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ABSTRACT. We study the homogenization of a reaction-diffusion-convection
system posed in an e-periodic é-thin layer made of a two-component (solid-air)
composite material. The microscopic system includes heat flow, diffusion and
convection coupled with a nonlinear surface chemical reaction. We treat two
distinct asymptotic scenarios: (1) For a fixed width § > 0 of the thin layer,
we homogenize the presence of the microstructures (the classical periodic ho-
mogenization limit € — 0); (2) In the homogenized problem, we pass to § — 0
(the vanishing limit of the layer’s width). In this way, we are preparing the
stage for the simultaneous homogenization (¢ — 0) and dimension reduction
limit (6 — 0) with 6 = d(e). We recover the reduced macroscopic equations
from [25] with precise formulas for the effective transport and reaction coeffi-
cients. We complement the analytical results with a few simulations of a case
study in smoldering combustion. The chosen multiscale scenario is relevant
for a large variety of practical applications ranging from the forecast of the
response to fire of refractory concrete, the microstructure design of resistance-
to-heat ceramic-based materials for engines, to the smoldering combustion of
thin porous samples under microgravity conditions.
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1. Introduction.

1.1. Aim of the paper. We wish to investigate the sub-sequential homogenization
and dimension reduction limits for a reaction-diffusion-convection system coupled
with a non-linear differential equation posed in a periodically-distributed array of
microstructures; see [25, 24] for details on the smoldering combustion context in-
spiring this paper. To prove the homogenization limit we employ the two-scale
convergence (cf. e.g. [8, 33, 19]). Relying on the estimates obtained here, we
hope to be able to deal at a later stage with the boundary layers occurring during
the simultaneous homogenization-dimension reduction procedure. We expect that
the concept of two-scale convergence for thin heterogeneous layers (see [36]) and
appropriate scaling arguments, somewhat similar to the spirit of [5, 10], are appli-
cable. A similar strategy would be to use a periodic unfolding operator depending
on two parameters [14]. It is worth noting that the simultaneous homogenization
and dimension reduction limit is a relevant research topic related to the rigorous
derivation of plate theories, but also away from the elasticity framework; see e.g.
[20, 1, 34] and references cited therein.

This paper prepares a framework where such a simultaneous limit can be done
for a filtration combustion scenario.

1.2. Mathematical background. Homogenization of problems depending on two
or more small parameters is a useful averaging tool when dealing for instance with
reticulated structures (see e.g. [15]) or with porous media with thin fractures (see
e.g. [5]). Often in such cases, the small parameters correspond to scale-separated
processes and can therefore be treated as being independent of each other. The
most challenging mathematical situation is when the two small parameters are inter-
related, i.e. & = d(e) where € > 0 takes into account the periodicity scale (or the
length scale of a reference elementary volume) and 6 > 0 a typical length scale
of the microstructure. This kind of scaling dependence ¢ = §(¢) with § > ¢ > 0
makes such setting resemble a boundary layer case. Essentially, due to the lack
of scale separation, one can easily imagine that when passing to 6 — 0 one looses
the information at the e-scale; like for instance, in the balance of measures setting
discussed in [41].

1.3. Estimating the heat response of materials with microstructure. Ho-
mogenization of heat transfer scenarios has attracted the attention of many re-
searchers in the last years; see for instance the references indicated in [49, 33, 4]
as well as in the doctoral thesis by Habibi [21] (where the focus is on the radiative
transfer of heat). For a closely related multiscale setting where convection interplays
with diffusion and chemistry, we refer the reader to the elementary presentation of
the main issues given in [47]. For a computational approach to heat conduction in
multiscale solids, see [40].

The practical application we have in mind needs the multiscale modeling of re-
verse smoldering combustion, aiming at understanding the behavior of fingering
patterns that arise from a controlled experimental study of smoldering combus-
tion of thin porous samples under microgravity conditions. The details of such an
experimental scenario have been reported previously in [51, 39], and treated math-
ematically in different contexts [26, 18, 32, 50]. In all these papers, the models
are introduced directly at the macroscopic scale and less attention is paid on the
choice of microstructures as well as to the influence of physical processes at the pore
scale. Our paper wishes to fill some gaps in this direction. There are also other
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related studies [43, 38] dealing with averaging of combustion processes. Closely re-
lated application areas include the design of microstructures for refractory concrete
— a composite heterogeneous material with special chemical composition (meant to
postpone de-hydratation [44]), also referred to as blast furnance. The refractory
concrete materials are expected to sustain high temperatures and moderate convec-
tion, typical of situations arising in the furnance of steel factories; for more details
see [7] and references cited therein.

1.4. Organization of the material. We proceed as follows: We first ensure the
solvability of the microscopic combustion model. Then we check how the model
responds to the application of the two-scale convergence as ¢ — 0 for the case
6 = O(1) recovering in this way the structure of the averaged model equations
obtained in [25] by means of formal asymptotics homogenization. Then as next
step, the limit § — 0 turns to be a regular perturbation scenario that we approach
with techniques inspired by the averaging of reticulated geometries; see [15]. Using
the macroscopic equations obtained in the case € — 0 for § — 0, we illustrate
numerically the instability of combustion fingers as observed experimentally in [51].
Finally, we conclude the paper with a brief enumeration of a couple of open problems
arising from this filtration combustion scenario.
The paper is organized in the following fashion:
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2. Notations. Choice of microstructures. Unknowns. The geometry of the
porous material we have in mind is depicted in Figure 2 and in Figure 4. It is
basically obtained by replicating and then glueing periodically the unit cell/pore
structures shown in Figure 1 and Figure 3.

To describe the porous structure of the medium, the following notations will be
used (very much in the spirit of [23]): The time interval of interest is [0,7], 0 <
T < oco. Assume the scale factors ¢ > 0 and 6 > 0 to be given®. A straightforward

3 Actually, € and § are sequences of strictly positive numbers going to zero such that (%, %) € N2,
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4

FIGURE 1. é-cell (ball microscopic fabric).

FIGURE 2. Periodically-distributed array of cells contained in a
e-thin layer.

FIGURE 4. Periodically-distributed array of cells contained in a
e-thin layer.

dimensional analysis connects them with the characteristic length and time scales
in the system; see the scaling discussion on the meaning of ¢ from Section 3.2 in
[24].

Our representative pore, Y, contains two phases: a connected solid phase YS‘S
and a connected gas phase such that Y = Yf U YT‘E see Figure 1 and Figure 3
for sketches of admissible microstructures Y. To fix ideas, take now Y? to be the
0-cell

3
6 §
Y(S = {Z)\1610<)\l < 1(2':1,2)7—5 < A3 < 2},
=1

. . . . . 9
where e; is the ith unit vector in R®. Correspondingly, Y := Yg‘s UY, where Yg‘s and
Y? are é-dilated versions of Y, and Y. Two options of microstructures model here
the internal structure of the solid fabrics: (1) Figure 1 indicates that Y contains

a ball that does not touch Y, and (2) Figure 3 indicates that Y° contains a solid
parallelepiped (cuboid) that does not touch 0Y?. Note, for instance, that plant
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cells have pores looking like rectangular cuboids. Also, many epithelial tissues have
structures that can be well approximated by arrays of cubes; see e.g. [2].

For subsets X of Y? and integer vectors k = (k1,ko,k3) € 73 we denote the
e1, es-directional shifted subset by

2
Xk =X+ Z kie;.
i=1

The geometry within our layer Q° includes the pore skeleton ©%¢ and the pore
space Qg’f. Obviously, we have

5 5 —=de
Q° = QU
with
1’\58 - 8968
N S
as the (total) gas-solid boundary. As indicated in the above Figures, the microstruc-
tures are not allowed to touch neither themselves nor the outer boundary of the layer
Q.
Finally, note that
) ) 1) 4
0 =TH Uy ures,
that is the boundary of the layer Q% can be split into the exterior Dirichlet and

Neumann boundaries (T'}, and T'}) and the inner gas-solid boundary T%.
On the other hand, w.l.o.g. assume that we can take Q a bounded domain in R?

as side for the layer Q° such that Q7 := Q x [—g, g] Later on in section 6, when
taking § — 0 we will understand that Q% — Q x {0} (the dimension reduction step)
with Y° — Y x {0}, where Q,Y C R?. We will write for the reduced homogenized
problem Q, Y, etc. instead of @ x {0} and Y x {0} and so on. Also, denote
Q:=Qx [f%,%}

By xeo we denote the characteristic function of the set ©. Typical choices for the
set © will be Yg‘5, Y9, etc.

Given u® : Qgs — IR3 velocity of the flow, the unknowns of the microscopic model
are: % : Qgs — R — the concentration of the active species (typically oxygen),
Tg‘se : an — R and 7% : Q% — R - the temperatures corresponding to the solid
and gas phases of the material, and R%¢ : T — R — the solid reaction product.

For the sake of a simpler notation, for the case 6 = O(1), we omit to write the
dependence of the solution vector (C°%, 7% R%%) [with T°° := (Tg‘SE,TS‘SQ)] on the
scale factor 0; we just write (C¢,T¢, R%) but still keep the presence of § in the
definition of the space domain.

3. Setting of the microscopic equations - the model (P°?). We investigate
the model equations proposed in [25] to describe the smoldering combustion of a
porous medium and pose it now in the thin layer Q% (see Figure 2 or Figure 4) as
follows: Find the triplet (C%¢, T°, R%¢) satisfying

0,C% + V - (0% — DV () = 0 in Q2
COOT + V- (CoTuleTe — NVT) =0 in 9,
CEOTIE =V - (AFVT*) =0 in Q2F,

6tR6€ — W(T&s, 055) on I‘567
(1)
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together with initial and boundary conditions

C%(0,2) = C° in {t =0} x Q5
T2¢(0,7) = T? in {t =0} x Q%*, i€ {g,s}
R%(0,z) = R° on {t =0} x I
(NEVTSE — NEVTYE) - v = eQW (T, C) on I,
Tg‘sf = T2 on I'%,
DVC% v = —cW (T, 0%) on I'%
(2)
and
{Tge =T, C*=0C, on I'}, 3)
VI -v=0, VC%.v=0 on I'}.

The heat production term, i.e. in terms 7%, or the mass consumption rate of the
gaseous oxidizer C°¢ due to the chemical reaction at the surface is denoted by

W (T%, C%) := AC% f(T%). (4)

The physical assumption for the reaction rate (4) is that the solid porous sample is
available in abundance and the gaseous oxidizer concentration is limited in amount.
Since, we also look to an the exothermic chemical oxidation of the porous sample,
the chemical kinetics (4) is thus governed by a one-step first order Arrhenius law.
For further information of the reaction term (4), we refer to [27] and for a detailed
treatment of chemical kinetics, we refer to [46]. We refer to this microscopic model
as the (P%¢)-model.

4. Solvability of the (P%¢)-model.

4.1. Working hypotheses. Before performing any asymptotics, we wish to ensure
that the microscopic model (P%¢) is well-posed. To do so, we introduce a set of
restrictions on data and parameters, which we collect as Assumptions (A).

We assume the following set of assumptions, to which we refer to as Assump-
tions (A):
(A1) D20, € L®(Y2)»3, (D°(2)€,€) = DOl¢f® for DO > 0, (Ag(2)€,€) =

ADJE? for XY > 0, (A3(2)€,€) > A2I¢|? for A > 0 and every £ € R3, y € Y°.

(A2) f is a bounded Lipschitz function. Furthermore

| positive, if a >0,
fla)= { 0, otherwise.

(A3) Cgs, C?% are bounded from below by C’g, CY, respectively.

(A4) C°,C0,C0 € HY(Q°)NLF(Q), Re L (I?). C°, 10, T € HY(Q°)NLL ()
and R € L°(I?).

(A5) div(u®) =0, ||u5€HL2([07T}XQa) < M, < oo and u®® — u® strongly as ¢ — 0.

(A6) Cy, T, € H0,T; H () N L((0,T) x Q).

Remark 1. Assumption (A1) and (A3) are physical by nature, while (A2), (A4),
and (A6) are technical, needed to ensure a proper functional setting. By involv-
ing (Ab), we basically circumvent the use of Stefan-Maxwell equations (see [45],
e.g.) to describe how the multicomponent reactive mixture responds to changes
in temperature. Involving the Stefan-Maxwell equations would probably lead to a
better phenomenological model, at least if the transport coefficients were known.
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However, as far as we are aware, there is not yet a general theory able to provide
global-in-time weak solutions to general classes of Stefan-Maxwell equations. The
situation seems to be better what strong solutions are concerned, but they are not
useful in the context of averageing processes in contrast media.

We define the following uniform in ¢ constants
Mo = [|C%| Lo a0y, (5)
My max{ || Tyl o< sy, | T2] L @5) s
MR = maX{HRO||LQQ(Fa),MT}.

Definition 4.1. We call (C%,T2°, T2, R°) a weak solution to (1)—(2) if C°¢ €
Cu + L*(0,T; HA (%)), 9,C° € 0,Cy + L*(0,T; L*(F)), T2° € Ty + L*(0,T;
HE(Q9)), 9, T3¢ € 0,T, + L*(0,T; L*(°)), T= € L*(0,T; H'(Q5)) N H'(0, T}
L?(Q%)), and R € H'(0,T; L?(T%)) satisfies a.e. in (0,T) the following formula-
tion

/ OC°% pdx + / DV C**Vdr + / WO pdr = —¢ / W (T°%,C°%)pd,

Qgs Qge Qgs Tde

/ CO T pdz + / NEVTVpdz + / OO VT pdx + / C2E 0T pdx

Qgs Qgs Qgs Qgs
/ NEVT Vpdr = ¢ / QW (T°%,C°%)pdy,

Qgs Tde

/ R il = / W (T, C% Yy,

Fés Fés

for all ¢ € L*(0,T; HE (X)), ¢ € L*(0,T; HE(QF)) x L*(0,T; H (%)), ¢ €
L2((0,T) xI'%¢) and C%(t) — C°, ij(t) — T} in LQ(QgE), T (t) — T? in L2(Q%9),
R%(t) — RO in L?(T'%¢) as t — 0.

4.2. Basic estimates and results.

Lemma 4.2. (Energy estimates) Assume (A1)—(A4), then the weak solution to the
microscopic problem (P°¢) in the sense of Definition J.1 satisfies the following a
priori estimates

| Co¢ 20, 7;22028¢)) + |l veeE 207522028 < C, (6)
| )¢ 20,1322 (05<)) + |l vCye 220,123 < Cs fori € {g, s} (7)
VE I R% || pee (0,7 xse) +VE || 0¢R% |l p2((0.1)xroe) < C (8)

Proof. We test with ¢ = C%¢ to get
t t t
/ / 0;|C%¢ |2 dxdr + 2D° / / |VC|2dadr + / / e . Ve C%dadr
0 Qgs 0 ng 0 QgE

< 2eA [ |C%)2f(T%)dvdr.
Se

r
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Convection term in (9) vanishes. This follows from

t t
/ / wEvCoECo dadr :% / / wev|Co P dxdr

0 Qgg 0 Qge
t t
1 1
:5//n.u55\055\2dzd775//V~u5€|055|2d:cd7.
0 1ée 0 Qgs

Using the boundedness of f, the fact that u’® is divergence-free and zero on the
boundary and the trace inequality, we obtain

t t t
//8t|058(t)|2dxd7+(2D0—520)/ / |VC55\2d:vdT§C// |C% () |*dxdr.

5 5 s
0 Qg5 0 Qof 0 Qo¢

Choosing ¢ small enough and applying Gronwall’s inequality, we obtain the desired
result. Let us take ¢ = (T3%, T2¢) € L*(0,T; H{(25)) x L2(0,T; H' (€5%)) to get

t

t t
Cg//at\:rgﬂ?dxdTHAg//|VT§€|2dxdT+Cg//uéfV\TjEFdxdT

0 Qde 0 Qe 0 Qe
t t
+C? / / 04| T [2dxdr + 222 / / \VT |2 dadr
0 Qe 0 Qe
t t
< 2:AQ / / f(T2)C T drydr < eC / / C%T% dvydr. (9)
0 Tde 0 Tde

The convection term disappears by the argument given above. Furthermore, we
estimate the integral on right hand side as follows:

t t
eC//C‘sET‘;Ed’ydT SeC/ /(\055\2+ 1T 12)dydr
0 [de 0 ée
t
< [(CP +VCHP 1 [T + VT ) dadr
0 Qe
t
+0// (|78 + €| VT2 |?) dadr.
0 Qge

(9) becomes

t t

CS//@\Tge|2dfcd7+(2)\g—520)//|VT§8|2dxdT

0 ng 0 ng
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t

t
—I—Cg//8t|TfE|2dxdT+(2/\2—5zC)//|VTS‘$5|2dxdT

0 Qgs 0 Qgs

¢ t
< C// (|C‘55|2+52\VC’55|2+|Tg‘55\2)dxdT+C/ / |T% 2 dadr.
0 Qgs 0 Qs
Choose & conveniently. Using then the estimates (6) and applying Gronwall’s in-
equality, we get
t

/ |Ti55(t)|2dx+// \VT¢ Pdedr < C ie€{g,s}

Q?a 0 Q?a

We set as a test function ¢ = R%¢ and get
t

t
5 / / O|R%|Pdydr = 2eA / / f(T%)C% R drydr

0 19 0 roe

t
< 50//(|C‘55|2+|R55\2)d7dr
0 F(Ss

Applying Gronwall’s inequality together with trace inequality, we have

t
£ / [R*(t)]?dy < C’/ / (ICP + % VC* ) d
INE 0 Qe
Using (6), we have the result. Now, we take as a test function ¢ = 9; R%¢ and obtain
t

£ / / |0, RO |2dydr

t
cA / / f(T°%)C% 0, R*drydr

0 1ée 0 o=
t 1 5
de de
0 1de
A / A /
5(1—;)//|8tR68|2d7d7 < i// (IC%? + 2|V C ?) da.
0 1de 0 Qgs

Choosing ¢ conveniently and using (6) to obtain

VE || 8iR% || 2((0,1)xr5) < C.
0

Lemma 4.3. (Positivity) Assume (A1)-(A4), and let t € [0,T] be arbitrarily cho-
sen. Then the following estimates hold:
(i) C’;E(t),Tg‘SE(t) >0 a.e. in Qgs, T2(t) > 0 a.e. in Q0 and R%*(t) > 0 a.e. on
Iee.
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(is) C%(t) < Mg, ngg(t) < My a.e. in Qge , T(t) < My ae. in Q¥ and
R (t) < Mg a.e. on T where M, My and My are defined in 5.

Proof. (i) We test with ¢ = —[C%]~ and obtain the following inequality

t t t
%//8t|[055]’|2dxdT+D0/ / |V[05€r|2dxdr+//u&vo&[c&]*dxdf

5 s 5
OQQS 0 Qo 0 Qo

<eA j / [C%]~|2dydr. (10)

0 [de

The convection term in (10) vanishes. Apply the trace inequality to the expression
on the right hand side gives

t t
% / / ,|[C%]~ |2dadr + D° / / V[C*] Pdudr

0 Qgs 0 Qgs
t
< c// (IC%) P + V[0 [2) dadr.
0 Qgg

Choosing e conveniently and applying Gronwall’s inequality together with the pos-
itivity of the initial data, we conclude that C%¢ > 0 a.e. in (0,T) x Qgs. Testing
with ¢ = (=[T2¢]7, [T¢]7) leads to

t t
CO
?g//ﬁt“Tg‘sg]’FdxquL)\g//|V[T;E]’|2d;ﬂd7

0 Qge 0 an
0 t
o [ [ wevizg pasir
0 e
t t
500 [ [ ol pazar v 5 [ [ Vi) Pdsar
0 Q«Zs 0 Qgs
‘ t
< —EQA/ / F(TO9)COT3%] drydr < 0. (11)
0 roe

The expression on right hand side of (11) is zero by assumption (A). Note that the
convection term on left hand side vanishe as well. Gronwall’s inequality together
with the positivity of the initial data provides that Tg‘ss >0a.e. in (0,7T) x ng and
T >0 a.e. in (0,7) x Q9. Let us test with ¢ = —[R%]~

30 [ IR P = - [ W cnima <o, )
Tée e

We conclude that R’ > 0 a.e. on (0,7) x I'%.
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(ii) Taking [C% — Mc]™T, we get
¢

t
%//at\[C5E—MC]+|2dxdT+D0//|V[C5E—MC]+|2dxdT

) )
0 Qe 0 Qs

+CY / wevCle — Mc|Tdwdr
Qe
t
< —€A / / C% f(T9)[C% — M¢] T dvydr < 0. (13)
0 roe
Arguing as before, we observe that the convection term vanishes. Applying Gron-
wall’s inequality together with C° < Mg a.e. in Qg‘f, we end up with the bound-
edness of the C%° < Mg ae. in Qgs for all t € (0,7). Note that since C%¢ €
L2(0,T5 HE (7)) NL>((0, T) x ©22¢), by Claim 5 in [19] we have C°¢ € L>=((0,T) x
%), Testing with ([T — My]™, [T2 — M7]") and the resulting inequalities

CO t CO t ,

79/ / O[T3° —MT]+|2dxdT+75/at / [T%¢ — My|*|>dxdr
0 QgE 0 sze

t t

+ )\2//\V[T;;EfMT]ﬂzdxdTJr)\g//|V[TS‘557MT]+|2dxdT
0 QZE 0 an

t t
4 %/ / u55V|[T;5—MT]+|2dxd§aQA//f(T55)C55[T55—MT]+d7dT

0 Qe 0 Toe

t
< eQAM. / / \[T% — Myt 2dydr. (14)
0 rde
Recall the boundedness of C°¢ on I'%¢ and the sublinearity of f. Applying the trace
inequality, leads to
t t

/ / O[T — MyT*Pdudr + / / [T — My]* Pdudr
0 Qgs 0 Q(Es
2)\2 2 / de +12
+<W —Ce?) V[T, — Mr]|"|*dxdr
g 0 0=
t
2X] 2 se +12
+( 2 —Ce?) V[T — Mp|T|*dxdr
0 qoe

t t
< 0/ / 55 —MT]+|2dxdr+c/ / (7% — My]*[2dadr.
0

8 8
de 0 QSE
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Let us choose ¢ small enough. Applying again Gronwall’s inequality, we obtain

Tg‘s6 < My ae. in Qgs and T < My a.e. in Q%. Now we test with [R%® — (¢ +
1)Mg]™ and obtain

/ (0] [R°F — (t+ 1)MRg]T|* + Mp[R* — (t + 1)Mg]™")dy

Tde
<C / M_[R% — (t +1)Mg]*dy
T'de
/ O4|[R% — (t + 1)MR]T|?dy < (CM,. — Mg) /[R‘SE — (t+1)Mg|tdy
Tde e
Using (A5) and Gronwall’s inequality to get R°® < Mg a.e. in (0,T) x T'%¢, O

Remark 2. Based on C% € L>((0,T) x Q5) N L*(0,T; H* (7)), we use Claim 5
in [19] to obtain C% € L>=((0,T) x I'%).

Lemma 4.4. Consider Assumption (A). There exists a unique weak solution in the
sense of Definition j.1.

Proof. With minor modifications, the proof follows the lines of the corresponding
result in [19]. For the complete calculations, see Theorem 4.3.5 in [24]. O

Theorem 4.5. (Global Existence) Assume the hypothesis of Lemma 4.4. Then
there exists at least a global-in-time weak solution in the sense of Definition /.1.

Proof. The proof is based on the Galerkin argument. Since W (T?¢, C%) is globally
Lipschitz function in both variables, this makes the proof rather standard. O

Lemma 4.6. (Additional a priori estimates) Assume the hypothesis of Lemma 4./.
The following e-independent bounds hold:

| 0:C% || 120 rir2se)) + | T |2 0,122 (259 < C i€{g,s}, (15)
where C' a generic constant independent of €.

Proof. To obtain the estimates (15), we consider a sufficiently regular extension of
the Dirichlet data C,,, T, to the whole 55. We test with ¢ = 9,(C% — C,) to get

t t t
0
//|8t068|2dxd7+%//3t|VC5E|2dde+//uéa_vc&aatoéadxdT

0 Qge 0 Qgs 0 Qgg

t t
< %// (§|8t055|2+28tC’u|2)d:ch+I;O// (IVC|? + |V8,Cy|?)dwdr
0 Qéa 0 Qgs
t t
%// |Vc5€|2+|atcu\2)da:dr—eA//c5€f(T5€)at(05€—cu)dxdT.
0

Qde s
S] OFE
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1_7 //|ac56| dxd7+—/\vcés 2dz
Qés

0 Qée

DO
37/|v066 2da + — //|atc 2dudr

Qge 0 Q&e

t t
DO de |2 2 MU de|2
+ - (IVC°)? + VO, C|?)dadr + % |VC|*dxdr

0 Qéa 0 Qgs

t
M,
7// (IVC 1 +19,C,|?) dzdr
0 Qe

g

—i—aC’//(8t|0‘55|2+|C§5|2+|8t0u\2)da:d7-.

0 rde
(1_7 //|a C5E|2dxd7+—/\VC‘55 1) da
0 Q‘SE Qée

t
0
%/|V055(0)\2dx+0// (IVC%? + [V, Cu|* + |0,Cy|?) dadr
QSE

0 Qs
+C / (IC% ()2 + 2| VC (#)]2 + |CO (0)|* + 2| VC(0)]?) da
Qe
t
+O// (IC°° P + 2|V | + |0,Cul? + €|V, Cu|?) dadr.
0 Qgs

Choosing £ conveniently and using the inequalities in Lemma 4.2 together with (A4)
and (A6), we get

5
1 0:C°° |l 20,7 p2(08¢)) < C.
Now we take as a test function

(0u(T2° — T.,),0,T2) € L*(0, T; L*(Q2)7)) x L*(0,T; L*(Q2%))

t t
)\O
cg// \atT;6|2dxdT+79//atWT;EFdxdT

5 )
0 Qe 0 Qs

t t
+CY / / u’s - VT220, TS  dadr + CY / / |0, T |2 dadr

0 Qgs 0 Q(Es

and have
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t
+?5//6t|VTSE| dxdr
0 Qi
t t
< / / NEVT VO, T, dadr + / / Co 0T 0, T dwdr

0 Qgi 0 Qgﬁ

t t
+C / / u’s - VT2°0, T, dwdr + QA / / C% f(T°%)0, T dxdr

) 5
OQgE 01"5

t
)\O
Cg// ‘8tT;E|2dxdT+?g / IVT2E(t) 2 da
Q&e

0 Q&e

+C’0//|8tT55| drdr 4+ =2 /|VT55 (t)|*dx

0 QSE

/|VT55 )|2dx + 22 /|VT5€ )|?dx
Q(SE

t
M,
7// 7|VT55|2+£|6T55\ )dxdr
0 Qe

‘QO

7// (8]0, 121> + |8tT|)dxdT
0 Qde

Making use of the boundedness of C°¢ on (0,T) x I'° and of the sub-linearity of f

M,
(0 - f //|a:r58| dedr + 9/|VT56 £)2de
QJE

0 QJE

t
)\0
+C’g//|8th‘55|2dxdT+?s/|VT§€(t)|2d:c
Qe

0 Qe
/\2 § 2 )‘O § 2
<7 / VI (0)2da + 5 / VT (0))2d

s S5
Qgs QSE
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t
+C// (VT2 + |0, T | + |V O, T2F|?) daedr
0 Qe

+C/(ITfs(t)lz+€2|VT§E(L‘)I2+ITS‘SE(O)IQ+€2\VT35(0)I2)dw-
0se

Choosing £ conveniently and using the inequalities in Lemma 4.2 together with
(A4), we get

1 8:Ty% M2 02200y + | 0T 20,1202 < C- (16)
O

Remark 3. We can use the Cauchy-Schwarz inequality together with (16) to show
the boundedness from above of the microscopic instantaneous bulk burning rate

1
V‘ss(t) = / |8tT55(t,$)|fd:z: (17)
Qs 0
as well as its time average
1 t
< VOE(t) >p= E/ VO (s)ds (18)
0

with
T (2,t), ifz e QoF
de o g s b))
T (x, ) - { Tfe(gc,t)7 it z € Q%

for any ¢ € (0,T). We refer the reader to [16] for the terminology and use of such
bulk burning rates.

5. The homogenization limit ¢ — 0. The case § > ¢ >0, § = O(1).

5.1. Extensions to Q°. Our main interest in this section lies in the passing to
the homogenization limit ¢ — 0. Before passing to this limit, we extend all the
unknowns of the problem to the whole space €2°. Using a standard extension result
due to D. Ciordanescu and J. Saint Jean Paulin [13], we extend the concentration
defined in QF inside the solid grains; see also Lemma 2.4 in [33] for a related result.
The temperature extends naturally in the whole domain by taking the extended
temperature field
- | Ti(x,t), ifxeQf

(@, t) = { Tf?‘(x,t), ifxe Q‘g.

Since the nonlinearity imposed at the microstructure boundary turns to be globally
Lipschitz, there are no problems in stating the existence of the extended temperature
field. We refer the reader to [28] for a situation where, due to the presence of
(boundary) multivalued functions, a more detailed investigation of the existence of
the extension is needed. If more effects are introduced at the microscopic solid-gas
interfaces like temperature jumps, or heating delays (etc), effects that could require
the introduction of a second temperature (see e.g. [18, 33]), then the extension step
requires a special care.
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5.2. Two-scale convergence step.

Definition 5.1. (Two-scale convergence; cf. [3, 37]) Let {u®} be a sequence of
functions in L2((0,T) x Q) (2 being an open set of RY) where ¢ being a sequence
of strictly positive numbers tends to zero. {u®} is said to two-scale converge to a
unique function ug (¢, z,y) € L2((0,T)xQxY) if and only if for any ¢ € C5°((0,T) x
0,0 (Y)), we have

T
limsﬁo/ /ua(t,x)w(t,x,f)dmdt: i/ / uo(t, z, y)U(t, z,y)dydxdt. (19)
o Jao € Yl JalJy

We denote (19) by u® 2 wp.

Theorem 5.2. (Two-scale compactness on volumes; cf. [3, 37])

(i) From each bounded sequence {u¢} in L?((0,T) x Q), one can extract a subse-
quence which two-scale converges to ug(t,x,y) € L*>((0,T) x 2 x Y).

(ii) Let {u¢} be a bounded sequence in H'((0,T) x Q), then there ewists i €
L2((0,T) x Q Hy(Y)/R) such that up to a subsequence {u®} two-scale con-

verges to ug(t,z) € L*((0,T) x ) and Vu® 2 Vuo + V.

Definition 5.3. (Two-scale convergence for e—periodic hypersurfaces; cf. [35]) A
sequence of functions {u¢} in L2((0,T) x I'.) is said to two-scale converge to a limit
ug € L*((0,T) x @ x T) if and only if for any ¢ € C5°((0,T) x Q,C(T)) we have

T
1
limgﬁoa/ / us(t,x)w(t,x,f)d%dt: —/ /uo(t,:n,y)w(tw,y)daydﬂcdt.
o Jr. € Y| JaJr

Theorem 5.4. (Two-scale compactness on hypersurfaces; cf. [35])

(i) From each bounded sequence {u¢} € L?((0,T) x T'c), one can extract a subse-
quence u® which two-scale converges to a function ug € L*((0,T) x Q x T).

(i) If a sequence of functions {u®} is bounded in L>=°((0,T)xT), then u® two-scale
converges to a function ug € L*((0,T) x Q x T').

The estimates stated in Lemma 4.2 and Lemma 4.6 ensure the following conver-
gence results:

Lemma 5.5. Assume (A1)-(A6). Then, for any fixzed § > 0, we have as € — O the
following convergences (up to subsequences):
(a) C%,T% — C° T° weakly in L*(0,T; H*(Q°),
(b) C% 1% X 9 T weakly in L>=((0,T) x Q°),
(c) 0,C%,0,T% — 0,C%,0,T° weakly in L*((0,T) x Q9),
(d) C%,T% strongly in L?(0,T; H?(Q°)) for % < p <1,
also \ﬁ || Cos -9 ||L2((O,T)><F55)_> 0 and \ﬁ || T% —T° HLQ((O,T)XFJE)% 0 as
e —0.
(e) C%, 1% 2 0%, 1%, V0% 2 v,054v,0% C% e L*((0,T) x 0% HL (YS)/R),
vIoe AV, T8 + v, 1%, T0 € L*((0,T) x Q% H}(Y?)/R),
(f) R 2 R®, and R? € L=((0,T) x Q x I'%),
(g) 0,C%,8,T% 2 9,C° ,T°, and 8, R > 9,R® € L2((0,T) x Q° x I'%).
Proof. (a) and (b) are obtained as a direct consequence of the fact that C%¢, T¢ are

bounded in L2(0,T; H'(Q°))NL>((0,T) x Q°). Up to a subsequence (still denoted
by C%,T¢), 0%, T° converge weakly to C°,T° in L%(0,T; H'(Q°)) N L>((0,T) x
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Q9). A similar argument gives (c). To get (d), we use the compact embedding
HP (Q0) — HP(Q9), for 8 € (3,1) and 0 < B < B’ < 1 (since Q° has Lips-
chitz boundary). We have W := {C% T% ¢ L?(0,T; H(Q°%)) and 9,C°%, 0,T% ¢
L2((0,T) x 29)}. For a fixed ¢, W is compactly embedded in L2(0,T; H?(92?)) by
the Lions-Aubin Lemma; cf. e.g. [31]. Using the trace inequality for oscillating
surfaces

IN

\/g || coe - HL2((0,T)xFae) C || CcoF - ||L2(O,T;H5(Qg€))

C || €% = C° |lz2(o,m;7 05

A

where || C% — C° || 207,15 (05y)— 0 as € — 0. Similar argument holds for the rest
of (d). To investigate (e), (f) and (g), we use the notion of two-scale convergence as
indicated in Definition 5.1 and 5.3. Since C°¢ are bounded in L2(0,T; H'(92?)), up
to a subsequence C% 2 9 in L%((0,T) x %), and VC?¢ A v,00 + v,0%, C° ¢
L2((0,T) x Q% HL(Y?)/R). By Theorem 5.4, R* in L>((0,T) x I'*¢) converges
two-scale to R% € L>°((0,T) x Q° x I'’) and 9;R’¢ converges two-scale to 9; R’ in
L2((0,T) x Q° x T?). O

5.3. Derivation of upscaled limit equations. To be able to formulate the limit
(upscaled) equations in a compact manner, we define two classes of cell problems
(local auxiliary problems) very much in the spirit of [22].

Definition 5.6. The cell problems for the gaseous part are given by

ny.(D(%/)Vywk) = Z?:l Oy, Dii(y) in Yg§7 (20)
—D(y) %2 =37, Drily)ni onT?,
for all k € {1,2,3} and w”* are Y?-periodic in y.
{—vy.u.q(g)vwa;) = 201 OuAgpaly) in Y7, o)
Ow
—Ag(y)5,% = Z?Zl Agri(y)ni on o,

for all k € {1,2,3} and w’; are Y-periodic in y. The cell problems for the solid part
are given by

(22)

—Vy(As (yzvy“’f) = Z?:l Oy Aski(y) in Y;sv
—d\(y) = S Asily)ni onT?
for all k € {1,2,3}, w* are Y?-periodic in y.

Standard theory of linear elliptic problems with periodic boundary conditions
ensures the weak solvability of the families of cell problems (20) — (22); see e.g. Ref.
[12].

The main result of this section is the following:

Theorem 5.7. The sequence of weak solutions of the microscopic problem (in the
sense of Definition (4.1)) converges as € — 0 to the triplet (C°, T°, R®), where C? €
Cyu+L?(0,T; HL(Q9)), 0;C° € 0,C,,+L?(0,T; L*(Q%)), T € T, +L?(0, T; HE(Q?)),
0;T° € 0,T, + L?(0,T; L*(92%)), and R® € H'(0,T; L*(Q° x I'?)) satisfying weakly
the following macroscopic equations a.e. in Q° for all ¢ € (0,7)

I

[
¥yl

8,00 +V - (—OVC +u’ ) = W(T?,C?), (23)
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where

and
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]_"5
CHT’ + V- (—LVT’+ < Cy >ys u'T°) = |

= WQW(T‘S,C‘S% (24)

dr < R® >ps= W(T?,C9), (25)

<R > (t,z) := RO(t,x,y)dy

] s

1
< Cg >ysi= @ /C’g(y)dy
vp

for all # € Q% and all ¢ € (0,7). Furthermore, the effective heat capacity €, the
effective diffusion tensor ©, and the effective heat conduction tensor £ are given by

¢ = / [Co()xys (y) + Cs(y)xys (y)ldy (26)

Y51 \ |

O = 7 2 [ (Dh+ (D)udye )y )
T

L)k = (Ag)jr + (Ag)jk (28)
3

(i = 3 [ O+ Ondys iy
=1
3 i .

(A = 3 [ O+ Addydixrs )y
=1y

with w’ ,wf being solutions of the cell problems defined in Definition 5.6. Here
i €{g,s} and j, k € {1,2,3}. The initial values

C°(0,z) = C%x), T.(0,2) =T°) for z € Q°
R2(0,z,y) = R(x,y) for (z,y) € Q° x I,

together with the boundary conditions
c° =0,
—OVC’ v =0
T° =T,
—LeVT? v =0

on F5D,
on F‘]SV,
on T'%,

on I‘fv.

complete the formulation of the macroscopic problem.
Furthermore, it exists at most one triplet (C°, T, R%) satisfying the above prop-

erties.

Proof. Relying on Lemma 5.5, we apply the two-scale convergence results stated
in Definition 5.1 and Definition 5.3 to derive the weak and strong formulations of
the wanted upscaled model equations. We take as test functions incorporating the

following oscillating behavior ¢(t, z) = ¢(t, ) +eo(t, ), with ¢ € C§°([0, T] x Q9)
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and ¢ € C°([0,T] x Q; ;O (Y, %)). Applying the concept of two-scale convergence
yields

|Y5\//8t0¢>ta: ///Dvc (t,2) + VyC°(t, 2, 9)) (Vo (t, ) + Vyo(t, z,y))

0 Q5yé

T T
—|Yg5|//u5~Vr05¢>(t,x)dardt: —lin(l)s//W(T‘SE,C‘SE)gbd'ydt,
e—

0 O 0 1de

T
= |19 / / W (T, C°)pdadt. (33)

0 Qs

Now, we take p(t, x) = @(t, z)+e@(t, z, T) with o € C5°([0, T)xQ%), ¢ € C5°([0, T] x
Q% CF(Y?)). We thus get

/// XY‘S y) +Cs(y )ij(y)]atTé(t,m)cp(t,x)+

0 Q3ysd

[ [ [ 0o @ + Axys @I(T2T (t,2) + 9,262, ) (Ve ) + V6 .0)

0 Q5ysd

///C Sty ) - VTP (t, 2)o(t, x)dedydt = ///QWT C?)pdzdrydt.

0 Qs Y‘; 0 Q819

Take now (t,z, Z) € C>([0,T] x Q9 ,CF (I'?)) and pass to the limit in the ordinary
differential equatlonb for R® and choose in the respective weak form 1) = 1. Then
averaging over the variable y leads to (25). To proceed further, we set ¢ = 0 in (33)
to calculate the expression of the unknown (corrector) function C? and obtain

/ / / D) (VaCP(t,2) + Y, OOt 2, ))Vy bt v, y)daedydt = 0.

0 Qsyp

Since C?® depends linearly on V,C9, it can be defined as

3

5

= 0,000,
j=1

where the cell function w’ is the unique solution of the corresponding cell problem
defined in Definition 5.6. Similarly, we have T° := Z?=1 0, T° (Wl + w]), where wl
and w! are the cell solutions. Setting ¢ = 0 in (33), we get

T

Z Djr(y) (9, C°(t, ) + Z Dy W™Dy, CO(t, x))0y,; ¢(t, x)dydxdt

OQ<5Yg5]k1 m=1

3
= 7| / / S (9)400, OO (1, 2)0s, B(t, ).
0 oo Jk=1
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Hence, the coefficients entering the effective diffusion tensor © (for the active
gaseous species) is given by

3 .
@ = 7 D [+ D10y 07y

and

defining the heat conduction tensor £ cf. (28). The uniqueness of weak solutions
follows in a straightforward way; see related comments in Remark 5. O

Remark 4. The tensors ® and £ are symmetric and positive definite, see [12].
Note that a similar estimate as the one reported in Remark 3 holds also for the
macroscopic instantaneous burn bulk rates and for their time averages.

Remark 5. From now on, let us refer to the homogenized equations (23)—(32) as
problem (P%°). Note that the compactness results associated with the two-scale
convergence guarantee the existence of positive weak solutions to (P%°). On top of
this, Tietze’s extension result ensures that the obtained weak solutions also satisfy
a weak maximum principle (so, we have L* bounds on the temperature, reaction
product and on the concentration). Having this in view, proving the uniqueness of
weak solutions to our semilinear parabolic system (7350) becomes a simple exercise,
and therefore we omit the proof of the uniqueness statement.

6. The dimension reduction limit 6 — 0. In this section, we wish to pass
to the dimension reduction limit § — 0. To do this, we follow the main line of
the ideas from [11], i.e. we use a scaling argument and employ weak convergence
methods (0-independent estimates) to derive the structure of the limit equations
for the reduced problem — (P%). Closely related ideas are included in section 4 of
[48]. We refer here also to [6] for remotely related regular and singular perturbation
settings treated in a rigorous manner for linear evolution equations.
Consider the following set of restrictions, collected as Assumptions (B):
°|

)
(B1) The microstructures are chosen such that the ratios % and llgé‘ are of
g9

order of O(1); Choose the microstructure shown in Figure 3.

(B2) u? is é-independent. We refer to it as u°.

(B3) Assume all model parameters (D, £, €, etc.) to be constant in the Oz-
coordinate. The same holds for the initial data R®,C° T° and for the Dirichlet
boundary values T,, and C,.

(B4) lims—o < C4 >ys=<Cy >y,

Remark 6. The assumption (B1) is basically imposed by the way we passed to
the homogenization limit, i.e. if one wants to pass to either of the limits § — 0 or
€ — 0, the microstructures cannot be too small. This is a simplification avoiding the
occurrence of boundary layers. The conditions (B2)—(B4) are technical assumptions
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that can potentially be replaced by less restrictive ones. We choose them for the
simplicity of the presentation.

We introduce now the bijective mapping
Q° 3 (z,y,2) = (X, %)
for any § > 0, where X := (z,y). I’ will denote the transformation of ' under
this mapping. The main role of this transformation is to fix the width of the
layer independently on & with the price of having some d-dependent coefficients
multiplying derivatives in the Oz direction, i.e. (34) transforms Ve into Vxp +
0V for any sufficiently smooth choice of ¢. This way the dimension reduction
problem is reformulated as an anisotropic singular perturbation problem.
After applying (34) to the averaged equations, we can rewrite Theorem 5.7 in a
slightly modified form as:

€eQ:=Qx0,1] (34)

Theorem 6.1. Let Assumptions (A) and Assumptions (B) to hold. There exists
a unique triplet (C°,T°, R®), where C° € Cu+ L2(0,T; HL (), 8,C° € d,C,, +
L2(0,T; L*(Q)), T® € T, + L*(0,T; H:(Q)), 8,T° € 8T, + L*(0,T; L*(Q)), and
R® € HY(0,T; L2(Q X F)) satisfying weakly the following macroscopic equations a.e.
in Q for all t € (0,T)

N | A

g

0,C° +Vx - (— @VXC5+u‘SC5)+6

CHT’ + Vx-(—LVxT’+ < Cy>ys u'T°)
1

+ 5V (—LVL T+ < Cy >ys u'T°) =

I 5

O < R® >ps= W(T?,C°). (37)
The main result of this section is the following:

Theorem 6.2. Consider the hypothesis of Theorem 6.1. There exists a subsequence
(C°,T°, R?), where C° € Cy+L?(0,T; HA(Q)), 8,C° € 8,0, +L*(0,T; L2(0)), T €
T, + L2(0,T; HLX(Y), 8,T° € 8,T, + L*(0,T; L*(Y)), and R® € H'(0,T; L*(2))
converging weakly to the weak solution of the following reduced equations a.e. in 2
for allt € (0,T)

I
8t00 +Vx - (_@VXC’O + u‘)CO) ||Y|| (TO C’O) (38)
T
COT’ + Vi (—LVxT'+ < Cy >y, v'T%) = ||Y|QW(T° %), (39)

R =W (T°,CY). (40)

Proof. The proof of this Theorem is rather lengthy and uses anisotropic singular
perturbations. We only sketch here the main steps:

Step 1. Derivation of -independent estimates. This step consists in a few technical
Lemmas that we state in what follows.
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Lemma 6.3. For allt > 0, it exists a constant ¢ > 0 such that the following energy
estimates holds

1
IOy + IV X Ol + 55 IVuC W2 < ¢ (41)

1
IO 2 ) + IVXT()]1326) + §||VwT5(t)|Iiz(m

IN

c. (42)

Proof. The proof is similar to the one of Lemma 4.2. We omit to repeat the ar-
guments. It is worth noting this statement enforces the fact that ||Vw05(t)||L2(Q)
and ||V, T° (t)[| 2(qr) are of order of O(6). This fact will be essential to the success
of Step 4. O

Lemma 6.4. Assume Assumptions (B). Then there exist (C°, T° R°) and a sub-
sequence still labeled with § converging to zero such that

(i) C0 = C°, VxC? =~ VxC° and 9,C° — 8,C in L*((0,T); L*().

(i5) T° —T°, VxT? = VxT° and 9,T° — 0,T in L*((0,T); L*().

(iii) < R® >— R in L2((0,T), L*(Q)), 8; < R® > 9,R° in L>=((0,T), L>()).
(iv) W(T?,C%) — W(T°,C°) in L?((0,T), L*(12)).
Proof. (1)-(iii)The proof of these estimates follows the same line of the proof of
Lemma 4.2 and Lemma 4.6. We omit to show it here. The statement (iv) fol-
lows by the strong convergence C° — C° in L?((0,7); L*(2) and the fact that
F(T?) — £(T° in L?((0,T); L%(Q2). This concludes that W (T?,C?%) — W(T°,C?)
in L2((0,7T), L*(€2)). Compare Lemma 5.5 (d). O
Lemma 6.5. Under the assumptions of Lemma 6.4, the following statements hold
true:

i) For any ¢ € HNQ), the functions t — [, COpdx and t — [, C%pdx belong
r Q O
to HY(0,T) and for the same subsequence we have

/ CPpdx — / C%pdz in L*(0,T) and in C([0,T])
Q Q
and
/ Clpdx — / C%dzx in H'(0,T).
Q Q

(ii) For any ¢ € HA(Q), the functions t — Jo T?¢dx and t — [ T ¢dx belong to
HY(0,T) and for the same subsequence we have

[T%dx — / Tpdx in L*(0,T) and in C([0,T])
Q Q

and

/ TO pdx — / T ¢dx in HY(0,T).
9) Q
Proof. The proof follows the lines of Lemma 3.3 in [11]. O

Step 2. (Recovering the weak and strong formulations of problem (P°Y)). This
step is more delicate and its success strongly depends on the regularity constraints
from Assumptions (B). We skip here the proof and refer the reader to [11], where
a scalar case has been treated in full details. To recover the ordinary differential
equation for R°, one proves first that the sequence (R‘S) is a Cauchy sequence in a
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suitable functions space. Section 5.1 from [19] provides the insight needed to show
this property.

Step 3. (Uniqueness of weak solutions to problem (P°Y)). Since the system is
semi-linear, the globally Lipschitz non-linearity of the production term by chemical
reaction ensures the desired uniqueness of (weak) solutions.

Step 4. (Removing the w-dependency. Projection on ). Integrating the PDE
system over the w-variable reduces the formulation of the model posed on Qtoa
formulation posed on the “plate” ). Integrating over the reaction term does not
commute with the nonlinearity. This requires a proof of a corrector estimate of the
type claimed in (43), viz.

Claim 6.6. The inequality

1 1
|/ W (T°,C°) dw — W(/ T‘de,/ c5dw> e (43)
0 0

holds true for an appropriate constant C independent of the choice of 6.

Proof. (of Claim 6.6) We prove the result (43) by inserting the d§-depending esti-
mates from Lemma 6.3 into the inequality given by the following auxiliary Lemma.

Lemma 6.7. Let o, f € HY(Q)NL®(Q). Then for any w* € [0,1] and a.e. X € Q,
it exists a constant ¢ > 0 such that

1
Ha(X,w*)ﬂ(X,w*)f/o a(X,w)ﬂ(X,w)de%z(Q)

<e (IVualif ) + IVublz)) - (44)
Proof. (of Lemma 6. 7) For all (X, w) € Q, denote ¥(z,w) := a(X,w*)F(X,w*)
and (X fo
We have

196D = alffa, = [ (werw) - [ 1@<X,w>dw)2dx

2

_ /Q</01(\I/(X,w*)—\I/(X,w))dw> X
_ /QVOI /w*vl,\I/(X,p)dp‘| duw

< IVl < ¢ (IIVwalBag) + 11VublBaw)) -(45)

dX

The last inequality follows by Minkowski’s inequality. O

Now, take in (45) a := C? and 8 := T° and note that by Lemma 6.3 we have
that ||Vyal|r2) and [|[Vyal|12(q) are of order of O(5). This concludes the proof
of the Claim. O

Note that a corrector estimate related to (43) has been proven in Lemma 4.5
from [48]. Putting now together the information form Step 1 — Step 4 leads to the
statement of Theorem 6.2. O
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7. Numerical illustration of the fingering instability. The case § > ¢ > 0,
0 = O(1). One application of the model derived in the previous sections is the
investigation of a problem of smoldering combustion under microgravity. The per-
tinent problem of fingering instability arises under microgravity conditions when
a porous sample burns against a gaseous oxidizer air, i.e. when the direction of
flow of the oxidizer is opposite to the direction of propagation of the smolder front.
In this sense, the transport of the gaseous oxidizer exerts a destabilizing effect on
an emerging smolder front. For a detailed report on the fingering instability, we
refer the interested reader to [51, 39]. The pattern-forming dynamics described
here resembles those occurring in low Lewis number premixed [17, 29] and non-
premixed [9, 42, 50, 30] flames. Thus, to maintain adequate precautions regarding
fire hazards, particularly in a microgravity spacecraft [39], the fingering phenome-
non becomes fundamentally insightful to understanding the mechanism of smolder
spread in such environments. In this section, we simply illustrate an application
of the macroscopic equations with effective diffusion constants recovered via two-
scale convergence for the typical case § > € > 0, § = O(1). For this scenario, we
consider a simple two-dimensional unit cell Y = [0, 1]? containing a circular open
set (solid part), Y;, with a smooth boundary I'. The physical parameters used in
the numerical simulation have been taken from [25]. The numerical method for the
results depicted in Figure 6 and 7 are based on a quadratic finite elements algorithm
on an unstructured triangular mesh. In Figure 7, a stabilized Streamline-Upwind
Petrov-Galerkin (SUPG) method, implemented in COMSOL Multiphysics®, was
used. The time-stepping was performed using a Backward Differentiation Formula
(BDF). The time step of the computation is dt = 0.012. The gaseous part is denoted

Yq

FIGURE 5. Unit cell used in the current simulations.

by Yy := Y \ Yy, as depicted in Figure 5. The steps of our numerical multiscale
homogenization procedure are as follows:

1. Solve the cell problems in each of the canonical e; directions for the temper-
ature and concentration fields;

2. Calculate the effective thermal conductivity and diffusion tensors using the
solutions of the cell problems;

3. Solve the coupled system of homogenized problems for the temperature 7°
and concentration C° fields.

In Figure 6, we illustrate the solutions to the cell problems for the temperature and
concentration fields. The cell functions w; allow to compute the effective diffusion
matrices depicted in (46) . The numerical results in Figure 6 were obtained on a unit
domain with periodic boundary conditions. In Figure 6(c)-(d), the computation was
restricted on the gas part, Y;, of the domain. Since the geometry of the problem is
symmetric, the effective thermal conductivity and diffusion constants are isotropic,
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FIGURE 6. Solutions to the cell problems. For the temperature
field, see top left: wq; and right: ws. For the concentration field,
see bottom left: wy and right: wo

and the calculated values are given viz.

off 3.96 - 10~4 0.00 off 0.080523 0.00

AT = < 0.00  3.96- 10—4> b= = ( 0.00 0.080523) ' (46)
In the next step, the effective diffusion constants are used together with the upscaled
equations in order to verify our homogenization process. The macroscopic system
of equations is used to verify the development of fingering instability of the thin
porous sample described in Section 2. The macroscopic behavior of the captured
flame structure is illustrated in Figure 7, where RV is the char pattern on the surface
of the sample. TP is the macroscopic temperature field, C° the concentration and
W is the nonlinear heat released rate. It should be pointed out that the fingering
instability depicted in Figure 7 results from the thermal-diffusive instability (cf.
[9, 50, 42, 30]) of the competing transport processes. In the model, the instability
manifested at small values of the Lewis number. For the computation, we have used
a value of Le = 0.09. The structure of the nonlinearity is also important, since it
provides the desired coupling between heat and mass transport. In Figure 7(b)

8. Discussion. We keep as further work the case § = O(e), when ¢ vanishes uni-
formly (in space). Since the diagram of taking the limits ¢ — 0 and § — 0 seems
to be commutative, we expect that the concept of thin heterogeneous convergence
cf. [36] can be applied to (P%¢) in a rather straightforward way. The derivation of
corrector estimates in terms of O(g, ) is open; this fact makes unavailable rigorous
MsFEM approximations for this multiscale problem. Particularly critical is how to
proceed in the fast convection case u® = O (8%) and/or in the fast reaction case
A=0(Z), with @ >0, > 0 (or in suitable combinations of both).

For a non-uniform shrinking of the layer (see Figure 8 for an illustration of the
case 0(z) — 0), we expect that a convergence in measures is needed to describe
how the “mass” and the “energy” distribute on the flat supporting surface as the
volume of the layer vanishes; see [41] for a related context. Both cases §(z) = O(1)
and §(x) = O(e) are for the moment open.
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FIGURE 7. Macroscopic profiles of the spatial structure of the flame
front: (a) Temperature T°, (b) Reaction product RY, (c) Active
concentration C?, (d) Heat released rate W (C?,TY). The macro-
scopic model was rescaled according to [25, 24], which introduces
some dimensionless parameters. Ignition is initiated at the bottom
and oxidizer gas is passed from the top. The char propagation is
from bottom of the domain to top. The simulation corresponds to
Le =0.09 and Pe = 10.

FIGURE 8. Heterogeneous thin layer of height of order of O(4(z)):
Microscopic view (left) and macroscopic view (right).
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