This paper establishes the global well-posedness of strong solutions to the three dimensional damped Boussinesq magneto-micropolar system with zero heat diffusion for large initial data. We prove that the nonlinear damping term $ |u|^{ \beta-1} u $, for $ \beta \geq 4 $, ensures sufficient regularity to establish the global well-posedness of the system.
Citation: Xiuli Xu, Lian Yang. Global well-posedness of the 3D nonlinearly damped Boussinesq magneto-micropolar system without heat diffusion[J]. Electronic Research Archive, 2025, 33(4): 2285-2294. doi: 10.3934/era.2025100
This paper establishes the global well-posedness of strong solutions to the three dimensional damped Boussinesq magneto-micropolar system with zero heat diffusion for large initial data. We prove that the nonlinear damping term $ |u|^{ \beta-1} u $, for $ \beta \geq 4 $, ensures sufficient regularity to establish the global well-posedness of the system.
| [1] |
X. Li, Z. Tan, Global well-posedness for the 3D damped micropolar Bénard system with zero thermal conductivity, Appl. Math. Lett., 117 (2021), 107103. https://doi.org/10.1016/j.aml.2021.107103 doi: 10.1016/j.aml.2021.107103
|
| [2] |
H. Liu, C. Sun, F. Meng, Global well-posedness of the 3D magneto-micropolar equations with damping, Appl. Math. Lett., 94 (2019), 38–43. https://doi.org/10.1016/j.aml.2019.02.026 doi: 10.1016/j.aml.2019.02.026
|
| [3] |
E. S. Titi, S. Trabelsi, Global well-posedness of a 3D MHD model in porous media, J. Geom. Mech., 11 (2019), 621–637. https://doi.org/10.3934/jgm.2019031 doi: 10.3934/jgm.2019031
|
| [4] | A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1–18. |
| [5] |
H. Liu, D. Bian, X. Pu, Global well-posedness of the 3D Boussinesq-MHD system without heat diffusion, Z. Angew. Math. Phys., 70 (2019), 81. https://doi.org/10.1007/s00033-019-1126-y doi: 10.1007/s00033-019-1126-y
|
| [6] |
Z. Zhang, X. Yang, Global regularity for the 3D MHD system with damping, Colloq. Math., 145 (2016), 107–110. https://doi.org/10.4064/cm6654-9-2015 doi: 10.4064/cm6654-9-2015
|
| [7] |
X. Shou, X. Zhong, Global well-posedness to the 3D incompressible magneto-micropolar Benard system with damping and zero thermal conductivity, Appl. Math. Lett., 151 (2024), 108995. https://doi.org/10.1016/j.aml.2024.108995 doi: 10.1016/j.aml.2024.108995
|
| [8] | R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, American Mathematical Society, 1984. |
| [9] |
Y. Guo, Y. Wang, Decay of dissipative equations and negative Sobolev spaces, Commun. Partial Differ. Equations, 37 (2012), 2165–2208. https://doi.org/10.1080/03605302.2012.696296 doi: 10.1080/03605302.2012.696296
|
| [10] | L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, American Mathematial Society, 2010. |