Citation: Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean. Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers[J]. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709
[1] | Junlong Chen, Yanbin Tang . Homogenization of nonlinear nonlocal diffusion equation with periodic and stationary structure. Networks and Heterogeneous Media, 2023, 18(3): 1118-1177. doi: 10.3934/nhm.2023049 |
[2] | Iryna Pankratova, Andrey Piatnitski . Homogenization of convection-diffusion equation in infinite cylinder. Networks and Heterogeneous Media, 2011, 6(1): 111-126. doi: 10.3934/nhm.2011.6.111 |
[3] | L.L. Sun, M.L. Chang . Galerkin spectral method for a multi-term time-fractional diffusion equation and an application to inverse source problem. Networks and Heterogeneous Media, 2023, 18(1): 212-243. doi: 10.3934/nhm.2023008 |
[4] | Markus Gahn, Maria Neuss-Radu, Peter Knabner . Effective interface conditions for processes through thin heterogeneous layers with nonlinear transmission at the microscopic bulk-layer interface. Networks and Heterogeneous Media, 2018, 13(4): 609-640. doi: 10.3934/nhm.2018028 |
[5] | Yinlin Ye, Hongtao Fan, Yajing Li, Ao Huang, Weiheng He . An artificial neural network approach for a class of time-fractional diffusion and diffusion-wave equations. Networks and Heterogeneous Media, 2023, 18(3): 1083-1104. doi: 10.3934/nhm.2023047 |
[6] | Tom Freudenberg, Michael Eden . Homogenization and simulation of heat transfer through a thin grain layer. Networks and Heterogeneous Media, 2024, 19(2): 569-596. doi: 10.3934/nhm.2024025 |
[7] | Kexin Li, Hu Chen, Shusen Xie . Error estimate of L1-ADI scheme for two-dimensional multi-term time fractional diffusion equation. Networks and Heterogeneous Media, 2023, 18(4): 1454-1470. doi: 10.3934/nhm.2023064 |
[8] | Farman Ali Shah, Kamran, Dania Santina, Nabil Mlaiki, Salma Aljawi . Application of a hybrid pseudospectral method to a new two-dimensional multi-term mixed sub-diffusion and wave-diffusion equation of fractional order. Networks and Heterogeneous Media, 2024, 19(1): 44-85. doi: 10.3934/nhm.2024003 |
[9] | Tasnim Fatima, Ekeoma Ijioma, Toshiyuki Ogawa, Adrian Muntean . Homogenization and dimension reduction of filtration combustion in heterogeneous thin layers. Networks and Heterogeneous Media, 2014, 9(4): 709-737. doi: 10.3934/nhm.2014.9.709 |
[10] | Thomas Geert de Jong, Georg Prokert, Alef Edou Sterk . Reaction–diffusion transport into core-shell geometry: Well-posedness and stability of stationary solutions. Networks and Heterogeneous Media, 2025, 20(1): 1-14. doi: 10.3934/nhm.2025001 |
Fractional diffusion involves phenomena that have spatial and temporal correlations [1,2]. Anomalous diffusion through fractional equations is associated with super-statistics and can be linked to a generalized random walk [3]. The phenomenon of anomalous diffusion has received widespread attention in the fields of natural sciences, engineering, technology, and mathematics [4,5,6]. The fractional diffusion equations which serve as models for describing this phenomenon are of utmost importance [7,8,9,10,11]. Numerous publications have been dedicated to this field so far (e.g., Sakamoto and Yamamoto [12]). In contrast to classical parabolic equations, the time fractional diffusion equations replace the traditional local partial derivative $ \partial_{t} $ with the nonlocal fractional derivative $ \partial_{t}^{\alpha} $. The fractional equations are highly regarded in mathematical physics and present distinct properties that challenge conventional differential equations. Nevertheless, some properties, such as the maximum principle, remain valuable in our research. This paper plans to describe the behavior of time fractional diffusion equations.
In this paper we consider the following initial boundary value problem (IBVP) of a time fractional diffusion equation with a period structure
$ {∂αtuϵ(x,t)−div(Bε(x)∇uε(x,t))=fε(x,t),x∈Ω,t∈(0,T),uε(x,t)=0,x∈∂Ω,t∈(0,T),uε(x,0)=uε0(x),x∈Ω, $ | (1.1) |
where $ 0 < \alpha < 1 $, $ T > 0 $, $ \Omega\subset \mathbf{R}^{d} $ is bounded domain with $ C^{2}- $class boundary $ \partial\Omega $, $ \varepsilon > 0 $ is a scale parameter, $ B^{\varepsilon}(x) = B(\frac{x}{\varepsilon}) $ is a diffusion matrix which satisfies some appropriate conditions, $ B(y) $ is periodic, and $ f^{\varepsilon}(x, t) $ and $ u^{\varepsilon}_{0}(x) $ are the source function and the initial function, respectively.
The existence and uniqueness of solutions to the initial boundary value problem (1.1) have been investigated widely. Sakamoto and Yamamoto [12] derived a kind of solution in terms of the Fourier series; Kubicam, Ryszewska and Yamamoto [13] gave the variational formulation; Hu and Li [14] gave the formally homogenized equation by the multiple scale expansion as $ \varepsilon\rightarrow 0^{+} $ and Kawamoto, Machida and Yamamoto [15] gave the homogenized equation
$ {∂αtu0(x,t)−div(B0∇u0(x,t))=f0(x,t),x∈Ω,t∈(0,T),u0(x,t)=0,x∈∂Ω,t∈(0,T),u0(x,0)=u0(x),x∈Ω, $ | (1.2) |
where $ B^{0} $ is the homogenized coefficient matrix, and then proved the precise homogenization theorem; they also discussed the inverse problem between different structures in the one dimensional case and in the layered material case where $ B^{\varepsilon}(x) $ is a diagonal matrix with an unknown element when $ f = 0 $. The aim of this paper is to generalize this result from the case with only one unknown element to the case with multiple unknown elements.
The rest of this paper is organized as follows. In Section $ 2 $, we introduce some necessary tools, including the well-posedness and homogenization of fractional diffusion equations with oscillating diffusion matrix, the eigenvalue problem, and the Mittag-Leffler function. In Section 3 and Section 4 we state main results and prove them. In Section 5, we draw concluding remarks.
In this section, we state some basic tools to investigate the inverse problems of the initial boundary value problem (1.1) and its homogenized equation (1.2), including the well-posedness, homogenization theory, the eigenvalue problem of the corresponding elliptic operator, and the Mittag-Leffler function, see [13,16].
We recall the Riemann-Liouville fractional integral operator
$ (Jαu)(t)=1Γ(α)∫t0(t−τ)α−1u(τ)dτ,u∈L2(0,T),0<α<1, $ | (2.1) |
then the domain $ \mathcal{D}(J^{\alpha}) = L^{2}(0, T) $ and the range $ \mathcal{R}(J^{\alpha}) = H_{\alpha}(0, T) $ with
$ Hα(0,T):={Hα(0,T),0≤α<12,{u∈H12(0,T)|∫T0|u(t)|2tdt<∞},α=12,{u∈Hα(0,T)|u(0)=0},12<α≤1, $ | (2.2) |
where $ H^{\alpha}(0, T) $ is the Sobolev space. Moreover, $ J^{\alpha}: L^{2}(0, T)\rightarrow H_{\alpha}(0, T) $ is a homeomorphism with
$ ‖u‖Hα(0,T)={‖u‖Hα(0,T),0≤α≤1,α≠12,(‖u‖2H12(0,T)+∫T0|u(t)|2tdt)12,α=12. $ | (2.3) |
Therefore, the general fractional derivative of the Caputo type is defined by
$ ∂αt=(Jα)−1:Hα(0,T)→L2(0,T). $ | (2.4) |
Obviously, $ \partial^{\alpha}_{t} $ is also a homeomorphism.
We now consider the initial boundary value problem
$ {∂αtu(x,t)−div(B(x)∇u(x,t))=f(x,t),x∈Ω,t∈(0,T),u(x,t)=0,x∈∂Ω,t∈(0,T),u(x,0)=u0(x),x∈Ω, $ | (2.5) |
where $ u_{0}(x)\in L^{2}(\Omega) $, $ f(x, t)\in L^{2}(0, T; H^{-1}(\Omega)) $, and the matrix $ B(x) = (b_{ij}(x))_{d\times d} $ satisfies that
$ {(i)bij∈L∞(Ω),bij=bji,(ii)B(x)η⋅η≥ν|η|2,|B(x)η|≤μ|η|,x∈¯Ω,η∈Rd, $ | (2.6) |
for $ 0 < \nu < \mu $. From [13,15], we know that there exists a weak solution $ u\in L^{2}(0, T; H_{0}^{1}(\Omega)) $ satisfying $ u-u_{0}\in H_{\alpha}(0, T; H^{-1}(\Omega)) $, and
$ ⟨∂αt(u−u0),ϕ⟩H−1(Ω),H10(Ω)+(B∇u,∇ϕ)L2(Ω)=⟨f,ϕ⟩H−1(Ω),H10(Ω) $ | (2.7) |
for a.e. $ t\in(0, T) $ and $ \forall\phi\in H_{0}^{1}(\Omega). $
For $ Y = (0, l_{1})\times\dots\times(0, l_{d}) $, we say that a function $ f(x) $ is Y-periodic if
$ f(x)=f(x+kliei),a.e. x∈Rd,i=1,⋯,d,k∈Z. $ |
Theorem 2.1. [15] For $ B^{\varepsilon}(x) = B(\frac{x}{\varepsilon}) $, assume that $ B(y) = (b_{ij}(y))_{d\times d} $ is Y-periodic and satisfies Eq (2.6), $ u_{0}^{\varepsilon}\in L^{2}(\Omega) $, and $ f^{\varepsilon}\in L^{2}(0, T; H^{-1}(\Omega)) $. If
$ {uε0⇀u0weakly in L2(Ω),fε→f0in L2(0,T;H−1(Ω)), $ | (2.8) |
and $ u^{\varepsilon} $ is the weak solution of IBVP (1.1), then
$ {uε⇀u0weakly in L2(0,T;H10(Ω)),uε→u0in L2(0,T;L2(Ω)), $ | (2.9) |
where $ u^{0} $ is the weak solution of the homogenized problem (1.2), and $ B^{0} $ is the homogenized coefficient matrix. Furthermore, for the layered material, that is, $ B(y) $ is a diagonal matrix
$ B(y)=diag{b11(y1),⋯,bdd(y1)}, $ |
then
$ B0=diag{1M(0,l1)(1b11),M(0,l1)(b22),⋯,M(0,l1)(bdd)}, $ | (2.10) |
where $ \mathcal{M}_{\Omega}(b) = \frac{1}{|\Omega|}\int_{\Omega}b(x)dx. $
For the diagonal matrix $ B_{p} = $diag$ \{p_1, \cdots, p_d\} $, $ p_i $ are constants and $ \nu\le p_i \le \mu $, denote a vector $ p = (p_1, p_2, \cdots, p_d)\in \mathbb{R}^{d} $ and an operator $ \mathcal{B}_{p}(\cdot) = - $div$ (B_p\nabla\cdot) $, we consider an eigenvalue problem of the operator $ \mathcal{B}_{p} $ on $ \Omega = \prod_{i = 1}^{d}(0, \delta_i) $.
$ Bpφ=λφ,φ∈H2(Ω)∩H10(Ω). $ | (2.11) |
According to the domain $ \Omega $, we consider the sub-eigenvalue problems
$ −φ″i(xi)=σiφi(xi),φi∈H2(0,δi)∩H10(0,δi),i=1,⋯,d. $ | (2.12) |
Then, we can verify that $ \varphi(x) = \prod_{i = 1}^d\varphi_i(x_i) $ is a solution of eigenvalue problem (2.11) with $ \lambda = \sum_{i = 1}^d p_i\sigma_i $, i.e., $ \mathcal{B}_{p}\varphi = (\sum_{i = 1}^d p_i\sigma_i)\varphi. $ Denote by $ \varphi_i^{k_i} $ the $ k_i- $th simple eigenvalue of the $ i- $th sub-eigenvalue problem, that is, $ -\frac{d^{2}}{dx^{2}_{i}}\varphi_i^{k_i}(x_i) = \sigma_i^{k_i}\varphi_i^{k_i}(x_i). $ It is known that $ \varphi_i(x_i) $ are the sine functions. Since the eigenfunctions $ \{\varphi_i^k\}_{k = 1}^{\infty} $ are an orthonormal basis of $ L^2(0, \delta_i) $, so $ \{\prod_{i = 1}^d\varphi_i^{k_i}(x_i)\}_{k_1, \dots, k_d \in \mathbb{N}} $ is an orthonormal basis of $ L^2(\Omega) $. Then, we can prove that the all eigenvalues $ \lambda $ of $ \mathcal{B}_{p} $ have following form:
$ λ=d∑i=1piσkii,k1,…,kd∈N. $ |
In fact, for $ \mathcal{B}_{p}\varphi = \lambda\varphi $, $ \varphi \neq 0 $, there exists $ \prod_{i = 1}^d\varphi_i^{k_i} $ such that $ (\varphi, \prod_{i = 1}^d\varphi_i^{k_i})_{L^2(\Omega)}\neq 0. $ Taking inner product of $ L^2(\Omega) $ with respect to $ \prod_{i = 1}^d\varphi_i^{k_i} $ on both sides of equation (2.11) and integration by parts, we can complete the proof.
For example, for $ d = 3, p_i = 1, i = 1, \cdots, d $, we have $ \mathcal{B}_{p} = -\Delta $. Taking $ \delta_1 = \delta_2 = \delta_3, $ we have $ 0 < \sigma_i^1 < \sigma_i^2 < \cdots\to+\infty, $ $ i = 1, 2, 3, $ $ \sigma_1^k = \sigma_2^k = \sigma_3^k, $ and $ \varphi_1^k = \varphi_2^k = \varphi_3^k, $ $ k\in\mathbb{N} $. Then we can write the eigenvalue of Eq (2.11) as
$ λl=σn1+σm2+σk3,l=n+m+k−2,n,m,k∈N $ |
and the corresponding eigenfunctions are
$ φnmk=φn1(x1)φm2(x2)φk3(x3),φnkm=φn1(x1)φk2(x2)φm3(x3),φmnk=φm1(x1)φn2(x2)φk3(x3),φmkn=φm1(x1)φk2(x2)φn3(x3),φknm=φk1(x1)φn2(x2)φm3(x3),φkmn=φk1(x1)φm2(x2)φn3(x3). $ |
Thus, we know that some eigenvalues of problem (2.11) have more than one geometric multiplicity, which is different from the eigenvalues of problem (2.12) such that all eigenvalues are simple.
Returning to the general operator $ \mathcal{B}_{p} $ on a bounded domain $ \Omega\subset \mathbb{R}^{d} $, we rearrange the eigenvalues of $ \mathcal{B}_{p} $ without multiplicity, $ 0 < \lambda_1 < \lambda_2 < \cdots\to+\infty, $ and rearrange the eigenvalues $ \{\sigma_i^{k}\}_{k = 1}^{\infty}(i = 1, \cdots, d) $ such that
$ λjn=d∑i=1σnji,j=1,⋯,mn,n∈N, $ |
where $ m_n $ is the multiplicity of the eigenvalue $ \lambda_n = \lambda_n^{1} = \lambda_n^{2} = \cdots = \lambda_n^{m_n} $. Note that $ \lambda_1 $ is simple, i.e. $ m_1 = 1 $ and $ \sigma_i^{1_1} < \sigma_i^{n_j}, \; n > 1, \; j = 1, \cdots, m_n. $ Set
$ φnj(x)=d∏i=1φnji,j=1,⋯,mn,n∈N, $ |
where $ \varphi_i^{n_j}(x_{i}) $ is the eigenfunction corresponding to eigenvalue $ \sigma_i^{n_j} $, and $ \{\varphi^{n_j}\}_{j = 1}^{d_n} $ is the orthonormal basis of $ ker(\mathcal{B}_{p}-\lambda_n I) $.
We introduce a projection operator $ P_n: L^2(\Omega)\to ker(\mathcal{B}_{p}-\lambda_n I) $ such that
$ Pnv=mn∑j=1(v,φnj)φnj,v∈L2(Ω), $ |
is an eigenprojection. We note that the eigenfunctions of $ -\Delta $ and $ \mathcal{B}_p $ are identical indeed, but their eigenvalues are not identical.
From [17], the Mittag-Leffler function is defined by
$ Eα,β(z)=∞∑n=0znΓ(αn+β),α,β>0,z∈C, $ |
which is an entire function in the complex plane.
When $ \alpha = \beta = 1 $, $ E_{\alpha, \beta} $ is precisely an exponential function. What is more, we have the asymptotic expansion and estimate
$ Eα,1(z)=−K∑k=1z−kΓ(1−αk)+O(|z|−1−K),|z|→∞,θ≤|argz|≤π, $ | (2.13) |
$ Eα,1(z)≤C1+|z|,θ≤|argz|≤π, $ | (2.14) |
where $ K\in\mathbb{N} $, $ 0 < \alpha < 2 $, and $ \frac{\pi\alpha}{2} < \theta < $min$ \{\pi, \alpha\pi\} $.
We now consider problem (1.1) on the domain $ \Omega = \prod_{i = 1}^d(0, \delta_i), \; \delta_i > 0, d < 4 $. In order to state the main results, we first give a definition.
Definition 13.1. For the matrices $ A = (a_{ij})_{N\times M} $ and $ B = (b_{ij})_{N\times M} $, we say $ A\ge B $ if
$ aij≥bij,i=1,…,N,j=1,…,M. $ |
We say $ A > B $ if $ A\ge B $ and there exists an index $ i $ or $ j $ such that $ a_{ij} > b_{ij}. $
We consider the IBVP with a periodic structure
$ {∂αtuεp(x,t)−div(Bεp(x)∇uεp(x,t))=0,x∈Ω,t∈(0,T),uεp(x,t)=0,x∈∂Ω,t∈(0,T),uεp(x,0)=uε0,p(x),x∈Ω, $ | (3.1) |
with unknown initial function $ u^{\varepsilon}_{0, p} $ and unknown diffusion matrix $ B_p^{\varepsilon} $ with layer structure
$ Bεp(x)=Bp(xε)=diag{p1(x1ε),p2(x1ε),⋯,pd(x1ε)} $ | (3.2) |
satisfying
$ pi(y1) is l_1 -periodic, pi∈L∞(0,l1),ν≤pi(y1)≤μ,y1∈[0,l1],i=1,⋯,d. $ | (3.3) |
Due to Theorem 2.1, we get $ u_p^{\varepsilon}\rightarrow u^0_p $ in $ L^2(0, T; L^2(\Omega)) $, where $ u^0_p(x) $ is a weak solution of the homogenized equation
$ {∂αtu0p(x,t)−div(B0p∇u0p(x,t))=0,x∈Ω,t∈(0,T),u0p(x,t)=0,x∈∂Ω,t∈(0,T),u0p(x,0)=u0,p(x),x∈Ω, $ | (3.4) |
where $ u_{0, p}(x) $ is the $ L^2(\Omega) $ limit of $ u^{\varepsilon}_{0, p}(x) $, $ B^{0}_p = $diag$ \{p_1^0, p_2^0, \dots, p_d^0\} $ and
$ p01=1M(0,l1)(1p1(y1)),p02=M(0,l1)(p2(y1)),⋯,p0d=M(0,l1)(pd(y1)) $ | (3.5) |
satisfying $ \nu\le p_i^0\le\mu, \; i = 1, \dots, d. $ By Eq (3.5) and simple calculation, we have
$ |p0i−q0i|≤C‖pi−qi‖L1(0,l1),i=1,…,d, $ | (3.6) |
with $ C = C(\nu, \mu, l_1) > 0 $. Moreover, if
$ Bp(y)≥Bq(y)a.e.y∈Y, $ | (3.7) |
we have
$ C−1‖pi−qi‖L1(0,l1)≤p0i−q0i≤C‖pi−qi‖L1(0,l1),i=1,⋯,d, $ | (3.8) |
with $ C = C(\nu, \mu, l_1)\geq1 $. These can be seen in the proof of [15, Lemma 3.11].
For simplicity of notation, we set $ p = (p_1, \cdots, p_d)\in\mathbb{R}^d_+ $. We first consider several inverse problems of determining the diffusion matrix of the following IBVP:
$ {∂αtup(x,t)−div(Ap∇up(x,t))=0,x∈Ω,t∈(0,T),up(x,t)=0,x∈∂Ω,t∈(0,T),up(x,0)=u0,p(x),x∈Ω, $ | (3.9) |
where $ A_p = \text{diag}\{p_1, \cdots, p_d\} $ and $ \nu \le p_1, \cdots, p_d\le\mu $.
Inverse problem Ⅰ: Let $ x_0\in\Omega\text{, }t_0\in(0, T) $. We will determine the diffusion matrix $ A_p $ by the single data point $ u_p(x_0, t_0) $ of problem (3.9).
Theorem 3.1. Let $ u_{0, p} = u_{0, q} = u_0\in H^2(\Omega)\cap H^1_0(\Omega) $ and $ u_{p}(x, t) $ be a solution of problem (3.9). Assume $ p\ge q $ and
$ u0≢0,x∈Ω,∂21u0≥0,⋯,∂2du0≥0,a.e.x∈Ω. $ | (3.10) |
Then there exists a constant $ C(\nu, \mu) > 0 $ such that
$ N∑i=1|pi−qi|≤C|up(x0,t0)−uq(x0,t0)|. $ | (3.11) |
Inverse problem Ⅱ: Let $ \omega\subset\Omega\text{, }I\subset(0, T) $. We will determine the diffusion matrix $ A_p $ by the data $ \int_{I}\int_{\omega}u_p^{}(x, t)dxdt $ of problem (3.9). Note that the measurement data is an integral expression. Thus, it is more useful for applications.
Theorem 3.2. Let $ u_{0, p} = u_{0, q} = u_0\in H^2(\Omega)\cap H^1_0(\Omega) $ and $ u_{p}(x, t) $ be a solution of problem (3.9). Assume $ p\ge q $ and
$ u0≢0,x∈Ω,∂21u0≥0,⋯,∂2du0≥0,a.e.x∈Ω. $ | (3.12) |
Then there exists a constant $ C(\nu, \mu) > 0 $ such that
$ N∑i=1|pi−qi|≤C|∫I∫ωup(x,t)dxdt−∫I∫ωuq(x,t)dxdt|. $ | (3.13) |
Inverse problem Ⅲ: Let $ x_0\in\Omega\text{, }t_1\in(0, T) $. We determine the diffusion matrix $ A_p $ by the time trice data $ u_p(x_0, t), \; 0 < t < t_1 $ of problem (3.9). We can only get uniqueness here.
Theorem 3.3. Let $ u_{p}(x, t) $ be a solution of problem (3.9) and $ u_{0, p}, u_{0, q}\in H^2(\Omega)\cap H^1_0(\Omega) $ such that
$ P1u0,p(x0)≠0andP1u0,q(x0)≠0. $ | (3.14) |
If $ u_p(x_0, t) = u_q(x_0, t), \; 0 < t < t_1 $, then $ A_p = A_q. $
Remark 3.1. Let $ \Omega = (0, \pi)\times(0, \pi) $. The eigenfunction corresponding to $ \lambda_1 = 2 $ is $ \varphi_1 = \frac{2}{\pi}sinxsiny $ and the eigenfunction corresponding to $ \lambda_2 = 5 $ is $ \varphi_2 = \frac{2}{\pi}sin2xsiny $ and $ \varphi_3 = \frac{2}{\pi}sinxsin2y $. We take $ u_{0, p} = \varphi_1 $ and $ u_{0, q} = \varphi_2 $. We have
$ u_p = E_{\alpha, 1}(-(p_1+ p_2)t^{\alpha})\varphi_1, \;u_q = E_{\alpha, 1}(-(4q_1+ q_2)t^{\alpha})\varphi_2 $ |
and
$ P_1u_{0, p} = (u_{0, p}, \varphi_1)\varphi_1, \;P_1u_{0, q} = 0. $ |
If $ p = (4, 1), q = (1, 1) $, and $ (x_0, y_0) = (\frac{\pi}{3}, \frac{\pi}{2}) $, we have $ u_p(x_0, y_0, t) = u_q(x_0, y_0, t), \; t > 0 $, but $ A_p\neq A_q $. Thus, condition (3.14) is necessary.
We will present the proof of these theorems later in Section 4.
Following Theorems 3.1–3.3 and the estimates (3.8), we can immediately obtain the following corollaries of the inverse problem determining the diffusion matrix between different structures to problem (3.1) and problem (3.4). First, we present the inverse problem of determining the period coefficient matrix by the homogenized data.
Corollary 3.1. Let $ u_{p}^{0}(x, t) $ be a solution of problem (3.4) and $ u_{0, p} = u_{0, q} = u_0\in H^2(\Omega)\cap H^1_0(\Omega) $. Under the condition (3.7) and
$ u0≢0,x∈Ω,∂21u0≥0,⋯,∂2du0≥0,a.e.x∈Ω. $ |
Then there exists a constant $ C(\nu, \mu, l_1) > 0 $ such that
$ N∑i=1‖pi−qi‖L1(0,l1)≤C|u0p(x0,t0)−u0q(x0,t0)|. $ |
We see that the condition for $ u_0 $ is from Condition 3.10 and $ p(y), q(y) $ are vector-valued functions over $ (0, l_1) $ portraying the period structure. Further, we must guarantee $ u^{\epsilon}_{0, p} $ and $ u^{\epsilon}_{0, p} $ have the same limit $ u_0 $. Similarly, the following result also follows.
Corollary 3.2. Let $ u_{0, p} = u_{0, q} = u_0\in H^2(\Omega)\cap H^1_0(\Omega) $, $ u_{p}^{0}(x, t) $ be a solution of problem (3.4) and $ u_{p}(x, t) $ be a solution of problem (3.9). Under condition (3.7) and
$ u0≢0,x∈Ω,∂21u0≥0,⋯,∂2du0≥0,a.e.x∈Ω. $ |
Then there exists a constant $ C(\nu, \mu, l_1) > 0 $ such that
$ N∑i=1‖pi−qi‖L1(0,l1)≤C|∫I∫ωu0p(x,t)dxdt−∫I∫ωu0q(x,t)dxdt|. $ |
Corollary 3.3. Let $ u_{p}^{0}(x, t) $ be a solution of problem (3.4) and $ u_{0, p}, u_{0, q}\in H^2(\Omega)\cap H^1_0(\Omega) $ such that
$ P1u0,p(x0)≠0andP1u0,q(x0)≠0. $ |
Then if $ u^0_p(x_0, t) = u^0_q(x_0, t), \; 0 < t < t_1 $, we have $ B_p(y) = B_q(y)\; a.e.\; y\in Y. $
Limited by our approach, as in Theorem 3.3, we can only obtain the uniqueness of this inverse problem. We can also use the periodic structure data to determine the homogenized coefficient matrix as the following result of asymptotic stability.
Corollary 3.4. Let $ u_{0, p} = u_{0, q} = u_0\in H^2(\Omega)\cap H^1_0(\Omega) $, $ u_{p}^{\varepsilon}(x, t) $ be a solution of problem (3.1) and $ u_{p}^{0}(x, t) $ be a solution of problem (3.4). Under the condition (3.7) and
$ u0≢0,x∈Ω,∂21u0≥0,⋯,∂2du0≥0,a.e.x∈Ω. $ |
Then there exists a constant $ C(\nu, \mu, l_1) > 0 $ such that
$ N∑i=1|p0i−q0i|≤C|∫I∫ωuεp(x,t)dxdt−∫I∫ωuεq(x,t)dxdt|+θ(ε), $ |
where $ \theta(\varepsilon)\rightarrow 0 $ as $ \varepsilon\rightarrow 0 $.
In this section, we give the proof of Theorems 3.1–3.3.
Proof of Theorem 3.1. We split the proof into the following three steps, and prove separately for each step.
Step 1. We first prove that $ p\ge q $ implies that $ u_p(x, t)\ge u_q(x, t) $. Set $ y = u_p-u_q $, then
$ {∂αty(x,t)−div(Ap∇y(x,t))=d∑i=1(pi−qi)∂2iuq,x∈Ω,t∈(0,T),y(x,t)=0,x∈∂Ω,t∈(0,T),y(x,0)=0,x∈Ω. $ | (4.1) |
Denote $ v = \sum_{i = 1}^d(p_i-q_i)\partial_i^2u_q = $div$ (A_{p-q}\nabla u_q): = -\mathcal{A}_{p-q}u_q $. Since
$ uq=∞∑n=1mn∑j=1Eα,1(−(q1σnj1+⋯+qdσnjd)tα)(u0,φnj)φnj, $ |
we get
$ −Ap−quq=−∞∑n=1mn∑j=1Eα,1(−(q1σnj1+⋯+qdσnjd)tα)(u0,φnj)Ap−qφnj=∞∑n=1mn∑j=1Eα,1(−(q1σnj1+⋯+qdσnjd)tα)(−Ap−qu0,φnj)φnj. $ |
Thus, by [12, Theorem 2.1], we know that $ v $ is a weak solution of the following problem
$ {∂αtv(x,t)−div(Ap∇v(x,t))=0,x∈Ω,t∈(0,T),v(x,t)=0,x∈∂Ω,t∈(0,T),v(x,0)=−Ap−qu0,x∈Ω. $ | (4.2) |
By [18, Theorem 2.1] and $ \sum_{i = 1}^d(p_i-q_i)\partial_i^2u_0\ge 0 $, we have $ v\ge 0 $. Applying [18, Theorem 2.1] to Eq (4.1), we get $ y\ge 0 $, i.e., $ u_p\ge u_q $.
Step 2. For $ p = (p_1, \cdots, p_d) $, we prove the analyticity of $ u_p(x_0, t_0) $ with respect to every $ p_i > 0 $. Observe that
$ −Apup=∞∑n=1mn∑j=1(p1σnj1+⋯+pNσnjN)Eα,1(−(p1σnj1+⋯+pNσnjN)tα)(u0,φnj)φnj, $ |
hence
$ ‖Apup‖2L2(Ω)≤C∞∑n=1mn∑j=1(u0,φnj)2L2(Ω)((p1σnj1+⋯+pdσnjd)tα1+(p1σnj1+⋯+pdσnjd)tα)2t−2α≤C‖u0‖2L2(Ω)t−2α. $ |
By the Sobolev embedding $ H^2(\Omega)\hookrightarrow C(\overline{\Omega}) $, we have
$ |up(x,t)|≤Ct−α‖u0‖L2(Ω). $ |
Thus, we get the convergent series
$ up(x0,t0)=∞∑n=1mn∑j=1Eα,1(−(p1σnj1+⋯+pdσnjd)tα0)(u0,φnj)φnj(x0), $ | (4.3) |
and since $ E_{\alpha, 1}(z) $ is holomorphic in the complex plane, we see that $ h(p) = u_p(x_0, t_0) $ is analytic with respect to $ p_i, \; i = 1, \dots, d $.
Step 3. We prove that $ p > q $ means $ h(p) > h(q) $. First, $ \partial_i^2u_0\ge 0, \; i = 1, \cdots, d $, so $ \Delta u_0\ge0 $. Since $ u_0\in H^2(\Omega)\subset C(\overline{\Omega}) $ and $ u_0\in H^1_0(\Omega) $, by the strong maximum principle [20], we have $ u_0\le 0 $. On the basis of [19, Theorem 9], we know that $ u_p(x_0, t_0) < 0 $ for all $ p\in\mathbb{R}^d_+ $.
If there exist $ p^0, q^0 $ such that $ p^0 > q^0 $ and $ u_{p^0}(x_0, t_0) = u_{q^0}(x_0, t_0) $, then there is $ i\in\{1, \cdots, d\} $ such that $ p_i^0 > q_i^0 $. Therefore, when $ q_i^0 < s < p_i^0 $,
$ h(p01,⋯,p0i,⋯,p0d)=h(p01,…,s,…,p0d). $ |
Since $ h(p) $ is analytic with respect to $ p_i $, we have
$ h(p0)=h(p01,⋯,s,⋯,p0d),∀s>0. $ |
Moreover,
$ |h(p0)|=|∞∑n=1dn∑j=1Eα,1(−(p1σnj1+⋯+sσnji+⋯+pNσnjN)tα0)(u0,φnj)φnj(x0)|≤C∞∑n=1dn∑j=11p1σnj1+⋯+sσnji+⋯+pNσnjN|(u0,φnj)|t−α0≤Ct−α01p01σ111+⋯+sσ11i+⋯+p11N, $ | (4.4) |
where we use the fact that
$ |(u0,φnj)|=|(u0,∂21φnjσnj1)|=|(∂21u0,φnj)|σnj1≤‖∂21u0‖L2(Ω)σnj1, $ |
and the series $ \sum_{n = 1}^{\infty}\sum_{j = 1}^{m_n}\sigma_1^{-n_j} $ converges. Passing to the limit as $ s\rightarrow \infty $ in Eq (4.4), we have $ u_{p^0}(x_0, t_0) = 0 $, a contradiction. Therefore, $ p > q $ means that $ h(p) > h(q) $.
Step 4. By the last step, we have $ \partial_i h(p) > 0 $ for all $ p\in\mathbb{R}^d_+, i = 1, \cdots, d. $ Set $ g(t) = h(q+t(p-q)) $, then $ g'(t) = \nabla h(q+t(p-q))\cdot(p-q) $. By the mean value theorem we get
$ |h(p)−h(q)|=∇h(q+t(p−q))⋅(p−q)=d∑i=1(pi−qi)∂ih(q+t(p−q))≥Cd∑i=1(pi−qi), $ |
where
$ C=min $ |
This ends the proof of Theorem 3.1.
Proof of Theorem 3.2. Referring to Theorem 3.8(ⅱ) in [15], we can similarly verify that the function $ H(p) = \int_{I}\int_{\omega}u_p^{}(x, t)dxdt $ satisfies $ \partial_i H(p) > 0 $ for all $ p\in\mathbb{R}^d_+, \; i = 1, \cdots, d. $ Thus, we can complete the proof similarly to that of Theorem 3.1.
Proof of Theorem 3.3. From $ u_p(x_0, t) = u_q(x_0, t) $ for $ 0 < t < t_1 $ and the analyticity of $ u_p(x, t) $ with respect to $ t $, we have $ u_p(x_0, t) = u_q(x_0, t) $ for $ t > 0. $ Since
$ \begin{eqnarray*} u_q(x_0, t) = \sum\limits_{n = 1}^{\infty}\sum\limits_{j = 1}^{m_n}E_{\alpha, 1}(-(q_1\sigma_1^{n_j}+\dots+q_d\sigma_d^{n_j})t^{\alpha})(u_0, \varphi^{n_j})\varphi^{n_j}(x_0) \end{eqnarray*} $ |
and by the asymptotic expansion (2.13), we have that
$ \begin{eqnarray*} &&\sum\limits_{k = 1}^{K}\frac{(-1)^{k+1}}{\Gamma(1-\alpha k)t^{\alpha k}}\sum\limits_{n = 1}^{\infty}\sum\limits_{j = 1}^{m_n}\frac{(u_{0, q}, \varphi^{n_j})\varphi^{n_j}(x_0)}{(q_1\sigma_1^{n_j}+\dots+q_d\sigma_d^{n_j})^k}\\ && = \sum\limits_{k = 1}^{K}\frac{(-1)^{k+1}}{\Gamma(1-\alpha k)t^{\alpha k}}\sum\limits_{n = 1}^{\infty}\sum\limits_{j = 1}^{d_n}\frac{(u_{0, p}, \varphi^{n_j})\varphi^{n_j}(x_0)}{(p_1\sigma_1^{n_j}+\dots+p_d\sigma_d^{n_j})^k}+O(\frac{1}{t^{\alpha(K+1)}}) \end{eqnarray*} $ |
holds for $ K\in\mathbb{Z}^+ $. We equate the coefficients of $ t^{-\alpha k} $, which yields
$ \begin{eqnarray*} \sum\limits_{n = 1}^{\infty}\sum\limits_{j = 1}^{m_n}\frac{(u_{0, q}, \varphi^{n_j})\varphi^{n_j}(x_0)}{(q_1\sigma_1^{n_j}+\cdots+q_d\sigma_d^{n_j})^k} = \sum\limits_{n = 1}^{\infty}\sum\limits_{j = 1}^{m_n}\frac{(u_{0, p}, \varphi^{n_j})\varphi^{n_j}(x_0)}{(p_1\sigma_1^{n_j}+\cdots+p_d\sigma_d^{n_j})^k}, \; k\in\mathbb{Z}^+. \end{eqnarray*} $ |
If $ q > p $, we have
$ \begin{eqnarray} &&(u_{0, p}, \varphi^{1_1})\varphi^{1_1}(x_0)+\sum\limits_{n = 2}^{\infty}\sum\limits_{j = 1}^{m_n}(\frac{p_1\sigma_1^{1_1}+\dots+p_d\sigma_d^{1_1}}{p_1\sigma_1^{n_j} +\cdots+p_d\sigma_d^{n_j}})^k(u_{0, p}, \varphi^{n_j})\varphi^{n_j}(x_0)\nonumber\\ && = \sum\limits_{n = 1}^{\infty}\sum\limits_{j = 1}^{m_n}(\frac{p_1\sigma_1^{1_1}+\cdots+p_d\sigma_d^{1_1}}{q_1\sigma_1^{n_j}+\cdots+q_d\sigma_d^{n_j}})^k(u_{0, q}, \varphi^{n_j})\varphi^{n_j}(x_0), \; k\in\mathbb{Z}^+. \end{eqnarray} $ | (4.5) |
We observe that
$ \begin{eqnarray*} &&\frac{p_1\sigma_1^{1_1}+\cdots+p_d\sigma_d^{1_1}}{p_1\sigma_1^{n_j}+\cdots+p_d\sigma_d^{n_j}} < 1, \; n\ge2, \;j = 1, \cdots, m_n, \\ &&\frac{p_1\sigma_1^{1_1}+\cdots+p_d\sigma_d^{1_1}}{q_1\sigma_1^{n_j}+\dots+q_d\sigma_d^{n_j}} < 1, \; n\ge1, \;j = 1, \cdots, m_n. \end{eqnarray*} $ |
Taking $ k\rightarrow \infty $ in Eq (4.5), we get
$ \begin{eqnarray*} P_1u_{0, p}(x_0) = (u_{0, p}, \varphi^{1_1})\varphi^{1_1}(x_0) = 0, \end{eqnarray*} $ |
this yields a contradiction. Thus, $ q\leq p $. Similarly, we can prove $ p\leq q $. This ends the proof of Theorem 3.3.
We should mention that our work is done under some constraints. We require the diffusion coefficient matrix to be diagonal and the area considered to be a rectangular area. This is because our method relies on the expansion of the eigenfunction, and only under these constraints can we clarify our eigenfunction, which is very advantageous for our proof. In addition, we only consider the case of layered matter, that is, the diffusion matrix only depends on one variable. Only in this way can we obtain formula $ (3.8) $. In order to break through these limitations, we believe that we can only seek other more difficult methods. Besides, we can also consider other more general problems. For example, we can consider the inverse problem of the variable-order time-fractional equation [21] in the current frame, but we do not discuss these problem in this paper. Moreover we also consider the inverse problem of determining the variable order and diffusion matrix simultaneously, such as in article [22], which investigates this problem in one space dimension. We also hope to expand their results to the situation of high-dimensional situations in the future.
We would like to thank the Editor and Referees for valuable comments and contributions. The research is supported by the National Natural Science Foundation of China (No. 12171442). Feiyang Peng carried out the inverse problem and the homogenization theory of fractional diffusion equations, and Yanbin Tang carried out the reaction diffusion equations and the perturbation theory of partial differential equations. All authors carried out the proofs and conceived the study. All authors read and approved the final manuscript.
The authors declare that there is no conflict of interest.
[1] |
I. Aganovic, J. Tambaca and Z. Tutek, A note on reduction of dimension for linear elliptic equations, Glasnik Matematicki, 41 (2006), 77-88. doi: 10.3336/gm.41.1.08
![]() |
[2] | B. Alberts, D. Bray, J. Lewis, M. Raff, K. Roberts and J. Watson, Molecular Biology of the Cell, Garland, NY, 2002. |
[3] |
G. Allaire, Homogenization and two-scale convergence, SIAM J. Math. Anal., 23 (1992), 1482-1518. doi: 10.1137/0523084
![]() |
[4] |
G. Allaire and Z. Habibi, Homogenization of a conductive, convective, and radiative heat transfer problem in a heterogeneous domain, SIAM J. Math. Anal., 45 (2013), 1136-1178. doi: 10.1137/110849821
![]() |
[5] | B. Amaziane, L. Pankratov and V. Pytula, Homogenization of one phase flow in a highly heterogeneous porous medium including a thin layer, Asymptotic Analysis, 70 (2010), 51-86. |
[6] | L. Barbu and G. Morosanu, Singularly Perturbed Boundary Value Problems, vol. 156 of International Series of Numerical Mathematics, Birkhäuser, Basel, 2007. |
[7] |
M. Beneš and J. Zeman, Some properties of strong solutions to nonlinear heat and moisture transport in multi-layer porous structures, Nonlinear Anal. RWA, 13 (2012), 1562-1580. doi: 10.1016/j.nonrwa.2011.11.015
![]() |
[8] | G. Chechkin, A. L. Piatnitski and A. S. Shamaev, Homogenization Methods and Applications, vol. 234 of Translations of Mathematical Monographs, AMS, Providence, Rhode Island USA, 2007. |
[9] |
R.-H. Chen, G. B. Mitchell and P. D. Ronney, Diffusive-thermal instability and flame extinction in nonpremixed combustion, in Symposium (International) on Combustion, Elsevier, 24 (1992), 213-221. doi: 10.1016/S0082-0784(06)80030-5
![]() |
[10] |
M. Chipot, $l$ goes to Infinity, Birkhäuser, Basel, 2002. doi: 10.1007/978-3-0348-8173-9
![]() |
[11] |
M. Chipot and S. Guesmia, On some anisotropic, nonlocal, parabolic singular perturbations problems, Applicable Analysis, 90 (2011), 1775-1789. doi: 10.1080/00036811003627542
![]() |
[12] | D. Cioranescu and P. Donato, An Introduction to Homogenization, Oxford University Press, New York, 1999. |
[13] |
D. Cioranescu and J. S. J. Paulin, Homogenization in open sets with holes, J. Math. Anal. Appl., 71 (1979), 590-607. doi: 10.1016/0022-247X(79)90211-7
![]() |
[14] | D. Ciorănescu and A. Oud Hammouda, Homogenization of elliptic problems in perforated domains with mixed boundary conditions, Rev. Roumaine Math. Pures Appl., 53 (2008), 389-406. |
[15] |
D. Ciorănescu and J. Saint Jean Paulin, Homogenization of Reticulated Structures, Springer Verlag, Berlin, 1999. doi: 10.1007/978-1-4612-2158-6
![]() |
[16] |
P. Constantin, A. Kiselev, A. Oberman and L. Ryzhik, Bulk burning rate in passive-reactive diffusion, Arch. Ration. Mech. Anal., 154 (2000), 53-91. doi: 10.1007/s002050000090
![]() |
[17] |
B. Denet and P. Haldenwang, Numerical study of thermal-diffusive instability of premixed flames, Combustion Science and Technology, 86 (1992), 199-221. doi: 10.1080/00102209208947195
![]() |
[18] |
A. Fasano, M. Mimura and M. Primicerio, Modelling a slow smoldering combustion process, Math. Methods Appl. Sci., 33 (2010),1211-1220. doi: 10.1002/mma.1301
![]() |
[19] |
T. Fatima and A. Muntean, Sulfate attack in sewer pipes: Derivation of a concrete corrosion model via two-scale convergence, Nonlinear Analysis: Real World Applications, 15 (2014), 326-344. doi: 10.1016/j.nonrwa.2012.01.019
![]() |
[20] |
B. Gustafsson and J. Mossino, Non-periodic explicit homogenization and reduction of dimension: the linear case, IMA J. Appl. Math., 68 (2003), 269-298. doi: 10.1093/imamat/68.3.269
![]() |
[21] | Z. Habibi, Homogéneisation et Convergence à Deux Échelles lors D'échanges Thermiques Stationnaires et Transitoires. Application Aux Coeurs des Réacteurs Nucléaires à Caloporteur gaz., PhD thesis, École Polytechnique, Paris, 2011. |
[22] |
U. Hornung, Homogenization and Porous Media, Springer-Verlag New York, 1997. doi: 10.1007/978-1-4612-1920-0
![]() |
[23] |
U. Hornung and W. Jäger, Diffusion, convection, absorption, and reaction of chemicals in porous media, J. Diff. Eqs., 92 (1991), 199-225. doi: 10.1016/0022-0396(91)90047-D
![]() |
[24] | E. R. Ijioma, Homogenization approach to filtration combustion of reactive porous materials: Modeling, simulation and analysis, PhD thesis, Meiji University, Tokyo, Japan, 2014. |
[25] |
E. R. Ijioma, A. Muntean and T. Ogawa, Pattern formation in reverse smouldering combustion: A homogenisation approach, Combustion Theory and Modelling, 17 (2013), 185-223. doi: 10.1080/13647830.2012.734860
![]() |
[26] | K. Ikeda and M. Mimura, Mathematical treatment of a model for smoldering combustion, Hiroshima Math. J., 38 (2008), 349-361. |
[27] |
L. Kagan and G. Sivashinsky, Pattern formation in flame spread over thin solid fuels, Combust. Theory Model., 12 (2008), 269-281. doi: 10.1080/13647830701639462
![]() |
[28] | CASA Report. |
[29] |
V. Kurdyumov and E. Fernández-Tarrazo, Lewis number effect on the propagation of premixed laminar flames in narrow open ducts, Combustion and Flame, 128 (2002), 382-394, URL http://www.sciencedirect.com/science/article/pii/S00102180010 03583. doi: 10.1016/S0010-2180(01)00358-3
![]() |
[30] |
K. Kuwana, G. Kushida and Y. Uchida, Lewis number effect on smoldering combustion of a thin solid, Combustion Science and Technology, 186 (2014), 466-474. doi: 10.1080/00102202.2014.883220
![]() |
[31] | J. L. Lions, Quelques Méthodes de Résolution des Problemes Aux Limites Nonlinéaires, Dunod, Paris, 1969. |
[32] |
Z. Lu and Y. Dong, Fingering instability in forward smolder combustion, Combustion Theory and Modelling, 15 (2011), 795-815. doi: 10.1080/13647830.2011.564658
![]() |
[33] | S. Monsurro, Homogenization of a two-component composite with interfacial thermal barrier, Adv. Math. Sci. Appl., 13 (2003), 43-63. |
[34] |
S. Neukamm and I. Velcic, Derivation of a homogenized von-Karman plate theory from 3D nonlinear elasticity, Mathematical Models and Methods in Applied Sciences, 23 (2013), 2701-2748. doi: 10.1142/S0218202513500449
![]() |
[35] | M. Neuss-Radu, Some extensions of two-scale convergence, C. R. Acad. Sci. Paris. Mathematique, 322 (1996), 899-904. |
[36] |
M. Neuss-Radu and W. Jäger, Effective transmission conditions for reaction-diffusion processes in domains separated by an interface, SIAM J. Math. Anal., 39 (2007), 687-720. doi: 10.1137/060665452
![]() |
[37] |
G. Nguestseng, A general convergence result for a functional related to the theory of homogenization, SIAM J. Math. Anal, 20 (1989), 608-623. doi: 10.1137/0520043
![]() |
[38] |
A. Oliveira and M. Kaviany, Nonequilibrium in the transport of heat and reactants in combustion in porous media, Progress in Energy and Combustion Science, 27 (2001), 523-545. doi: 10.1016/S0360-1285(00)00030-7
![]() |
[39] |
S. Olson, H. Baum and T. Kashiwagi, Finger-like smoldering over thin cellulose sheets in microgravity, Twenty-Seventh Symposium (International) on Combustion, 27 (1998), 2525-2533. doi: 10.1016/S0082-0784(98)80104-5
![]() |
[40] |
I. Ozdemir, W. A. M. Brekelmans and M. G. D. Geers, Computational homogenization for heat conduction in heterogeneous solids, International Journal for Numerical Methods in Engineering, 73 (2008), 185-204. doi: 10.1002/nme.2068
![]() |
[41] |
A. Bourgeat, G. A. Chechkin and A. L. Piatnitski, Singular double porosity model, Applicable Analysis, 82 (2003), 103-116. doi: 10.1080/0003681031000063739
![]() |
[42] | P. Ronney, E. Roegner and J. Greenberg, Lewis number effects on flame spreading over thin solid fuels, Combust. Flame, 90 (1992), 71-83. |
[43] |
M. Sahraoui and M. Kaviany, Direct simulation vs volume-averaged treatment of adiabatic premixed flame in a porous medium, Int. J. Heat Mass Transf., 37 (1994), 2817-2834. doi: 10.1016/0017-9310(94)90338-7
![]() |
[44] | H. F. W. Taylor, Cement Chemistry, London: Academic Press, 1990. |
[45] |
R. Temam and A. Miranville, Mathematical Modeling in Continuum Mechanics, Cambridge University Press, 2005. doi: 10.1017/CBO9780511755422
![]() |
[46] | S. Turns, An Introduction to Combustion: Concepts and Applications, McGraw-Hill Series in Mechanical Engineering, McGraw-Hill, 2000. |
[47] | Advances in Chemical Engineering, 1-45. |
[48] |
C. J. van Duijn and I. S. Pop, Crystal dissolution and precipitation in porous media: Pore scale analysis, J. Reine Angew. Math, 577 (2004), 171-211. doi: 10.1515/crll.2004.2004.577.171
![]() |
[49] |
J.-P. Vassal, L. Orgéas, D. Favier and J.-L. Auriault, Upscaling the diffusion equations in particulate media made of highly conductive particles. I. Theoretical aspects, Physical Review E, 77 (2008), 011302, 10pp. doi: 10.1103/PhysRevE.77.011302
![]() |
[50] |
F. Yuan and Z. Lu, Structure and stability of non-adiabatic reverse smolder waves, Applied Mathematics and Mechanics, 34 (2013), 657-668. doi: 10.1007/s10483-013-1698-8
![]() |
[51] |
O. Zik, Z. Olami and E. Moses, Fingering instability in combustion, Phys. Rev. Lett., 81 (1998), 3868-3871. doi: 10.1103/PhysRevLett.81.3868
![]() |