In this paper, we show that a weak solution (u,w,b)(⋅,t) of the magneto-micropolar equations, defined in [0,T), which satisfies ∇u3,∇hw,∇hb ∈L327(0,T; L2(R3)) or ∂3u3,∂3w,∂3b∈L∞(0,T;L2(R3)), is regular in R3×(0,T) and can be extended as a C∞ solution beyond T.
Citation: Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza. Regularity criteria for weak solutions of the Magneto-micropolar equations[J]. Electronic Research Archive, 2021, 29(1): 1625-1639. doi: 10.3934/era.2020083
[1] | Jens Lorenz, Wilberclay G. Melo, Suelen C. P. de Souza . Regularity criteria for weak solutions of the Magneto-micropolar equations. Electronic Research Archive, 2021, 29(1): 1625-1639. doi: 10.3934/era.2020083 |
[2] | Yazhou Wang, Yuzhu Wang . Regularity criterion of three dimensional magneto-micropolar fluid equations with fractional dissipation. Electronic Research Archive, 2024, 32(7): 4416-4432. doi: 10.3934/era.2024199 |
[3] | Xiuli Xu, Lian Yang . Global well-posedness of the 3D nonlinearly damped Boussinesq magneto-micropolar system without heat diffusion. Electronic Research Archive, 2025, 33(4): 2285-2294. doi: 10.3934/era.2025100 |
[4] | Noelia Bazarra, José R. Fernández, Ramón Quintanilla . Numerical analysis of a problem in micropolar thermoviscoelasticity. Electronic Research Archive, 2022, 30(2): 683-700. doi: 10.3934/era.2022036 |
[5] | J. Bravo-Olivares, E. Fernández-Cara, E. Notte-Cuello, M.A. Rojas-Medar . Regularity criteria for 3D MHD flows in terms of spectral components. Electronic Research Archive, 2022, 30(9): 3238-3248. doi: 10.3934/era.2022164 |
[6] | Jie Zhang, Gaoli Huang, Fan Wu . Energy equality in the isentropic compressible Navier-Stokes-Maxwell equations. Electronic Research Archive, 2023, 31(10): 6412-6424. doi: 10.3934/era.2023324 |
[7] | Anatoliy Martynyuk, Gani Stamov, Ivanka Stamova, Yulya Martynyuk–Chernienko . Regularization scheme for uncertain fuzzy differential equations: Analysis of solutions. Electronic Research Archive, 2023, 31(7): 3832-3847. doi: 10.3934/era.2023195 |
[8] | Cheng He, Changzheng Qu . Global weak solutions for the two-component Novikov equation. Electronic Research Archive, 2020, 28(4): 1545-1562. doi: 10.3934/era.2020081 |
[9] | Xun Wang, Qunyi Bie . Energy equality for the multi-dimensional nonhomogeneous incompressible Hall-MHD equations in a bounded domain. Electronic Research Archive, 2023, 31(1): 17-36. doi: 10.3934/era.2023002 |
[10] | Lin Shen, Shu Wang, Yongxin Wang . The well-posedness and regularity of a rotating blades equation. Electronic Research Archive, 2020, 28(2): 691-719. doi: 10.3934/era.2020036 |
In this paper, we show that a weak solution (u,w,b)(⋅,t) of the magneto-micropolar equations, defined in [0,T), which satisfies ∇u3,∇hw,∇hb ∈L327(0,T; L2(R3)) or ∂3u3,∂3w,∂3b∈L∞(0,T;L2(R3)), is regular in R3×(0,T) and can be extended as a C∞ solution beyond T.
In this paper we present some regularity criteria for weak solutions of the following magneto-micropolar fluid system in three space dimensions:
{ut+u⋅∇u+∇(p+12|b|2)=(μ+χ)Δu+b⋅∇b+χ∇×w,wt+u⋅∇w=γΔw+κ∇(∇⋅w)+χ∇×u−2χw,bt+u⋅∇b=νΔb+b⋅∇u,∇⋅u=∇⋅b=0,u(⋅,0)=u0(⋅),w(⋅,0)=w0(⋅),b(⋅,0)=b0(⋅), | (1) |
where
Let us list some recent papers which discuss regularity of weak solutions of the magneto-micropolar equations (1) and systems that are particular cases of these equations as, for example, the classical Navier-Stokes equations.
In
∫T0‖u(t)‖βαdt<∞,where 3α+2β≤1,3<α≤∞, |
or
∫T0‖∇u(t)‖βαdt<∞,where 3α+2β≤2,32<α≤∞, |
provided that the initial data
In 2013, Y. Wang [14] showed that a weak solution
∫T0‖∂3u(t)‖βαdt<∞where 3α+2β≤1,α≥3, | (2) |
provided that
The papers [14] and [18] (see also [3,8,12,13,15,17,19,20,22,23,24,28,29]), raised our interest to obtain regularity criteria for weak solutions of the magneto-micropolar system (1), which involve only one component of the velocity field
Note that the magneto-micropolar system
First, Z. Zhang and X. Yang [22] present a regularity criterion for the Navier-Stokes equations involving the gradient of one component of the velocity field. Precisely, if
∫T0‖∇u3(t)‖3272dt<∞, | (3) |
then
The second paper we cite is [23]. Z. Zhang and X. Yang [23] deal with one component of the gradient of one component of the velocity field. More precisely, regularity of a weak solution
∂3u3(t)∈L∞(0,T;L2(R3)). | (4) |
Theorem 1.2 below establishes an extension of criterion (4) from the Navier-Stokes equations to the magneto-micropolar system (1).
Further regularity results for weak solutions of the Navier-Stokes equations are established in [1,4,5,6,7,10,25,26].
The main results of the current paper are:
Theorem 1.1. Let
(u,w,b)∈C([0,T);H1(R3))∩C((0,T);H2(R3)) | (5) |
denote a weak solution of the magneto-micropolar equations (1) in
∇u3,∇hw,∇hb∈L327(0,T;L2(R3)), | (6) |
then
Theorem 1.2. Let
(u,w,b)∈C([0,T);H1(R3))∩C((0,T);H2(R3)) | (7) |
denote a weak solution of the magneto-micropolar equations (1) in
∂3u3,∂3w,∂3b∈L∞(0,T;L2(R3)), | (8) |
then
An outline of the paper follows: There are two sections after the Introduction. In Section 2, we list definitions and notations used throughout the paper and recall results that play an important role in our proofs of the main results. Section 3 presents the proofs of Theorems
We introduce notations and definitions used in the paper.
● Boldface letters denote vector fields; for example,
a=a(x,t)=(a1(x,t),a2(x,t),a3(x,t)),x∈R3,t≥0. |
● The Euclidean norm of any vector
● The notation
‖a‖α:=(∫R3|a(x)|αdx)1α,1≤α<∞, |
and
‖a‖∞:=ess supx∈R3{|a(x)|}, |
where
(a,b)2:=∫R3a(x)⋅b(x)dx, |
where
● Let
● The horizontal gradient is denoted by
● Here
●
● Denote
●
● The horizontal Laplacian is denoted by
● Let (
● We define a weak solution of (1) as follows: Let
1.
2. the system (1) is satisfied in the sense of distributions;
3. the energy inequality holds, i.e.,
‖(u,w,b)(t)‖22+2(μ+χ)∫t0‖∇u(τ)‖22dτ+2γ∫t0‖∇w(τ)‖22dτ+2ν∫t0‖∇b(τ)‖22dτ+2κ∫t0‖∇⋅w(τ)‖22dτ+2χ∫t0‖w(τ)‖22dτ≤‖(u0,w0,b0)‖22, | (9) |
for all
● For brevity, dependencies on the variables
Now, we enunciate the lemmas that will be applied in the proofs of our main results. The first one is proved in [16].
Lemma 2.1 (see [16]). Let
f,g,∂ig,∂jg,h,∂jh,∂kh∈L2(R3). |
Then,
∫R3fghdx≤C‖f‖2‖g‖142‖∂ig‖122‖∂jg‖142‖h‖142‖∂kh‖122‖∂jh‖142. |
The second one was established in [23].
Lemma 2.2 (see [23]). Let
∫R3f2g2dx≤2√2‖f‖326‖∂3f‖122‖g‖2‖∇hg‖2. |
The third one was written in [2].
Lemma 2.3 (see [2]). Assume that
1≤θ,λ,ϑ<∞,1θ+2λ>1,1+3ϑ=1θ+2λ. |
Consider that
‖f‖ϑ≤C‖∂1f‖13λ‖∂2f‖13λ‖∂3f‖13θ. |
In particular, if
‖f‖3θ≤C‖∂1f‖132‖∂2f‖132‖∂3f‖13θ. |
In this section we prove Theorems 1.1 and 1.2. In both results, it is necessary to consider
First, notice that by applying the product
12ddt‖∇hu‖22+(μ+χ)‖∇∇hu‖22=(u⋅∇u,Δhu)2−(b⋅∇b,Δhu)2−χ(∇×w,Δhu)2. | (10) |
Similarly, from the second and third equations in
12ddt‖∇hw‖22+γ‖∇∇hw‖22+κ‖∇h(∇⋅w)‖22+2χ‖∇hw‖22=(u⋅∇w,Δhw)2−χ(∇×u,Δhw)2 | (11) |
and also
12ddt‖∇hb‖22+ν‖∇∇hb‖22=(u⋅∇b,Δhb)2−(b⋅∇u,Δhb)2. | (12) |
By adding the results
12ddt‖(∇hu,∇hw,∇hb)‖22+(μ+χ)‖∇∇hu‖22+γ‖∇∇hw‖22+ν‖∇∇hb‖22+κ‖∇h(∇⋅w)‖22+2χ‖∇hw‖22=(u⋅∇u,Δhu)2−(b⋅∇b,Δhu)2−χ(∇×w,Δhu)2+(u⋅∇w,Δhw)2−χ(∇×u,Δhw)2+(u⋅∇b,Δhb)2−(b⋅∇u,Δhb)2. | (13) |
Let us examine the terms on the right hand side of the above equality. We have
−(b⋅∇b,Δhu)2=−3∑i,j=12∑k=1∫R3bi∂ibj∂2kujdx=3∑i,j=12∑k=1∫R3∂kbi∂ibj∂kujdx+3∑i,j=12∑k=1∫R3bi∂k∂ibj∂kujdx. |
Similarly, we get
−(b⋅∇u,Δhb)2=−3∑i,j=12∑k=1∫R3bi∂iuj∂2kbjdx=3∑i,j=12∑k=1∫R3∂kbi∂iuj∂kbjdx−3∑i,j=12∑k=1∫R3bi∂k∂ibj∂kujdx, |
where we have used that
−(b⋅∇b,Δhu)2−(b⋅∇u,Δhb)2=3∑i,j=12∑k=1∫R3∂kbi∂ibj∂kujdx+3∑i,j=12∑k=1∫R3∂kbi∂iuj∂kbjdx≤C(∫R3|∇hb||∇b||∇hu|dx+∫R3|∇hb||∇u||∇hb|dx). |
Furthermore,
(u⋅∇w,Δhw)2=3∑i,j=12∑k=1∫R3ui∂iwj∂2kwjdx=−3∑i,j=12∑k=1∫R3∂kui∂iwj∂kwjdx−3∑i,j=12∑k=1∫R3ui∂k∂iwj∂kwjdx. |
On the other hand, by analysing the last term above it is easy to prove that it is actually null. In fact, since
−3∑i,j=12∑k=1∫R3ui∂k∂iwj∂kwjdx=3∑i,j=12∑k=1∫R3ui∂kwj∂i∂kwjdx. |
Therefore,
(u⋅∇w,Δhw)2≤C∫R3|∇hw||∇w||∇hu|dx. |
Similarly, we obtain
(u⋅∇b,Δhb)2≤C∫R3|∇hb||∇b||∇hu|dx. |
Also notice that, by applying Cauchy-Schwarz's inequality, one has
−χ(∇×u,Δhw)2−χ(∇×w,Δhu)2≤χ‖∇∇hu‖22+χ‖∇hw‖22. | (14) |
By [22], the following estimate holds:
(u⋅∇u,Δhu)2≤C∫R3|∇u3||∇u||∇hu|dx. |
Consequently, from
12ddt‖(∇hu,∇hw,∇hb)‖22+μ‖∇∇hu‖22+γ‖∇∇hw‖22+ν‖∇∇hb‖22+κ‖∇h(∇⋅w)‖22+χ‖∇hw‖22≤C∫R3|(∇u3,∇hw,∇hb)||(∇u,∇w,∇b)||(∇hu,∇hw,∇hb)|dx. |
By applying Lemma 2.1, one obtains
12ddt‖(∇hu,∇hw,∇hb)‖22+μ‖∇∇hu‖22+γ‖∇∇hw‖22+ν‖∇∇hb‖22+κ‖∇h(∇⋅w)‖22+χ‖∇hw‖22≤≤C‖(∇u3,∇hw,∇hb)‖2‖(∇hu,∇hw,∇hb)‖142‖(∇u,∇w,∇b)‖142×‖(∇∇hu,∇∇hw,∇∇hb)‖322. |
By using Young's inequality, it follows that
ddt‖(∇hu,∇hw,∇hb)‖22+α‖(∇∇hu,∇∇hw,∇∇hb)‖22+2κ‖∇h(∇⋅w)‖22+2χ‖∇hw‖22≤C‖(∇u3,∇hw,∇hb)‖42‖(∇hu,∇hw,∇hb)‖2×‖(∇u,∇w,∇b)‖2, |
where
‖(∇hu,∇hw,∇hb)(t)‖22+α∫tT∗−τ‖(∇∇hu,∇∇hw,∇∇hb)(s)‖22ds≤C+C∫tT∗−τ‖(∇u3,∇hw,∇hb)(s)‖42‖(∇hu,∇hw,∇hb)(s)‖2×‖(∇u,∇w,∇b)(s)‖2ds. | (15) |
In order to estimate the term
I(t):=sups∈[T∗−τ,t]{‖(∇hu,∇hw,∇hb)(s)‖2}+(∫tT∗−τ‖(∇∇hu,∇∇hw,∇∇hb)(s)‖22ds)12 | (16) |
and
J(t):=sups∈[T∗−τ,t]{‖(∇u,∇w,∇b)(s)‖2}+(∫tT∗−τ‖(Δu,Δw,Δb)(s)‖22ds)12, | (17) |
where
I2(t)≤2sups∈[T∗−τ,t]{‖(∇hu,∇hw,∇hb)(s)‖22} |
+2∫tT∗−τ‖(∇∇hu,∇∇hw,∇∇hb)(s)‖22ds≤C+CI(t)J(t)34∫tT∗−τ‖(∇u3,∇hw,∇hb)(s)‖42‖(∇u,∇w,∇b)(s)‖142ds≤C+CI(t)J(t)34∫T0‖(∇u3,∇hw,∇hb)(s)‖3272ds+CI(t)J(t)34∫T0‖(∇u,∇w,∇b)(s)‖22ds≤C+CI(t)J(t)34, |
where we have applied Young's inequality, (6) and (9). By using Young's inequality again, we get
I2(t)≤C+CJ32(t)+12I2(t), |
or equivalently,
I(t)≤C+CJ34(t),∀t∈(T∗−τ,T∗). | (18) |
The inequality (18) is useful to prove that
12ddt‖∇u‖22+(μ+χ)‖Δu‖22=(u⋅∇u,Δu)2−(b⋅∇b,Δu)2−χ(∇×w,Δu)2, |
12ddt‖∇w‖22+γ‖Δw‖22+κ‖∇(∇⋅w)‖22+2χ‖∇w‖22=(u⋅∇w,Δw)2−χ(∇×u,Δw)2 |
and also
12ddt‖∇b‖22+ν‖Δb‖22=(u⋅∇b,Δb)2−(b⋅∇u,Δb)2, |
where we used the fact that
12ddt‖(∇u,∇w,∇b)‖22+(μ+χ)‖Δu‖22+γ‖Δw‖22+ν‖Δb‖22+κ‖∇(∇⋅w)‖22+2χ‖∇w‖22=(u⋅∇u,Δu)2−(b⋅∇b,Δu)2−χ(∇×w,Δu)2+(u⋅∇w,Δw)2−χ(∇×u,Δw)2+(u⋅∇b,Δb)2−(b⋅∇u,Δb)2. | (19) |
Let us examine all the terms on the right hand side of the equality above. We have
(u⋅∇w,Δw)2=3∑i,j,k=1∫R3ui∂iwj∂2kwjdx=3∑j=12∑k=1∫R3u3∂3wj∂2kwjdx+3∑j,k=12∑i=1∫R3ui∂iwj∂2kwjdx+3∑j=1∫R3u3∂3wj∂23wjdx=:I1(t)+I2(t)+I3(t). | (20) |
Here
I1(t)=3∑j=12∑k=1∫R3u3∂3wj∂2kwjdx=−3∑j=12∑k=1∫R3∂ku3∂3wj∂kwjdx−3∑j=12∑k=1∫R3u3∂k∂3wj∂kwjdx=−3∑j=12∑k=1∫R3∂ku3∂3wj∂kwjdx+123∑j=12∑k=1∫R3∂3u3(∂kwj)2dx≤C∫R3|∇u||∇w||∇hw|dx+C∫R3|∇u||∇hw|2dx. |
Similarly,
I2(t)=3∑j,k=12∑i=1∫R3ui∂iwj∂2kwjdx=−3∑j,k=12∑i=1∫R3∂kui∂iwj∂kwjdx−3∑j,k=12∑i=1∫R3ui∂k∂iwj∂kwjdx=−3∑j,k=12∑i=1∫R3∂kui∂iwj∂kwjdx+123∑j,k=12∑i=1∫R3∂iui(∂kwj)2dx≤C∫R3|∇u||∇hw||∇w|dx+C∫R3|∇hu||∇w|2dx. |
By using that
I3(t)=3∑j=1∫R3u3∂3wj∂23wjdx=−123∑j=1∫R3∂3u3(∂3wj)2dx=123∑j=12∑k=1∫R3∂kuk(∂3wj)2dx≤C∫R3|∇hu||∇w|2dx. |
Therefore, using the above estimates, the equality
(u⋅∇w,Δw)2≤C∫R3|∇u||∇hw|2dx+C∫R3|∇u||∇hw||∇w|dx+C∫R3|∇hu||∇w|2dx. |
Following the same process, we conclude that
(u⋅∇b,Δb)2≤C∫R3|∇u||∇hb|2dx+C∫R3|∇u||∇hb||∇b|dx+C∫R3|∇hu||∇b|2dx. |
It is important to point out that the technique applied to
−(b⋅∇b,Δu)2−(b⋅∇u,Δb)2=−3∑i,j,k=1∫R3bi∂ibj∂2kujdx−3∑i,j,k=1∫R3bi∂iuj∂2kbjdx=3∑i,j,k=1∫R3∂kbi∂ibj∂kujdx+3∑i,j,k=1∫R3bi∂k∂ibj∂kujdx+3∑i,j,k=1∫R3∂kbi∂iuj∂kbjdx+3∑i,j,k=1∫R3bi∂k∂iuj∂kbjdx. |
Consequently,
−(b⋅∇b,Δu)2−(b⋅∇u,Δb)2=3∑i,j,k=1∫R3∂kbi∂ibj∂kujdx+3∑i,j,k=1∫R3bi∂k∂ibj∂kujdx+3∑i,j,k=1∫R3∂kbi∂iuj∂kbjdx−3∑i,j,k=1∫R3bi∂k∂ibj∂kujdx. |
By using
−(b⋅∇b,Δu)2−(b⋅∇u,Δb)2=3∑i,j,k=1[∫R3∂kbi∂ibj∂kujdx+∫R3∂kbi∂iuj∂kbjdx] | (21) |
=3∑j=12∑k=1[∫R3∂kb3∂3bj∂kujdx+∫R3∂kb3∂3uj∂kbjdx]+3∑j,k=12∑i=1[∫R3∂kbi∂ibj∂kujdx+∫R3∂kbi∂iuj∂kbjdx]+3∑j=1[∫R3∂3b3∂3bj∂3ujdx+∫R3∂3b3∂3uj∂3bjdx]=:J1(t)+J2(t)+J3(t). | (22) |
Let us estimate each term
J1(t)=3∑j=12∑k=1[∫R3∂kb3∂3bj∂kujdx+∫R3∂kb3∂3uj∂kbjdx]≤C∫R3|∇hb||∇b||∇u|dx. |
Similarly, one obtains
J2(t)=3∑j,k=12∑i=1[∫R3∂kbi∂ibj∂kujdx+∫R3∂kbi∂iuj∂kbjdx]≤C∫R3|∇b||∇hb||∇u|dx+C∫R3|∇hu||∇b|2dx |
and, by applying
J3(t)=3∑j=1[∫R3∂3b3∂3bj∂3ujdx+∫R3∂3b3∂3uj∂3bjdx]=−3∑j=12∑k=1[∫R3∂kbk∂3bj∂3ujdx+∫R3∂kbk∂3uj∂3bjdx]≤C∫R3|∇hb||∇b||∇u|dx. |
Replacing, in
−(b⋅∇b,Δu)2−(b⋅∇u,Δb)2≤C∫R3|∇hu||∇b|2dx+C∫R3|∇hb||∇b||∇u|dx. |
Furthermore, notice that
−χ(∇×w,Δu)2−χ(∇×u,Δw)2≤χ‖∇w‖22+χ‖Δu‖22, |
where we have applied Cauchy-Schwarz's inequality. At last, Y. Zhou and M. Pokorný [29] proved that
(u⋅∇u,Δu)2≤C∫R3|∇hu||∇u|2dx. |
Therefore,
12ddt‖(∇u,∇w,∇b)‖22+μ‖Δu‖22+γ‖Δw‖22+ν‖Δb‖22+κ‖∇(∇⋅w)‖22+χ‖∇w‖22≤C∫R3|(∇hu,∇hw,∇hb)||(∇u,∇w,∇b)|2dx. | (23) |
By using Lemma 2.1, one gets
ddt‖(∇u,∇w,∇b)‖22+2α‖(Δu,Δw,Δb)‖22+2κ‖∇(∇⋅w)‖22+2χ‖∇w‖22≤C‖(∇hu,∇hw,∇hb)‖2‖(∇u,∇w,∇b)‖122‖(∇∇hu,∇∇hw,∇∇hb)‖2×‖(Δu,Δw,Δb)‖122, |
where
‖(∇u,∇w,∇b)(s)‖22+2α∫sT∗−τ‖(Δu,Δw,Δb)(τ)‖22dτ≤C+CI(t)∫sT∗−τ‖(∇u,∇w,∇b)(τ)‖122‖(∇∇hu,∇∇hw,∇∇hb)(τ)‖2×‖(Δu,Δw,Δb)(τ)‖122dτ, |
where we applied the definition of
‖(∇u,∇w,∇b)(s)‖22+2α∫sT∗−τ‖(Δu,Δw,Δb)(τ)‖22dτ≤C+CI2(t)J12(t)(∫sT∗−τ‖(∇u,∇w,∇b)(τ)‖22dτ)14, |
for all
J2(t)≤C+CI2(t)J12(t)(∫tT∗−τ‖(∇u,∇w,∇b)(τ)‖22dτ)14. |
By using Young's inequality, we infer
J2(t)≤C+CI83(t)(∫tT∗−τ‖(∇u,∇w,∇b)(τ)‖22dτ)13+12J2(t). |
Consequently, by applying (18), we obtain
J(t)≤C+[C+CJ(t)](∫tT∗−τ‖(∇u,∇w,∇b)(τ)‖22dτ)16. | (24) |
From the energy inequality (9), one concludes that there exists
∫TT∗−τ‖(∇u,∇w,∇b)(τ)‖22dτ≤1(2C)6. |
Now, we can obtain the desired estimate for
J(t)≤C,∀ t∈[T∗−τ,T∗). |
The definition (17) establishes the proof of Theorem 1.1.
In order to prove Theorem 1.2 let us examine all the terms on the right hand side of
(u⋅∇w,Δhw)2=3∑i,j=12∑k=1∫R3ui∂iwj∂2kwjdx=−3∑i,j=12∑k=1∫R3∂kui∂iwj∂kwjdx=3∑i,j=12∑k=1∫R3wj∂kui∂k∂iwjdx≤C∫R3|w||∇u||∇∇hw|dx, |
since
(u⋅∇b,Δhb)2≤C∫R3|b||∇u||∇∇hb|dx. |
Notice that
−(b⋅∇b,Δhu)2=−3∑i,j=12∑k=1∫R3bi∂ibj∂2kujdx≤C∫R3|b||∇b||∇∇hu|dx |
and also
−(b⋅∇u,Δhb)2=−3∑i,j=12∑k=1∫R3bi∂iuj∂2kbjdx≤C∫R3|b||∇u||∇∇hb|dx. |
The reader might check that (14) assures the following estimate:
−χ(∇×u,Δhw)2−χ(∇×w,Δhu)2≤χ‖∇∇hu‖22+χ‖∇hw‖22. |
At last, Y. Zhou and M. Pokorný [29] proved that
(u⋅∇u,Δhu)2≤C∫R3|u3||∇u||∇∇hu|dx. |
By replacing all these last results obtained above in (13) and by using Young's inequality, one has
12ddt‖(∇hu,∇hw,∇hb)‖22+α‖(∇∇hu,∇∇hw,∇∇hb)‖22+κ‖∇h(∇⋅w)‖22+χ‖∇hw‖22≤C∫R3|(u3,w,b)|2|(∇u,∇w,∇b)|2dx+α2∫R3|(∇∇hu,∇∇hw,∇∇hb)|2dx, |
where
ddt‖(∇hu,∇hw,∇hb)‖22+α‖(∇∇hu,∇∇hw,∇∇hb)‖22+2κ‖∇h(∇⋅w)‖22+2χ‖∇hw‖22≤C∫R3|(u3,w,b)|2|(∇u,∇w,∇b)|2dx. |
By Lemmas 2.2 and 2.3, and also by (8), we obtain
ddt‖(∇hu,∇hw,∇hb)‖22+α‖(∇∇hu,∇∇hw,∇∇hb)‖22+2κ‖∇h(∇⋅w)‖22+2χ‖∇hw‖22≤C‖(∇hu,∇hw,∇hb)‖2‖(∇u,∇w,∇b)‖2×‖(∇∇hu,∇∇hw,∇∇hb)‖2. |
By Young's inequality, one concludes
ddt‖(∇hu,∇hw,∇hb)‖22+α2‖(∇∇hu,∇∇hw,∇∇hb)‖22+2κ‖∇h(∇⋅w)‖22+2χ‖∇hw‖22≤C‖(∇hu,∇hw,∇hb)‖22‖(∇u,∇w,∇b)‖22. |
By applying Gronwall's inequality, we get
‖(∇hu,∇hw,∇hb)(t)‖2≤‖(∇hu,∇hw,∇hb)(δ)‖2×exp{C∫Tδ‖(∇u,∇w,∇b)(s)‖22ds}, |
for all
‖(∇hu,∇hw,∇hb)(t)‖2≤C,∀ t∈[δ,T∗). | (25) |
In order to prove that the term
ddt‖(∇u,∇w,∇b)‖22+2α‖(Δu,Δw,Δb)‖22+2κ‖∇(∇⋅w)‖22+2χ‖∇w‖22≤C‖(∇hu,∇hw,∇hb)‖2‖(∇u,∇w,∇b)‖24, |
where
ddt‖(∇u,∇w,∇b)‖22+2α‖(Δu,Δw,Δb)‖22+2κ‖∇(∇⋅w)‖22+2χ‖∇w‖22≤C‖(∇u,∇w,∇b)‖122‖(Δu,Δw,Δb)‖322, |
for all
ddt‖(∇u,∇w,∇b)‖22+α‖(Δu,Δw,Δb)‖22+2κ‖∇(∇⋅w)‖22+2χ‖∇w‖22≤C‖(∇u,∇w,∇b)‖22. |
By Gronwall's inequality,
‖(∇u,∇w,∇b)(t)‖2≤C‖(∇u,∇w,∇b)(δ)‖2,∀ t∈[δ,T∗). |
This completes the proof of Theorem 1.2.
The authors would like to thank reviewers for their precious suggestions.
[1] |
Global regularity criterion for the 3D Navier-Stokes equations involving one entry of the velocity gradient tensor. Arch. Ration. Mech. Anal. (2011) 202: 919-932. ![]() |
[2] |
Two regularity criteria for the 3D MHD equations. J. Differ. Equ. (2010) 248: 2263-2274. ![]() |
[3] | C. He, Regularity for solutions to the Navier-Stokes equations with one velocity component regular, Electron. J. Differencial Equations, 29 (2002), 13pp. |
[4] |
Remarks on regularity criteria for the Navier-Stokes equations via one velocity component. Nonlinear Anal. Real World Appl. (2014) 15: 239-245. ![]() |
[5] |
One component regularity for the Navier-Stokes equations. Nonlinearity (2006) 19: 453-469. ![]() |
[6] |
I. Kukavica and M. Ziane, Navier-Stokes equations with regularity in one direction, J. Math. Phys., 48 (2007), 065203, 10pp. doi: 10.1063/1.2395919
![]() |
[7] | An interior regularity of a weak solution to the Navier-Stokes equations in dependence on one component of velocity, topics in mathematical fluid mechanics. Quad. Mat. (2002) 10: 163-183. |
[8] | J. Neustupa and P. Penel, Regularity of a suitable weak solution to the Navier-Stokes equations as a consequence of regularity of one velocity component, Applied Nonlinear Analysis., Kluwer/Plenum, New York, (1999), 391–402. |
[9] |
Magneto-micropolar fluid motion: Global existence of strong solutions. Abstr. Appl. Anal. (1999) 4: 109-125. ![]() |
[10] |
Some new regularity criteria for the Navier-Stokes equations containing gradient of the velocity. Appl. Math. (2004) 49: 483-493. ![]() |
[11] |
Magneto-micropolar fluid motion: Existence and uniqueness of strong solutions. Math. Nachr. (1997) 188: 301-319. ![]() |
[12] |
Z. Skalák, A note on the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component, J. Math. Phys., 55 (2014), 121506, 6pp. doi: 10.1063/1.4904836
![]() |
[13] |
On the regularity of the solutions to the Navier-Stokes equations via the gradient of one velocity component. Nonlinear Anal. (2014) 104: 84-89. ![]() |
[14] |
Y. Wang, Regularity criterion for a weak solution to the three-dimensional magneto-micropolar fluid equations, Bound. Value Probl., 2013 (2013), 12pp. doi: 10.1186/1687-2770-2013-58
![]() |
[15] |
On global regularity of incompressile MHD equations in R3. J. Math. Anal. Appl. (2017) 454: 936-941. ![]() |
[16] |
Global existence of 3D MHD equations with mixed partial dissipation and magnetic diffusion. Nonlinear Anal. Real World Appl. (2013) 14: 526-535. ![]() |
[17] |
Y. Wang and L. Gu, Global regularity of 3D magneto-micropolar fluid equations,, Appl. Math. Lett., 99 (2020), 105980, 9 pp. doi: 10.1016/j.aml.2019.07.011
![]() |
[18] |
Regularity of weak solutions to magneto-micropolar fluid equations. Acta Math. Sci. Ser. B (2010) 30: 1469-1480. ![]() |
[19] |
A Serrin-type regularity criterion for the Navier-Stokes equations via one velocity component. Commun. Pure Appl. Anal. (2013) 12: 117-124. ![]() |
[20] |
An almost Serrin-type regularity criterion for the Navier-Stokes equations involving the gradient of one velocity component. Z. Angew. Math. Phys. (2015) 66: 1707-1715. ![]() |
[21] |
Regularity criteria for the 3D MHD equations involving one current density and the gradient of one velocity component. Nonlinear Anal. (2015) 115: 41-49. ![]() |
[22] |
A note on the regularity criterion for the 3D Navier-Stokes equations via the gradient of one velocity component. J. Math. Anal. Appl. (2015) 432: 603-611. ![]() |
[23] |
On the regularity criterion for the Navier-Stokes equations involving the diagonal entry of the velocity gradient. Nonlinear Anal. (2015) 122: 169-175. ![]() |
[24] |
Two new regularity criteria for the 3D Navier-Stokes equations via two entries of the velocity gradient tensor. Acta Appl. Math. (2013) 123: 43-52. ![]() |
[25] |
A new regularity criterion for the 3D Navier-Stokes equations via two entries of the velocity gradient tensor. Acta Appl. Math. (2014) 129: 175-181. ![]() |
[26] |
A regularity criterion for the tridimensional Navier-Stokes equations in term of one velocity component. J. Differential Equations (2014) 256: 283-309. ![]() |
[27] |
A new regularity criterion for the Navier-Stokes equations in terms of the gradient of one velocity component. Methods Appl. Anal. (2002) 9: 563-578. ![]() |
[28] |
Y. Zhou and M. Pokorný, On a regularity criterion for the Navier-Stokes equations involving gradient of one velocity component, J. Math. Phys., 50 (2009), 123514, 11pp. doi: 10.1063/1.3268589
![]() |
[29] |
On the regularity of the solutions of the Navier-Stokes equations via one velocity component. Nonlinearity (2010) 23: 1097-1107. ![]() |
1. | Diego Chamorro, David Llerena, Interior $$\epsilon$$-regularity theory for the solutions of the magneto-micropolar equations with a perturbation term, 2022, 8, 2296-9020, 555, 10.1007/s41808-022-00163-y | |
2. | Muhammad Naqeeb, Amjad Hussain, Ahmad Mohammed Alghamdi, Blow-up criteria for different fluid models in anisotropic Lorentz spaces, 2023, 8, 2473-6988, 4700, 10.3934/math.2023232 | |
3. | Diego Chamorro, David Llerena, A crypto-regularity result for the micropolar fluids equations, 2023, 520, 0022247X, 126922, 10.1016/j.jmaa.2022.126922 | |
4. | Xinliang Li, Dandan Ding, Global well-posedness and large-time behavior of solutions to the 3D inviscid magneto-micropolar equations with damping, 2024, 103, 0003-6811, 1963, 10.1080/00036811.2023.2271946 | |
5. | Diego Chamorro, David Llerena, Gastón Vergara-Hermosilla, Some remarks about the stationary micropolar fluid equations: Existence, regularity and uniqueness, 2024, 536, 0022247X, 128201, 10.1016/j.jmaa.2024.128201 | |
6. | Takashi Kurihara, Possible involvement of FFAR1 signaling in mouse emotional behaviors through the regulation of brain monoamine releases, 2023, 158, 0015-5691, 454, 10.1254/fpj.23054 | |
7. | Diego Chamorro, David Llerena, Partial suitable solutions for the micropolar equations and regularity properties, 2025, 31, 2118-7436, 137, 10.5802/ambp.428 | |
8. | Diego Chamorro, David Llerena, Partial regularity and $$L^3$$-norm concentration effects around possible blow-up points for the micropolar fluid equations, 2025, 32, 1021-9722, 10.1007/s00030-025-01059-1 |