We present a general version of Massera's theorems for arbitrary discrete domains, based on a newly introduced definition for both linear and nonlinear equations. For scalar nonlinear equations, we identify sufficient conditions that ensure each $ \mu $-bounded solution approaches a periodic solution asymptotically. In the case of linear systems, we prove that the presence of a $ \mu $-bounded solution necessarily leads to a periodic solution. We also provide some examples to show the practical implications of our findings.
Citation: Martin Bohner, Jaqueline G. Mesquita, Sabrina Streipert. Massera's theorem on arbitrary discrete time domains[J]. Mathematical Biosciences and Engineering, 2025, 22(7): 1861-1874. doi: 10.3934/mbe.2025067
We present a general version of Massera's theorems for arbitrary discrete domains, based on a newly introduced definition for both linear and nonlinear equations. For scalar nonlinear equations, we identify sufficient conditions that ensure each $ \mu $-bounded solution approaches a periodic solution asymptotically. In the case of linear systems, we prove that the presence of a $ \mu $-bounded solution necessarily leads to a periodic solution. We also provide some examples to show the practical implications of our findings.
| [1] |
J. L. Massera, The existence of periodic solutions of systems of differential equations, Duke Math. J., 17 (1950), 457–475. https://doi.org/10.1215/S0012-7094-50-01741-8 doi: 10.1215/S0012-7094-50-01741-8
|
| [2] |
S. Murakami, T. Naito, N. V. Minh, Massera's theorem for almost periodic solutions of functional differential equations, J. Math. Soc. Jpn., 56 (2004), 247–268. https://doi.org/10.2969/jmsj/1191418705 doi: 10.2969/jmsj/1191418705
|
| [3] |
Q. Liu, N. Van Minh, G. Nguerekata, R. Yuan, Massera type theorems for abstract functional differential equations, Funkcialaj Ekvacioj, 51 (2008), 329–350. https://doi.org/10.1619/fesi.51.329 doi: 10.1619/fesi.51.329
|
| [4] |
Y. Li, Z. Lin, Z. Li, A Massera type criterion for linear functional-differential equations with advance and delay, J. Math. Anal. Appl., 200 (1996), 717–725. https://doi.org/10.1006/jmaa.1996.0235 doi: 10.1006/jmaa.1996.0235
|
| [5] | R. Benkhalti, K. Ezzinbi, A Massera type criterion for some partial functional differential equations, Dyn. Syst. Appl., 9 (2000), 221–228. |
| [6] |
R. Benkhalti, H. Bouzahir, K. Ezzinbi, Existence of a periodic solution for some partial functional-differential equations with infinite delay, J. Math. Anal. Appl., 256 (2001), 257–280. https://doi.org/10.1006/jmaa.2000.7321 doi: 10.1006/jmaa.2000.7321
|
| [7] |
M. Hayashi, On the improved Massera's theorem for the unique existence of the limit cycle for a Liénard equation, Rend. Istit. Mat. Univ. Trieste, 48 (2016), 487–493. https://doi.org/10.13137/2464-8728/13168 doi: 10.13137/2464-8728/13168
|
| [8] | G. Villari, An improvement of Massera's theorem for the existence and uniqueness of a periodic solution for the Liénard equation, Rend. Istit. Mat. Univ. Trieste, 44 (2012), 187–195. |
| [9] |
M. Bohner, J. G. Mesquita, Massera's theorem in quantum calculus, Proc. Am. Math. Soc., 146 (2018), 4755–4766. https://doi.org/10.1090/proc/14116 doi: 10.1090/proc/14116
|
| [10] |
J. Campos, Massera's theorem for monotone dynamical systems in three dimensions, J. Math. Anal. Appl., 269 (2002), 607–615. https://doi.org/10.1016/S0022-247X(02)00039-2 doi: 10.1016/S0022-247X(02)00039-2
|
| [11] |
C. Huang, B. Liu, H. Yang, J. Cao, Positive almost periodicity on SICNNs incorporatingmixed delays and D operator, Nonlinear Anal. Mod. Control, 27 (2022), 719–739. https://doi.org/10.15388/namc.2022.27.27417 doi: 10.15388/namc.2022.27.27417
|
| [12] |
Z. Yu, L. Li, W. Zhang, Dynamic behaviors of a symmetrically coupled period-doubling system, J. Math. Anal. Appl., 512 (2022), 126189. https://doi.org/10.1016/j.jmaa.2022.126189 doi: 10.1016/j.jmaa.2022.126189
|
| [13] |
S. Gong, M. Han, An estimate of the number of limit cycles bifurcating from a planar integrable system, Bull. Sci. Math., 176 (2022), 103118. https://doi.org/10.1016/j.bulsci.2022.103118 doi: 10.1016/j.bulsci.2022.103118
|
| [14] |
H. Liu, L. Zhao, Ground-state solution of a nonlinear fractional Schr?dinger-Poisson system, Math. Methods Appl. Sci., 45 (2022), 1934–1958. https://doi.org/10.1002/mma.7899 doi: 10.1002/mma.7899
|
| [15] |
L. Wang, H. Liu, Ground state solution of Kirchhoff problems with Hartree type nonlinearity, Qual. Theory Dyn. Syst., 21 (2022), 136. https://doi.org/10.1007/s12346-022-00668-w doi: 10.1007/s12346-022-00668-w
|
| [16] | M. Es-saiydy, I. Oumadane, M. Zitane, Massera problem for some nonautonomous functional differential equations of neutral type with finite delay, Russ. Math., 66 (2022), 49–59. |
| [17] |
T. Naito, N. V. Minh, J. S. Shin, A Massera type theorem for functional differential equations with infinite delay, Jpn. J. Math., 28 (2002), 31–49. https://doi.org/10.4099/math1924.28.31 doi: 10.4099/math1924.28.31
|
| [18] | E. Herńandez, A Massera type criterion for a partial neutral functional differential equation, Cad. Mat., 3 (2002), 149–166. |
| [19] | K. Wang, M. Fan, M. Y. Li, A Massera theorem for quasi-linear partial differential equations of first order, Rocky Mt. J. Math., 36 (2006), 1715–1727. |
| [20] |
M. Bohner, J. G. Mesquita, S. Streipert, Periodicity on isolated time scales, Math. Nachr., 295 (2022), 259–280. https://doi.org/10.1002/mana.201900360 doi: 10.1002/mana.201900360
|
| [21] | M. Bohner, A. Peterson, Advances in Dynamic Equations on Time Scales, Birkhäuser Boston, Inc., Boston, MA, 2003. https://doi.org/10.1007/978-1-4612-0201-1 |
| [22] | M. Bohner, A. Peterson, Dynamic Equations on Time Scales, Birkhäuser Boston, Inc., Boston, MA, 2001. |
| [23] |
A. Lavagno, N. P. Swamy, $q$-deformed structures and nonextensive statistics: a comparative study, Physica A, 305 (2002), 310–315. https://doi.org/10.1016/S0378-4371(01)00680-X doi: 10.1016/S0378-4371(01)00680-X
|
| [24] |
A. Lavagno, A. M. Scarfone, N. P. Swamy, Basic-deformed thermostatistics, J. Phys. A, 40 (2007), 8635–8654. https://doi.org/10.1088/1751-8113/40/30/003 doi: 10.1088/1751-8113/40/30/003
|
| [25] |
M. Adivar, A new periodicity concept for time scales, Math. Slovaca, 63 (2013), 817–828. https://doi.org/10.2478/s12175-013-0127-0 doi: 10.2478/s12175-013-0127-0
|
| [26] |
H. Koyuncuoģlu, Unified Massera type theorems for dynamic equations on time scales, Filomat, 37 (2023), 2405–2419. https://doi.org/10.2298/FIL2308405K doi: 10.2298/FIL2308405K
|
| [27] | R. J. H. Beverton, S. J. Holt, On the Dynamics of Exploited Fish Populations, Chapman and Hall, London, 1957. |
| [28] | M. Bohner, S. Stević, H. Warth, The Beverton–Holt Difference Equation, World Sci. Publ. Hackensack, NJ, (2010), 189–193. |
| [29] |
M. Bohner, T. Cuchta, S. Streipert, Delay dynamic equations on isolated time scales and the relevance of one-periodic coefficients, Math. Methods Appl. Sci., 45 (2022), 5821–5838. https://doi.org/10.1002/mma.8141 doi: 10.1002/mma.8141
|