kbjdx]≤C∫R3|∇hb||∇b||∇u|dx. |
Similarly, one obtains
J2(t)=3∑j,k=12∑i=1[∫R3∂kbi∂ibj∂kujdx+∫R3∂kbi∂iuj∂kbjdx]≤C∫R3|∇b||∇hb||∇u|dx+C∫R3|∇hu||∇b|2dx |
and, by applying
J3(t)=3∑j=1[∫R3∂3b3∂3bj∂3ujdx+∫R3∂3b3∂3uj∂3bjdx]=−3∑j=12∑k=1[∫R3∂kbk∂3bj∂3ujdx+∫R3∂kbk∂3uj∂3bjdx]≤C∫R3|∇hb||∇b||∇u|dx. |
Replacing, in
−(b⋅∇b,Δu)2−(b⋅∇u,Δb)2≤C∫R3|∇hu||∇b|2dx+C∫R3|∇hb||∇b||∇u|dx. |
Furthermore, notice that
−χ(∇×w,Δu)2−χ(∇×u,Δw)2≤χ‖∇w‖22+χ‖Δu‖22, |
where we have applied Cauchy-Schwarz's inequality. At last, Y. Zhou and M. Pokorný [29] proved that
(u⋅∇u,Δu)2≤C∫R3|∇hu||∇u|2dx. |
Therefore,
12ddt‖(∇u,∇w,∇b)‖22+μ‖Δu‖22+γ‖Δw‖22+ν‖Δb‖22+κ‖∇(∇⋅w)‖22+χ‖∇w‖22≤C∫R3|(∇hu,∇hw,∇hb)||(∇u,∇w,∇b)|2dx. | (23) |
By using Lemma 2.1, one gets
ddt‖(∇u,∇w,∇b)‖22+2α‖(Δu,Δw,Δb)‖22+2κ‖∇(∇⋅w)‖22+2χ‖∇w‖22≤C‖(∇hu,∇hw,∇hb)‖2‖(∇u,∇w,∇b)‖122‖(∇∇hu,∇∇hw,∇∇hb)‖2×‖(Δu,Δw,Δb)‖122, |
where
‖(∇u,∇w,∇b)(s)‖22+2α∫sT∗−τ‖(Δu,Δw,Δb)(τ)‖22dτ≤C+CI(t)∫sT∗−τ‖(∇u,∇w,∇b)(τ)‖122‖(∇∇hu,∇∇hw,∇∇hb)(τ)‖2×‖(Δu,Δw,Δb)(τ)‖122dτ, |
where we applied the definition of
‖(∇u,∇w,∇b)(s)‖22+2α∫sT∗−τ‖(Δu,Δw,Δb)(τ)‖22dτ≤C+CI2(t)J12(t)(∫sT∗−τ‖(∇u,∇w,∇b)(τ)‖22dτ)14, |
for all
J2(t)≤C+CI2(t)J12(t)(∫tT∗−τ‖(∇u,∇w,∇b)(τ)‖22dτ)14. |
By using Young's inequality, we infer
J2(t)≤C+CI83(t)(∫tT∗−τ‖(∇u,∇w,∇b)(τ)‖22dτ)13+12J2(t). |
Consequently, by applying (18), we obtain
J(t)≤C+[C+CJ(t)](∫tT∗−τ‖(∇u,∇w,∇b)(τ)‖22dτ)16. | (24) |
From the energy inequality (9), one concludes that there exists
∫TT∗−τ‖(∇u,∇w,∇b)(τ)‖22dτ≤1(2C)6. |
Now, we can obtain the desired estimate for
J(t)≤C,∀ t∈[T∗−τ,T∗). |
The definition (17) establishes the proof of Theorem 1.1.
In order to prove Theorem 1.2 let us examine all the terms on the right hand side of
(u⋅∇w,Δhw)2=3∑i,j=12∑k=1∫R3ui∂iwj∂2kwjdx=−3∑i,j=12∑k=1∫R3∂kui∂iwj∂kwjdx=3∑i,j=12∑k=1∫R3wj∂kui∂k∂iwjdx≤C∫R3|w||∇u||∇∇hw|dx, |
since
(u⋅∇b,Δhb)2≤C∫R3|b||∇u||∇∇hb|dx. |
Notice that
−(b⋅∇b,Δhu)2=−3∑i,j=12∑k=1∫R3bi∂ibj∂2kujdx≤C∫R3|b||∇b||∇∇hu|dx |
and also
−(b⋅∇u,Δhb)2=−3∑i,j=12∑k=1∫R3bi∂iuj∂2kbjdx≤C∫R3|b||∇u||∇∇hb|dx. |
The reader might check that (14) assures the following estimate:
−χ(∇×u,Δhw)2−χ(∇×w,Δhu)2≤χ‖∇∇hu‖22+χ‖∇hw‖22. |
At last, Y. Zhou and M. Pokorný [29] proved that
(u⋅∇u,Δhu)2≤C∫R3|u3||∇u||∇∇hu|dx. |
By replacing all these last results obtained above in (13) and by using Young's inequality, one has
12ddt‖(∇hu,∇hw,∇hb)‖22+α‖(∇∇hu,∇∇hw,∇∇hb)‖22+κ‖∇h(∇⋅w)‖22+χ‖∇hw‖22≤C∫R3|(u3,w,b)|2|(∇u,∇w,∇b)|2dx+α2∫R3|(∇∇hu,∇∇hw,∇∇hb)|2dx, |
where
ddt‖(∇hu,∇hw,∇hb)‖22+α‖(∇∇hu,∇∇hw,∇∇hb)‖22+2κ‖∇h(∇⋅w)‖22+2χ‖∇hw‖22≤C∫R3|(u3,w,b)|2|(∇u,∇w,∇b)|2dx. |
By Lemmas 2.2 and 2.3, and also by (8), we obtain
ddt‖(∇hu,∇hw,∇hb)‖22+α‖(∇∇hu,∇∇hw,∇∇hb)‖22+2κ‖∇h(∇⋅w)‖22+2χ‖∇hw‖22≤C‖(∇hu,∇hw,∇hb)‖2‖(∇u,∇w,∇b)‖2×‖(∇∇hu,∇∇hw,∇∇hb)‖2. |
By Young's inequality, one concludes
ddt‖(∇hu,∇hw,∇hb)‖22+α2‖(∇∇hu,∇∇hw,∇∇hb)‖22+2κ‖∇h(∇⋅w)‖22+2χ‖∇hw‖22≤C‖(∇hu,∇hw,∇hb)‖22‖(∇u,∇w,∇b)‖22. |
By applying Gronwall's inequality, we get
‖(∇hu,∇hw,∇hb)(t)‖2≤‖(∇hu,∇hw,∇hb)(δ)‖2×exp{C∫Tδ‖(∇u,∇w,∇b)(s)‖22ds}, |
for all
‖(∇hu,∇hw,∇hb)(t)‖2≤C,∀ t∈[δ,T∗). | (25) |
In order to prove that the term
ddt‖(∇u,∇w,∇b)‖22+2α‖(Δu,Δw,Δb)‖22+2κ‖∇(∇⋅w)‖22+2χ‖∇w‖22≤C‖(∇hu,∇hw,∇hb)‖2‖(∇u,∇w,∇b)‖24, |
where
ddt‖(∇u,∇w,∇b)‖22+2α‖(Δu,Δw,Δb)‖22+2κ‖∇(∇⋅w)‖22+2χ‖∇w‖22≤C‖(∇u,∇w,∇b)‖122‖(Δu,Δw,Δb)‖322, |
for all
ddt‖(∇u,∇w,∇b)‖22+α‖(Δu,Δw,Δb)‖22+2κ‖∇(∇⋅w)‖22+2χ‖∇w‖22≤C‖(∇u,∇w,∇b)‖22. |
By Gronwall's inequality,
‖(∇u,∇w,∇b)(t)‖2≤C‖(∇u,∇w,∇b)(δ)‖2,∀ t∈[δ,T∗). |
This completes the proof of Theorem 1.2.
The authors would like to thank reviewers for their precious suggestions.
[1] |
Francolini I, Donelli G (2010) Prevention and control of biofilm-based medical-device-related infections. Fems Immunol Med Mic 59: 227–238. doi: 10.1111/j.1574-695X.2010.00665.x
![]() |
[2] | Fanning S, Mitchell AP (2012) Fungal biofilms. Plos Pathog, DOI:10.1371/journal.ppat.1002585. |
[3] |
Lazzell AL, Chaturvedi AK, Pierce CG, et al. (2009) Treatment and prevention of Candida albicans biofilms with caspofungin in a novel central venous catheter murine model of candidiasis. J Antimicrob Chemot 64: 567–570. doi: 10.1093/jac/dkp242
![]() |
[4] |
Sardi JC, Scorzoni L, Bernardi T, et al. (2013) Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 62: 10–24. doi: 10.1099/jmm.0.045054-0
![]() |
[5] |
Ramage G, Martınez P, Lopez RJL (2006) Candida biofilms on implanted biomaterials: a clinically significant problem. Fems Yeast Res 6: 979–986. doi: 10.1111/j.1567-1364.2006.00117.x
![]() |
[6] | Dominic RM, Shenoy S, Baliga S (2007) Candida biofilms in medical devices: evolving trends. Kathmandu Univ Med J 5: 431–436. |
[7] | Gow NA, van de Veerdonk FL, Brown AJ, et al. (2012) Candida albicans morphogenesis and host defence: discriminating invasion from colonization. Nat Rev Microbiol 10: 112–122. |
[8] |
Pfaller MA, Diekema DJ (2010) Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36: 1–53. doi: 10.3109/10408410903241444
![]() |
[9] |
Mayer FL, Wilson D, Hube B (2013) Candida albicans pathogenicity mechanisms. Virulence 4: 119–128. doi: 10.4161/viru.22913
![]() |
[10] | Ramage G, Rajendran R, Sherry L (2012) Fungal biofilm resistance. Int J Microbiol 2012: 1–14. |
[11] |
Kojic EM, Darouiche RO (2004) Candida infections on medical devices. Clin Microbiol Rev 17: 255–267. doi: 10.1128/CMR.17.2.255-267.2004
![]() |
[12] |
Fracchia L, Banat JJ, Cavallo M, et al. (2015) Potential therapeutic applications of microbial surface-active compounds. AIMS Bioeng 2: 144–162. doi: 10.3934/bioeng.2015.3.144
![]() |
[13] |
Ceresa C, Rinaldi M, Chiono V, et al. (2016) Lipopeptides from Bacillus subtilis AC7 inhibit adhesion and biofilm formation of Candida albicans on silicone. Anton Van Leeuw 109: 1375–1388. doi: 10.1007/s10482-016-0736-z
![]() |
[14] |
Rivardo F, Martinotti MG, Turner RJ, et al. (2011) Synergistic effect of lipopeptide biosurfactant with antibiotics against Escherichia coli CFT073 biofilm. Int J Antimicrob Ag 37: 324–331. doi: 10.1016/j.ijantimicag.2010.12.011
![]() |
[15] |
Rivardo F, Martinotti MG, Turner RJ, et al. (2010) The activity of silver against Escherichia coli biofilm is increased by a lipopeptide biosurfactant. Can J Microbiol 56: 272–278. doi: 10.1139/W10-007
![]() |
[16] | Rivardo F, Turner RJ, Allegrone G, et al. (2009) Anti-adhesion activity of two biosurfactants produced by Bacillus spp. prevents biofilm formation of human bacterial pathogens. Appl Microbiol Biot 83: 541–553. |
[17] | Busscher HJ, van Hoogmoed CG, Geertsema DGI, et al. (1997) Streptococcus thermophilus and its biosurfactants inhibit adhesion by Candida spp. on silicone rubber. Appl Environ Microb 63: 3810–3817. |
[18] | Rodriguez TJL, Arendrup MC, Barchiesi F, et al. (2008) EUCAST definitive document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. Clin Microbiol Infec 14: 398–405. |
[19] |
Nweze EI, Ghannoum A, Chandra J, et al. (2012) Development of a 96-well catheter-based microdilution method to test antifungal susceptibility of Candida biofilms. J Antimicrob Chemot 67: 149–153. doi: 10.1093/jac/dkr429
![]() |
[20] |
Martins N, Ferreira IC, Barros L, et al. (2014) Candidiasis: predisposing factors, prevention, diagnosis and alternative treatment. Mycopathologia 177: 223–240. doi: 10.1007/s11046-014-9749-1
![]() |
[21] | Hawser SP, Douglas LJ (1994) Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun 62: 915–921. |
[22] |
Ruhnke M, Hartwig K, Kofla G (2008) New options for treatment of candidaemia in critically ill patients. Clin Microbiol Infec 14: 46–54. doi: 10.1111/j.1469-0691.2008.01981.x
![]() |
[23] |
Lohner K (2014) Antimicrobial mechanisms: a sponge against fungal infections. Nat Chem Biol 10: 411–412. doi: 10.1038/nchembio.1518
![]() |
[24] |
Charlier C, Hart E, Lefort A, et al. (2006) Fluconazole for the management of invasive candidiasis: where do we stand after 15 years? J Antimicrob Chemot 57: 384–410. doi: 10.1093/jac/dki473
![]() |
[25] |
Liu S, Hou Y, Chen X, et al. (2014) Combination of fluconazole with non-antifungal agents: a promising approach to cope with resistant Candida albicans infections and insight into new antifungal agent discovery. Int J Antimicrob Ag 43: 395–402. doi: 10.1016/j.ijantimicag.2013.12.009
![]() |
[26] | Bonmatin JM, Laprévote O, Peypoux F (2003) Diversity among microbial cyclic lipopeptides: iturins and surfactins. Activity–structure relationships to design new bioactive agents. Comb Chem High T Sc 6: 541–556. |
[27] |
Carrillo C, Teruel JA, Aranda FJ, et al. (2003) Molecular mechanism of membrane permeabilization by the peptide antibiotic surfactin. Biochim Biophys Acta 1611: 91–97. doi: 10.1016/S0005-2736(03)00029-4
![]() |
[28] |
Deleu M, Paquot M, Nylander T (2005) Fengycin interaction with lipid monolayers at the air-aqueous interface-implications for the effect of fengycin on biological membranes. J Colloid Interf Sci 283: 358–365. doi: 10.1016/j.jcis.2004.09.036
![]() |
[29] |
Deleu M, Paquot M, Nylander T (2008) Effect of fengycin, a lipopeptide produced by Bacillus subtilis, on model biomembranes. Biophys J 94: 2667–2679. doi: 10.1529/biophysj.107.114090
![]() |
[30] |
Eeman M, Berquand A, Dufrêne YF, et al. (2006) Penetration of surfactin into phospholipid monolayers: nanoscale interfacial organization. Langmuir 22: 11337–11345. doi: 10.1021/la061969p
![]() |
[31] |
Biniarz P, Baranowska G, Feder KJ, et al. (2015) The lipopeptides pseudofactin II and surfactin effectively decrease Candida albicans adhesion and hydrophobicity. Anton Van Leeuw 108: 343–353. doi: 10.1007/s10482-015-0486-3
![]() |
[32] |
Sriram MI, Kalishwaralal K, Deepak V, et al. (2011) Biofilm inhibition and antimicrobial action of lipopeptide biosurfactant produced by heavy metal tolerant strain Bacillus cereus NK1. Colloid Surface B 85: 174–181. doi: 10.1016/j.colsurfb.2011.02.026
![]() |
[33] |
Janek T, Łukaszewicz M, Krasowska A (2012) Anti-adhesive activity of the biosurfactant pseudofactin II secreted by the Arctic bacterium Pseudomonas fluorescens BD5. BMC Microbiol 12: 24. doi: 10.1186/1471-2180-12-24
![]() |
1. |
Diego Chamorro, David Llerena,
Interior ϵ -regularity theory for the solutions of the magneto-micropolar equations with a perturbation term,
2022,
8,
2296-9020,
555,
10.1007/s41808-022-00163-y
|
|
2. | Muhammad Naqeeb, Amjad Hussain, Ahmad Mohammed Alghamdi, Blow-up criteria for different fluid models in anisotropic Lorentz spaces, 2023, 8, 2473-6988, 4700, 10.3934/math.2023232 | |
3. | Diego Chamorro, David Llerena, A crypto-regularity result for the micropolar fluids equations, 2023, 520, 0022247X, 126922, 10.1016/j.jmaa.2022.126922 | |
4. | Xinliang Li, Dandan Ding, Global well-posedness and large-time behavior of solutions to the 3D inviscid magneto-micropolar equations with damping, 2024, 103, 0003-6811, 1963, 10.1080/00036811.2023.2271946 | |
5. | Diego Chamorro, David Llerena, Gastón Vergara-Hermosilla, Some remarks about the stationary micropolar fluid equations: Existence, regularity and uniqueness, 2024, 536, 0022247X, 128201, 10.1016/j.jmaa.2024.128201 | |
6. | Takashi Kurihara, Possible involvement of FFAR1 signaling in mouse emotional behaviors through the regulation of brain monoamine releases, 2023, 158, 0015-5691, 454, 10.1254/fpj.23054 | |
7. | Diego Chamorro, David Llerena, Partial suitable solutions for the micropolar equations and regularity properties, 2025, 31, 2118-7436, 137, 10.5802/ambp.428 | |
8. |
Diego Chamorro, David Llerena,
Partial regularity and L3 -norm concentration effects around possible blow-up points for the micropolar fluid equations,
2025,
32,
1021-9722,
10.1007/s00030-025-01059-1
|