[1]
|
M. Sohail, U. Nazir, A. Singh, A. Tulu, M. J. Khan, Finite element analysis of cross fluid model over a vertical disk suspended to a tetra hybrid nanoparticles mixture, Sci. Rep. , 14 (2024), 1520. https://doi.org/10.1038/s41598-024-51262-w doi: 10.1038/s41598-024-51262-w
|
[2]
|
M. D. Shamshuddin, N. Akkurt, A. Saeed, P. Kumam, Radiation mechanism on dissipative ternary hybrid nanoliquid flow through rotating disk encountered by Hall currents: HAM solution, Alex. Eng. J. , 65 (2023), 543–559. https://doi.org/10.1016/j.aej.2022.10.021 doi: 10.1016/j.aej.2022.10.021
|
[3]
|
M. D. Shamshuddin, Z. Raizah, N. Akkurt, V. S. Patil, S. M. Eldin, Case study of thermal and solutal aspects on non-Newtonian Prandtl hybrid nanofluid flowing via stretchable sheet: Multiple slip solution, Case Stud. Therm. Eng. , 49 (2023), 103186. https://doi.org/10.1016/j.csite.2023.103186 doi: 10.1016/j.csite.2023.103186
|
[4]
|
M. D. Shamshuddin, S. O. Salawu, S. Panda, S. R. Mishra, A. Alanazy, M. R. Eid, Thermal case exploration of electromagnetic radiative tri-hybrid nanofluid flow in Bi-directional stretching device in absorbent medium: SQLM analysis, Case Stud. Therm. Eng. , 60 (2024), 104734. https://doi.org/10.1016/j.csite.2024.104734 doi: 10.1016/j.csite.2024.104734
|
[5]
|
A. Ali, Z. Khan, M. Sun, T. Muhammad, K. A. M. Alharbi, Numerical investigation of heat and mass transfer in micropolar nanofluid flows over an inclined surface with stochastic numerical approach, Eur. Phys. J. Plus, 139 (2024), 957. https://doi.org/10.1140/epjp/s13360-024-05676-0 doi: 10.1140/epjp/s13360-024-05676-0
|
[6]
|
Z. Khan, W. F. Alfwzan, A. Ali, N. Innab, S. Zuhra, S. Islam, Intelligent computing for electromagnetohydrodynamic bioconvection flow of micropolar nanofluid with thermal radiation and stratification: Levenberg–Marquardt backpropagation algorithm, AIP Adv. , 14 (2024), 035101. https://doi.org/10.1063/5.0187124 doi: 10.1063/5.0187124
|
[7]
|
A. M. Alqahtani, M. Bilal, F. A. A. Elsebaee, S. M. Eldin, T. R. Alsenani, A. Ali, Energy transmission through carreau yasuda fluid influenced by ethylene glycol with activation energy and ternary hybrid nanocomposites by using a mathematical model, Heliyon, 9 (2023), e15074. https://doi.org/10.1016/j.heliyon.2023.e14740 doi: 10.1016/j.heliyon.2023.e14740
|
[8]
|
K. U. Rahman, Z. Mahmood, S. U. Khan, A. Ali, Z. Li, I. Tlili, Enhanced thermal study in hybrid nanofluid flow in a channel motivated by graphene/Fe3O4 and Newtonian heating, Results Eng. , 21 (2024), 101772. https://doi.org/10.1016/j.rineng.2024.101772 doi: 10.1016/j.rineng.2024.101772
|
[9]
|
A. Jan, M. Mushtaq, M. Hussain, Heat transfer enhancement of forced convection magnetized cross model ternary hybrid nanofluid flow over a stretching cylinder: non-similar analysis, Int. J. Heat Fluid Flow, 106 (2024), 109302. https://doi.org/10.1016/j.ijheatfluidflow.2024.109302
|
[10]
|
M. Rahman, H. Waheed, M. Turkyilmazoglu, M. S. Siddiqui, Darcy–Brinkman porous medium for dusty fluid flow with steady boundary layer flow in the presence of slip effect, Int. J. Mod. Phys. B, 38 (2024), 2450152. https://doi.org/10.1142/S0217979224501522 doi: 10.1142/S0217979224501522
|
[11]
|
A. Rehman, M. S. Al-Buriahi, H. E. Ali, R. Jan, I. A. Khan, Analytical simulation of Darcy–Forchheimer nanofluid flow over a curved expanding permeable surface, Fluid Dyn. Res. , 56 (2024), 065503. https://doi.org/10.1088/1873-7005/ad8b67 doi: 10.1088/1873-7005/ad8b67
|
[12]
|
I. Khan, R. Zulkifli, T. Chinyoka, Z. Ling, M. A. Shah, Numerical analysis of radiative MHD gravity-driven thin film third-grade fluid flow with exothermic reaction and modified Darcy's law on an inclined plane, Mech. Time-Depend. Mater. , 29 (2025), 12. https://doi.org/10.1007/s11043-024-09744-x doi: 10.1007/s11043-024-09744-x
|
[13]
|
T. Hayat, M. Shafique, A. Tanveer, A. Alsaedi, Magnetohydrodynamic effects on peristaltic flow of hyperbolic tangent nanofluid with slip conditions and Joule heating in an inclined channel, Int. J. Heat Mass Transf. , 102 (2016), 54–63. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.105 doi: 10.1016/j.ijheatmasstransfer.2016.05.105
|
[14]
|
H. Adun, M. Abid, D. Kavaz, Y. Hu, J. H. Zaini, Optimizing the thermophysical behavior of a novel ternary hybrid nanofluid for energy applications through experimental research, Heliyon, 10 (2024), e32728. https://doi.org/10.1016/j.heliyon.2024.e32728 doi: 10.1016/j.heliyon.2024.e32728
|
[15]
|
S. A. Lone, Z. Raizah, H. Alrabaiah, S. Shahab, A. Saeed, A. Khan, Exploring convective conditions in three-dimensional rotating ternary hybrid nanofluid flow over an extending sheet: A numerical analysis, J. Therm. Anal. Calorim., 2024. https://doi.org/10.1007/s10973-024-13070-2
|
[16]
|
I. Khan, M. W. Ahmed Khan, Artificial neural networking for computational assessment of ternary hybrid nanofluid flow caused by a stretching sheet: Implications of machine-learning approach, Eng. Appl. Comput. Fluid Mech. , 18 (2024), 2411786. https://doi.org/10.1080/19942060.2024.2411786 doi: 10.1080/19942060.2024.2411786
|
[17]
|
T. N. Tanuja, S. Manjunatha, H. S. Migdadi, R. Saadeh, A. Qazza, U. Khan, et al., Leveraging artificial neural networks approach for thermal conductivity evaluation in porous rectangular wetted fins filled with ternary hybrid nanofluid, J. Radiat. Res. Appl. Sci. , 17 (2024), 101125. https://doi.org/10.1016/j.jrras.2024.101125 doi: 10.1016/j.jrras.2024.101125
|
[18]
|
H. Kim, Y. Do, S. Ramachandran, M. Sankar, K. Thirumalaisamy, Computational analysis of magnetohydrodynamic ternary-hybrid nanofluid flow and heat transfer inside a porous cavity with shape effects, Phys. Fluids, 36 (2024), 082008. https://doi.org/10.1063/5.0222802 doi: 10.1063/5.0222802
|
[19]
|
D. Mohanty, G. Mahanta, S. Shaw, Irreversibility and thermal performance of nonlinear radiative cross-ternary hybrid nanofluid flow about a stretching cylinder with industrial applications, Powder Technol. , 433 (2024), 119255. https://doi.org/10.1016/j.powtec.2023.119255 doi: 10.1016/j.powtec.2023.119255
|
[20]
|
A. Z. Ullah, X. Guo, T. Gul, I. Ali, A. Saeed, A. M. Galal, Thin film flow of the ternary hybrid nanofluid over a rotating disk under the influence of magnetic field due to nonlinear convection, J. Magn. Magn. Mater. , 573 (2023), 170673. https://doi.org/10.1016/j.jmmm.2023.170673 doi: 10.1016/j.jmmm.2023.170673
|
[21]
|
D. Mohanty, G. Mahanta, S. Shaw, R. Katta, Entropy and thermal performance on shape-based 3D tri-hybrid nanofluid flow due to a rotating disk with statistical analysis, J. Therm. Anal. Calorim. , 149 (2024), 12285–12306. https://doi.org/10.1007/s10973-024-13592-9 doi: 10.1007/s10973-024-13592-9
|
[22]
|
M. Faizan, M. Ajithkumar, M. V. Reddy, M. A. Jamal, B. Almutairi, N. A. Shah, J. D. Chung, A theoretical analysis of the ternary hybrid nano-fluid with Williamson fluid model, Ain Shams Eng. J. , 15 (2024), 102839. https://doi.org/10.1016/j.asej.2024.102839 doi: 10.1016/j.asej.2024.102839
|
[23]
|
M. Ramzan, F. Ali, N. Akkurt, A. Saeed, P. Kumam, A. M. Galal, Computational assessment of Carreau ternary hybrid nanofluid influenced by MHD flow for entropy generation, J. Magn. Magn. Mater. , 567 (2023), 170353. https://doi.org/10.1016/j.jmmm.2023.170353 doi: 10.1016/j.jmmm.2023.170353
|
[24]
|
A. Mishra, S. K. Rawat, M. Yaseen, M. Pant, Development of machine learning algorithm for assessment of heat transfer of ternary hybrid nanofluid flow towards three different geometries: Case of artificial neural network, Heliyon, 9 (2023), e21436. https://doi.org/10.1016/j.heliyon.2023.e21453 doi: 10.1016/j.heliyon.2023.e21453
|
[25]
|
A. Mishra, Analysis of waste discharge concentration in radiative hybrid nanofluid flow over a stretching/shrinking sheet with chemical reaction, Mech. Time-Depend. Mater. , 29 (2025), 7. https://doi.org/10.1007/s11043-024-09752-x doi: 10.1007/s11043-024-09752-x
|
[26]
|
A. Mishra, Significance of Thompson and Troian slip effects on Fe3O4-CoFe2O4 ethylene glycol-water hybrid nanofluid flow over a permeable plate, Hybrid Adv. , 6 (2024), 100262. https://doi.org/10.1016/j.hybadv.2024.100262 doi: 10.1016/j.hybadv.2024.100262
|
[27]
|
A. Mishra, Hydrothermal performance of hybrid nanofluid flow over an exponentially stretching sheet influenced by gyrotactic microorganisms: A comparative evaluation of Yamada-Ota and Xue models, Numer. Heat Transf. Part A Appl., 2024, 1–30. https://doi.org/10.1080/10407782.2024.2363496
|
[28]
|
G. Ramasekhar, F. Mebarek-Oudina, S. Suneetha, H. Vaidya, P. D. Selvi, Computational simulation of Casson hybrid nanofluid flow with Rosseland approximation and uneven heat source/sink, Int. J. Thermofluids, 24 (2024), 100893. https://doi.org/10.1016/j.ijft.2024.100893 doi: 10.1016/j.ijft.2024.100893
|
[29]
|
N. Z. Basha, F. Mebarek-Oudina, R. Choudhari, H. Vaidya, B. Hadimani, K. V. Prasad, et al., Thermal radiation effect on mixed convective Casson fluid flow over a porous stretching sheet with variable fluid properties, J. Adv. Res. Fluid Mech. Therm. Sci. , 111 (2023), 1. https://doi.org/10.37934/arfmts.111.1.127 doi: 10.37934/arfmts.111.1.127
|
[30]
|
I. Chabani, F. Mebarek-Oudina, Convection with Cu-MgO/Water hybrid nanofluid and discrete heating, In: Mathematical Modelling of Fluid Dynamics and Nanofluids, CRC Press, 2023,495–510.
|
[31]
|
A. Mezaache, F. Mebarek-Oudina, H. Vaidya, Y. Fouad, Heat transfer analysis of nanofluid flow with entropy generation in a corrugated heat exchanger channel partially filled with porous medium, Heat Trans. , 53 (2024), 4625–4647. https://doi.org/10.1002/htj.23149 doi: 10.1002/htj.23149
|
[32]
|
L. S. Sundar, E. V. Ramana, M. K. Singh, A. C. Sousa, Thermal conductivity and viscosity of stabilized ethylene glycol and water mixture Al2O3 nanofluids for heat transfer applications: An experimental study, Int. Commun. Heat Mass Trans. , 56 (2014), 86–95. https://doi.org/10.1016/j.icheatmasstransfer.2014.06.009 doi: 10.1016/j.icheatmasstransfer.2014.06.009
|
[33]
|
Y. Zhang, N. Shahmir, M. Ramzan, H. A. S. Ghazwani, M. Y. Malik, Comparative analysis of Maxwell and Xue models for a hybrid nanofluid film flow on an inclined moving substrate, Case Stud. Therm. Eng. , 28 (2021), 101598. https://doi.org/10.1016/j.csite.2021.101598 doi: 10.1016/j.csite.2021.101598
|
[34]
|
Y. Zhang, N. Shahmir, M. Ramzan, H. A. S. Ghazwani, M. Y. Malik, Comparative analysis of Maxwell and Xue models for a hybrid nanofluid film flow on an inclined moving substrate, Case Stud. Therm. Eng. , 28 (2021), 101598. https://doi.org/10.1016/j.csite.2021.101598 doi: 10.1016/j.csite.2021.101598
|
[35]
|
A. M. Galal, A. Akgül, S. A. Idris, S. Formanova, T. K. Ibrahim, M. K. Hassani, et al, , The performance evolution of Xue and Yamada-Ota models for local thermal non equilibrium effects on 3D radiative Casson trihybrid nanofluid, Sci. Rep. , 15 (2025), 7325. https://doi.org/10.1038/s41598-025-87257-4 doi: 10.1038/s41598-025-87257-4
|
[36]
|
M. Y. Rafiq, A. Sabeen, A. U. Rehman, Z. Abbas, Comparative study of Yamada-Ota and Xue models for MHD hybrid nanofluid flow past a rotating stretchable disk: Stability analysis, Int. J. Numer. Methods Heat Fluid Flow, 34 (2024), 3793–3819. https://doi.org/10.1108/HFF-01-2024-0060 doi: 10.1108/HFF-01-2024-0060
|
[37]
|
T. Maryam, U. Ahmad, G. Rasool, M. Ashraf, T. Sun, I. Razzaq, Numerical study of the thermal performance of the combined effect of solar energy and variable density around a laminar vertical jet, Case Stud. Therm. Eng. , 56 (2024), 104275. https://doi.org/10.1016/j.csite.2024.104275 doi: 10.1016/j.csite.2024.104275
|
[38]
|
J. C. Mollendorf, B. Gebhart, Thermal buoyancy in round laminar vertical jets, Int. J. Heat Mass Trans. , 16 (1973), 735–745. https://doi.org/10.1016/0017-9310(73)90087-2 doi: 10.1016/0017-9310(73)90087-2
|
[39]
|
T. Mogi, S. Horiguchi, Experimental study on the hazards of high-pressure hydrogen jet diffusion flames, J. Loss Prev. Proc. Ind. , 22 (2009), 45–51. https://doi.org/10.1016/j.jlp.2008.08.006 doi: 10.1016/j.jlp.2008.08.006
|
[40]
|
S. Siddiqa, S. Asghar, M. A. Hossain, Radiation effects in mixed convection flow of a viscous fluid having temperature-dependent density along a permeable vertical plate, J. Eng. Phys. Thermophy. , 85 (2012), 339–348. https://doi.org/10.1007/s10891-012-0658-1 doi: 10.1007/s10891-012-0658-1
|
[41]
|
H. Maurer, C. Kessler, Identification and quantification of ethylene glycol and diethylene glycol in plasma using gas chromatography-mass spectrometry, Arch. Toxicol. , 62 (1988), 66–69. https://doi.org/10.1007/BF00316260 doi: 10.1007/BF00316260
|
[42]
|
A. Mariano, M. J. Pastoriza-Gallego, L. Lugo, A. Camacho, S. Canzonieri, M. M. Piñeiro, Thermal conductivity, rheological behaviour and density of non-Newtonian ethylene glycol-based SnO2 nanofluids, Fluid Phase Equilib. , 337 (2013), 119–124. https://doi.org/10.1016/j.fluid.2012.09.029 doi: 10.1016/j.fluid.2012.09.029
|
[43]
|
S. Mukhopadhyay, P. R. De, K. Bhattacharyya, G. C. Layek, Casson fluid flow over an unsteady stretching surface, Ain Shams Eng. J. , 4 (2013), 933–938. https://doi.org/10.1016/j.asej.2013.04.004 doi: 10.1016/j.asej.2013.04.004
|
[44]
|
M. Y. Rafiq, A. Sabeen, A. U. Rehman, Z. Abbas, Comparative study of Yamada-Ota and Xue models for MHD hybrid nanofluid flow past a rotating stretchable disk: stability analysis, Int. J. Numer. Methods Heat Fluid Flow, 34 (2024), 3793–3819. https://doi.org/10.1108/HFF-01-2024-0060 doi: 10.1108/HFF-01-2024-0060
|