Parametrized problems involve high computational costs when looking for the proper values of their input parameters and solved with classical schemes. Reduced-order models (ROMs) based on the proper orthogonal decomposition act as alternative numerical schemes that speed up computational times while maintaining the accuracy of the solutions. They can be used to obtain solutions in a less expensive way for different values of the input parameters. The samples that compose the training set determine some computational limits on the solution that can be computed by the ROM. It is highly interesting to study what can be done to overcome these limits. In this article, the possibilities to obtain solutions to parametrized problems are explored and illustrated with several numerical cases using the two–dimensional (2D) advection–diffusion–reaction equation and the 2D wildfire propagation model.
Citation: P. Solán-Fustero, J. L. Gracia, A. Navas-Montilla, Pilar García-Navarro. Paramatrized intrusive POD-based reduced-order models applied to advection–diffusion–reaction problems[J]. Mathematical Biosciences and Engineering, 2025, 22(7): 1825-1860. doi: 10.3934/mbe.2025066
Parametrized problems involve high computational costs when looking for the proper values of their input parameters and solved with classical schemes. Reduced-order models (ROMs) based on the proper orthogonal decomposition act as alternative numerical schemes that speed up computational times while maintaining the accuracy of the solutions. They can be used to obtain solutions in a less expensive way for different values of the input parameters. The samples that compose the training set determine some computational limits on the solution that can be computed by the ROM. It is highly interesting to study what can be done to overcome these limits. In this article, the possibilities to obtain solutions to parametrized problems are explored and illustrated with several numerical cases using the two–dimensional (2D) advection–diffusion–reaction equation and the 2D wildfire propagation model.
| [1] | W. Hundsdorfer, J. G. Verwer, Numerical Solution of Time-Dependent advection–diffusion–reaction Equations, Springer Series in Computational Mathematics, Springer Berlin Heidelberg, 2013. |
| [2] |
B. Q. Li, J. W. Evans, Boundary element solution of heat convection-diffusion problems, J. Comput. Phys., 93 (1991), 255–272. https://doi.org/10.1016/0021-9991(91)90181-J doi: 10.1016/0021-9991(91)90181-J
|
| [3] |
A. Boddy, E. Bentz, M. D. A. Thomas, R. D. Hooton, An overview and sensitivity study of a multimechanistic chloride transport model, Cem. Concr. Res., 29 (1999), 827–837. https://doi.org/10.1016/S0008-8846(99)00045-9 doi: 10.1016/S0008-8846(99)00045-9
|
| [4] |
F. Pigeonneau, L. Pereira, A. Laplace, Mass transfer around a rising bubble in a glass-forming liquid involving oxidation-reduction reaction: Numerical computation of the Sherwood number, Chem. Eng. Sci., 232 (2021), 116382. https://doi.org/10.1016/j.ces.2020.116382 doi: 10.1016/j.ces.2020.116382
|
| [5] |
J. Mandel, L. S. Bennethum, J. D. Beezley, J. L. Coen, C. C. Douglas, M. Kim, et al., A wildland fire model with data assimilation, Math. Comput. Simul., 79 (2008), 584–606. https://doi.org/10.1016/j.matcom.2008.03.015 doi: 10.1016/j.matcom.2008.03.015
|
| [6] | P. W. McDonald, The computation of transonic flow through two-dimensional gas turbine cascades, in Turbo Expo: Power for Land, Sea, and Air, American Society of Mechanical Engineers, (1971), V001T01A089. https://doi.org/10.1115/71-GT-89 |
| [7] | W. Maccormack, A. J. Paullay, Computational Efficiency Achieved by Time Splitting of Finite Difference Operators, AIAA, 1972. https://doi.org/10.2514/6.1972-154 |
| [8] | S. K. Godunov, I. Bohachevsky, Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics, Mat. Sbornik, 47 (1959), 271–306. |
| [9] | R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics, Cambridge University Press, 2002. https://doi.org/10.1017/CBO9780511791253 |
| [10] |
B. O. Almroth, P. Stern, F. A. Brogan, Automatic choice of global shape functions in structural analysis, AIAA J., 16 (1978), 525–528. https://doi.org/10.2514/3.7539 doi: 10.2514/3.7539
|
| [11] | J. L. Lumley, The structure of inhomogeneous turbulent flows, Atmos. Turbul. Radio Wave Propag., (1967), 166–176. |
| [12] | I. Akhtar, Z. Wang, J. Borggaard, T. Iliescu, A new closure strategy for proper orthogonal decomposition reduced-order models, J. Comput. Nonlinear Dyn., 7 (2012), 034503. |
| [13] |
C. Prud'Homme, D. V. Rovas, K. Veroy, L. Machiels, Y. Maday, A. T. Patera, et al., Reliable real-time solution of parametrized partial differential equations: Reduced-basis output bound methods, J. Fluids Eng., 124 (2001), 70–80. https://doi.org/10.1115/1.1448332 doi: 10.1115/1.1448332
|
| [14] | A. Quarteroni, A. Manzoni, F. Negri, Reduced Basis Methods for Partial Differential Equations: An Introduction, Springer, Cham, 92 (2016). https://doi.org/10.1007/978-3-319-15431-2 |
| [15] |
P. Solán-Fustero, J. L. Gracia, A. Navas-Montilla, P. García-Navarro, A POD-based ROM strategy for the prediction in time of advection-dominated problems, J. Comput. Phys., 471 (2022), 111672. https://doi.org/10.1016/j.jcp.2022.111672 doi: 10.1016/j.jcp.2022.111672
|
| [16] | M. Ohlberger, S. Rave, Reduced basis methods: Success, limitations and future challenges, in Proceedings of the Conference Algoritmy, (2016), 1–12. |
| [17] |
T. Taddei, A registration method for model order reduction: Data compression and geometry reduction, SIAM J. Sci. Comput., 42 (2020), A997–A1027. https://doi.org/10.1137/19M1271270 doi: 10.1137/19M1271270
|
| [18] |
R. R. Sánchez, M. Buchschmid, G. Müller, Model order reduction in design of parameterized structures under different load configurations, Procedia Eng., 199 (2017), 378–383. https://doi.org/10.1016/j.proeng.2017.09.049 doi: 10.1016/j.proeng.2017.09.049
|
| [19] |
S. Burela, P. Krah, J. Reiss, Parametric model order reduction for a wildland fire model via the shifted pod-based deep learning method: Parametric model order reduction for a wildland fire model, Adv. Comput. Math., 51 (2025), 9. https://doi.org/10.1007/s10444-025-10220-4 doi: 10.1007/s10444-025-10220-4
|
| [20] |
J. M. Zokagoa, A. Soulaïmani, A POD-based reduced-order model for uncertainty analyses in shallow water flows, Int. J. Comput. Fluid Dyn., 32 (2018), 278–292. https://doi.org/10.1080/10618562.2018.1513496 doi: 10.1080/10618562.2018.1513496
|
| [21] |
F. Black, P. Schulze, B. Unger, Efficient wildland fire simulation via nonlinear model order reduction, Fluids, 6 (2021), 280. https://doi.org/10.3390/fluids6080280 doi: 10.3390/fluids6080280
|
| [22] |
F. Black, P. Schulze, B. Unger, Projection-based model reduction with dynamically transformed modes, ESAIM Math. Model. Numer. Anal., 54 (2020), 2011–2043. https://doi.org/10.1051/m2an/2020046 doi: 10.1051/m2an/2020046
|
| [23] |
K. Miller, R. N. Miller, Moving finite elements. Ⅰ, SIAM J. Numer. Anal., 18 (1981), 1019–1032. https://doi.org/10.1137/0718070 doi: 10.1137/0718070
|
| [24] |
J. Fu, D. Xiao, R. Fu, C. Li, C. Zhu, R. Arcucci, et al., Physics-data combined machine learning for parametric reduced-order modelling of nonlinear dynamical systems in small-data regimes, Comput. Methods Appl. Mech. Eng., 404 (2023), 115771. https://doi.org/10.1016/j.cma.2022.115771 doi: 10.1016/j.cma.2022.115771
|
| [25] |
R. Fu, D. Xiao, A. G. Buchan, X. Lin, Y. Feng, G. Dong, A parametric nonlinear non-intrusive reduce-order model using deep transfer learning, Com. Met. App. Mec. Eng.Comput. Methods Appl. Mech. Eng., 438 (2025), 117807. https://doi.org/10.1016/j.cma.2025.117807 doi: 10.1016/j.cma.2025.117807
|
| [26] |
X. Pan, D. Xiao, Domain decomposition for physics-data combined neural network based parametric reduced order modelling, J. Comput. Phys., 519 (2024), 113452. https://doi.org/10.1016/j.jcp.2024.113452 doi: 10.1016/j.jcp.2024.113452
|
| [27] |
S. Georgaka, G. Stabile, G. Rozza, M. Bluck, Parametric pod-galerkin model order reduction for unsteady-state heat transfer problems, Commun. Comput. Phys., 27 (2018), 1–32. https://doi.org/10.4208/cicp.OA-2018-0207 doi: 10.4208/cicp.OA-2018-0207
|
| [28] |
C. Reisch, A. Navas-Montilla, I. Özgen-Xian, Analytical and numerical insights into wildfire dynamics: Exploring the advection–diffusion–reaction model, Comput. Math. Appl., 158 (2024), 179–198. https://doi.org/10.1016/j.camwa.2024.01.024 doi: 10.1016/j.camwa.2024.01.024
|
| [29] | M. A. Finney, FARSITE: Fire Area Simulator-model Development and Evaluation, 1998. http://doi.org/10.2737/RMRS-RP-4. |
| [30] |
G. L. W. Perry, Current approaches to modelling the spread of wildland fire: a review, Prog. Phys. Geogr., 22 (1998), 222–245. https://doi.org/10.1177/030913339802200204 doi: 10.1177/030913339802200204
|
| [31] |
M. E. Hubbard, Multidimensional slope limiters for MUSCL-type finite volume schemes on unstructured grids, J. Comput. Phys., 155 (1999), 54–74. https://doi.org/10.1006/jcph.1999.6329 doi: 10.1006/jcph.1999.6329
|
| [32] |
R. J. LeVeque, A well-balanced path-integral f-wave method for hyperbolic problems with source terms, J. Sci. Comput., 58 (2011), 209–226. https://doi.org/10.1007/s10915-010-9411-0 doi: 10.1007/s10915-010-9411-0
|
| [33] |
R. Courant, K. Friedrichs, H. Lewy, Über die partiellen Differenzengleichungen der mathematischen Physik, Math. Ann., 100 (1928), 32–74. https://doi.org/10.1007/BF01448839 doi: 10.1007/BF01448839
|
| [34] |
P. García-Navarro, M. E. Vázquez-Cendón, On numerical treatment of the source terms in the shallow water equations, Comput. Fluids, 29 (2000), 951–979. https://doi.org/10.1016/S0045-7930(99)00038-9 doi: 10.1016/S0045-7930(99)00038-9
|
| [35] |
J. Murillo, P. García-Navarro, Weak solutions for partial differential equations with source terms: Application to the shallow water equations, J. Comput. Phys., 229 (2010), 4327–4368. https://doi.org/10.1016/j.jcp.2010.02.016 doi: 10.1016/j.jcp.2010.02.016
|
| [36] | H. Berestycki, B. Larrouturou, J. M. Roquejoffre, Mathematical investigation of the cold boundary difficulty in flame propagation theory, in Dynamical Issues in Combustion Theory (eds. P. C. Fife, A. Liñán, and F. Williams), Springer, New York, (1991), 37–61. |
| [37] |
A. Navas-Montilla, J. Guallart, P. Solán-Fustero, P. García-Navarro, Exploring the potential of TENO and WENO schemes for simulating under-resolved turbulent flows in the atmosphere using Euler equations, Comput. Fluids, 280 (2024) 106349. https://doi.org/10.1016/j.compfluid.2024.106349 doi: 10.1016/j.compfluid.2024.106349
|
| [38] |
L. Sirovich, Turbulence and the dynamics of coherent structures. Ⅰ - Coherent structures. Ⅱ - Symmetries and transformations. Ⅲ - Dynamics and scaling, Q. Appl. Math., 45 (1987), 561–590. https://doi.org/10.1090/qam/910463 doi: 10.1090/qam/910463
|
| [39] | G. H. Golub, C. F. Van Loan, Matrix Computations, Johns Hopkins University Press, 2013. |
| [40] | B. G. Galerkin, Series occurring in various questions concerning the elastic equilibrium of rods and plates, Eng. Bull., 19 (1915), 897–908. |
| [41] | P. Solán-Fustero, Reduced-order Models Based on the Proper Orthogonal Decomposition Applied to Hyperbolic Problems, Ph.D thesis, University of Zaragoza, 2024. |