Research article

Global well-posedness of the 3D nonlinearly damped Boussinesq magneto-micropolar system without heat diffusion

  • Published: 18 April 2025
  • This paper establishes the global well-posedness of strong solutions to the three dimensional damped Boussinesq magneto-micropolar system with zero heat diffusion for large initial data. We prove that the nonlinear damping term $ |u|^{ \beta-1} u $, for $ \beta \geq 4 $, ensures sufficient regularity to establish the global well-posedness of the system.

    Citation: Xiuli Xu, Lian Yang. Global well-posedness of the 3D nonlinearly damped Boussinesq magneto-micropolar system without heat diffusion[J]. Electronic Research Archive, 2025, 33(4): 2285-2294. doi: 10.3934/era.2025100

    Related Papers:

  • This paper establishes the global well-posedness of strong solutions to the three dimensional damped Boussinesq magneto-micropolar system with zero heat diffusion for large initial data. We prove that the nonlinear damping term $ |u|^{ \beta-1} u $, for $ \beta \geq 4 $, ensures sufficient regularity to establish the global well-posedness of the system.



    加载中


    [1] X. Li, Z. Tan, Global well-posedness for the 3D damped micropolar Bénard system with zero thermal conductivity, Appl. Math. Lett., 117 (2021), 107103. https://doi.org/10.1016/j.aml.2021.107103 doi: 10.1016/j.aml.2021.107103
    [2] H. Liu, C. Sun, F. Meng, Global well-posedness of the 3D magneto-micropolar equations with damping, Appl. Math. Lett., 94 (2019), 38–43. https://doi.org/10.1016/j.aml.2019.02.026 doi: 10.1016/j.aml.2019.02.026
    [3] E. S. Titi, S. Trabelsi, Global well-posedness of a 3D MHD model in porous media, J. Geom. Mech., 11 (2019), 621–637. https://doi.org/10.3934/jgm.2019031 doi: 10.3934/jgm.2019031
    [4] A. C. Eringen, Theory of micropolar fluids, J. Math. Mech., 16 (1966), 1–18.
    [5] H. Liu, D. Bian, X. Pu, Global well-posedness of the 3D Boussinesq-MHD system without heat diffusion, Z. Angew. Math. Phys., 70 (2019), 81. https://doi.org/10.1007/s00033-019-1126-y doi: 10.1007/s00033-019-1126-y
    [6] Z. Zhang, X. Yang, Global regularity for the 3D MHD system with damping, Colloq. Math., 145 (2016), 107–110. https://doi.org/10.4064/cm6654-9-2015 doi: 10.4064/cm6654-9-2015
    [7] X. Shou, X. Zhong, Global well-posedness to the 3D incompressible magneto-micropolar Benard system with damping and zero thermal conductivity, Appl. Math. Lett., 151 (2024), 108995. https://doi.org/10.1016/j.aml.2024.108995 doi: 10.1016/j.aml.2024.108995
    [8] R. Temam, Navier-Stokes Equations, Theory and Numerical Analysis, American Mathematical Society, 1984.
    [9] Y. Guo, Y. Wang, Decay of dissipative equations and negative Sobolev spaces, Commun. Partial Differ. Equations, 37 (2012), 2165–2208. https://doi.org/10.1080/03605302.2012.696296 doi: 10.1080/03605302.2012.696296
    [10] L. C. Evans, Partial Differential Equations, 2$^{nd}$ edition, American Mathematial Society, 2010.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(772) PDF downloads(69) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog