This research explored fractional Kuramoto-Sivashinsky equation analytical solutions through application of the residual power series transform method (RPSTM). The Caputo derivative approach served as the basis to analyze fractional systems since it offered a strong foundation for modeling intricate nonlinear processes. Researchers extended the Kuramoto-Sivashinsky equation through fractional domain application to capture anomalous behavior and memory effects since it showed practical uses in turbulence and plasma dynamics and flame propagation. The RPSTM proposed solution united residual power series method capabilities with integral transforms features to develop an accurate and efficient method for fractional nonlinear partial differential equation solutions. The method enabled accurate approximate solution acquisition while the procedure underwent complete convergence examination. This paper demonstrated the effectiveness and reliability of the developed method through numerical simulation results. The RPSTM proved itself as an effective analytical method for fractional differential problems which reveals vital information about the fractional Kuramoto-Sivashinsky equation behavior. The research added value to existing fractional calculus studies focused on nonlinear science applications.
Citation: Qasem M. Tawhari. Mathematical analysis of time-fractional nonlinear Kuramoto-Sivashinsky equation[J]. AIMS Mathematics, 2025, 10(4): 9237-9255. doi: 10.3934/math.2025424
[1] | Mary J. Bravo, Marco Caponigro, Emily Leibowitz, Benedetto Piccoli . Keep right or left? Towards a cognitive-mathematical model for pedestrians. Networks and Heterogeneous Media, 2015, 10(3): 559-578. doi: 10.3934/nhm.2015.10.559 |
[2] | Abdul M. Kamareddine, Roger L. Hughes . Towards a mathematical model for stability in pedestrian flows. Networks and Heterogeneous Media, 2011, 6(3): 465-483. doi: 10.3934/nhm.2011.6.465 |
[3] | Michael Fischer, Gaspard Jankowiak, Marie-Therese Wolfram . Micro- and macroscopic modeling of crowding and pushing in corridors. Networks and Heterogeneous Media, 2020, 15(3): 405-426. doi: 10.3934/nhm.2020025 |
[4] | Antoine Tordeux, Claudia Totzeck . Multi-scale description of pedestrian collective dynamics with port-Hamiltonian systems. Networks and Heterogeneous Media, 2023, 18(2): 906-929. doi: 10.3934/nhm.2023039 |
[5] | Jérôme Fehrenbach, Jacek Narski, Jiale Hua, Samuel Lemercier, Asja Jelić, Cécile Appert-Rolland, Stéphane Donikian, Julien Pettré, Pierre Degond . Time-delayed follow-the-leader model for pedestrians walking in line. Networks and Heterogeneous Media, 2015, 10(3): 579-608. doi: 10.3934/nhm.2015.10.579 |
[6] | Andreas Schadschneider, Armin Seyfried . Empirical results for pedestrian dynamics and their implications for modeling. Networks and Heterogeneous Media, 2011, 6(3): 545-560. doi: 10.3934/nhm.2011.6.545 |
[7] | Fabio Camilli, Adriano Festa, Silvia Tozza . A discrete Hughes model for pedestrian flow on graphs. Networks and Heterogeneous Media, 2017, 12(1): 93-112. doi: 10.3934/nhm.2017004 |
[8] | Mohcine Chraibi, Ulrich Kemloh, Andreas Schadschneider, Armin Seyfried . Force-based models of pedestrian dynamics. Networks and Heterogeneous Media, 2011, 6(3): 425-442. doi: 10.3934/nhm.2011.6.425 |
[9] | Dirk Hartmann, Isabella von Sivers . Structured first order conservation models for pedestrian dynamics. Networks and Heterogeneous Media, 2013, 8(4): 985-1007. doi: 10.3934/nhm.2013.8.985 |
[10] | Daniel Roggen, Martin Wirz, Gerhard Tröster, Dirk Helbing . Recognition of crowd behavior from mobile sensors with pattern analysis and graph clustering methods. Networks and Heterogeneous Media, 2011, 6(3): 521-544. doi: 10.3934/nhm.2011.6.521 |
This research explored fractional Kuramoto-Sivashinsky equation analytical solutions through application of the residual power series transform method (RPSTM). The Caputo derivative approach served as the basis to analyze fractional systems since it offered a strong foundation for modeling intricate nonlinear processes. Researchers extended the Kuramoto-Sivashinsky equation through fractional domain application to capture anomalous behavior and memory effects since it showed practical uses in turbulence and plasma dynamics and flame propagation. The RPSTM proposed solution united residual power series method capabilities with integral transforms features to develop an accurate and efficient method for fractional nonlinear partial differential equation solutions. The method enabled accurate approximate solution acquisition while the procedure underwent complete convergence examination. This paper demonstrated the effectiveness and reliability of the developed method through numerical simulation results. The RPSTM proved itself as an effective analytical method for fractional differential problems which reveals vital information about the fractional Kuramoto-Sivashinsky equation behavior. The research added value to existing fractional calculus studies focused on nonlinear science applications.
[1] |
J. G. Liu, X. J. Yang, Symmetry group analysis of several coupled fractional partial differential equations, Chaos Soliton. Fract., 173 (2023), 113603. https://doi.org/10.1016/j.chaos.2023.113603 doi: 10.1016/j.chaos.2023.113603
![]() |
[2] |
J. G. Liu, Y. F. Zhang, J. J. Wang, Investigation of the time fractional generalized (2+1)-dimensional Zakharov-Kuznetsov equation with single-power law nonlinearity, Fractals, 31 (2023), 2350033. https://doi.org/10.1142/S0218348X23500330 doi: 10.1142/S0218348X23500330
![]() |
[3] |
B. Shiri, H. Kong, G. C. Wu, C. Luo, Adaptive learning neural network method for solving time-fractional diffusion equations, Neural Comput., 34 (2022), 971–990. https://doi.org/10.1162/neco_a_01482 doi: 10.1162/neco_a_01482
![]() |
[4] |
M. K. Sadabad, A. J. Akbarfam, B. Shiri, A numerical study of eigenvalues and eigenfunctions of fractional Sturm-Liouville problems via Laplace transform, Indian J. Pure Appl. Math., 51 (2020), 857–868. https://doi.org/10.1007/s13226-020-0436-2 doi: 10.1007/s13226-020-0436-2
![]() |
[5] |
Z. Li, S. Zhao, Bifurcation, chaotic behavior and solitary wave solutions for the Akbota equation, AIMS Math., 9 (2024), 22590–22601. https://doi.org/10.3934/math.20241100 doi: 10.3934/math.20241100
![]() |
[6] |
L. C. Yu, Zero-r law on the analyticity and the uniform continuity of fractional resolvent families, Integr. Equ. Oper. Theory, 96 (2024), 34. https://doi.org/10.1007/s00020-024-02785-4 doi: 10.1007/s00020-024-02785-4
![]() |
[7] |
Y. Z. Guo, L. Z. Guo, S. A. Billings, D. Coca, Z. Q. Lang, Volterra series approximation of a class of nonlinear dynamical systems using the Adomian decomposition method, Nonlinear Dyn., 74 (2013), 359–371. https://doi.org/10.1007/s11071-013-0975-8 doi: 10.1007/s11071-013-0975-8
![]() |
[8] |
S. H. Chang, A variational iteration method involving Adomian polynomials for a strongly nonlinear boundary value problem, East Asian J. Appl. Math, 9 (2019), 153–164. https://doi.org/10.4208/eajam.041116.291118 doi: 10.4208/eajam.041116.291118
![]() |
[9] |
N. Herisanu, V. Marinca, An iteration procedure with application to Van der Pol oscillator, Int. J. Nonlin. Sci. Num. Simul., 10 (2009), 353–361. https://doi.org/10.1515/IJNSNS.2009.10.3.353 doi: 10.1515/IJNSNS.2009.10.3.353
![]() |
[10] |
Y. Khan, A novel Laplace decomposition method for non-linear stretching sheet problem in the presence of MHD and slip condition. Int. J. Num. Meth. Heat Fl. Flow, 24 (2013), 73–85. https://doi.org/10.1108/HFF-02-2012-0048 doi: 10.1108/HFF-02-2012-0048
![]() |
[11] | M. Kurulay, A. Secer, M. A. Akinlar, A new approximate analytical solution of Kuramoto-Sivashinsky equation using homotopy analysis method, Appl. Math. Inform. Sci., 7 (2013), 267–271. |
[12] |
A. Shah, S. Hussain, An analytical approach to the new solution of family of Kuramoto Sivashinsky equation by q-Homotopy analysis technique, Int. J. Differ. Equat., 2024 (2024), 6652990. https://doi.org/10.1155/2024/6652990 doi: 10.1155/2024/6652990
![]() |
[13] |
A. H. Khater, R. S. Temsah, Numerical solutions of the generalized Kuramoto-Sivashinsky equation by Chebyshev spectral collocation methods, Comput. Math. Appl., 56 (2008), 1465–1472. https://doi.org/10.1016/j.camwa.2008.03.013 doi: 10.1016/j.camwa.2008.03.013
![]() |
[14] |
M. Lakestani, M. Dehghan, Numerical solutions of the generalized Kuramoto-Sivashinsky equation using B-spline functions, Appl. Math. Model., 36 (2012), 605–617. https://doi.org/10.1016/j.apm.2011.07.028 doi: 10.1016/j.apm.2011.07.028
![]() |
[15] |
Y. Kuramoto, T. Tsuzuki, Persistent propagation of concentration waves in dissipative media far from thermal equilibrium, Prog. Theor. Phys., 55 (1976), 356–369. https://doi.org/10.1143/PTP.55.356 doi: 10.1143/PTP.55.356
![]() |
[16] | G. I. Sivashinsky, Instabilities, pattern formation, and turbulence in flames, Annu. Rev. Fluid Mech., 15 (1982), 179–199. |
[17] |
G. D. Akrivis, Finite difference discretization of the Kuramoto-Sivashinsky equation, Numer. Math., 63 (1992), 1–11. https://doi.org/10.1007/BF01385844 doi: 10.1007/BF01385844
![]() |
[18] |
M. Benlahsen, G. Bognar, Z. Csati, M. Guedda, K. Hriczo, Dynamical properties of a nonlinear Kuramoto-Sivashinsky growth equation, Alex. Eng. J., 6 (2021), 3419–3427. https://doi.org/10.1016/j.aej.2021.02.003 doi: 10.1016/j.aej.2021.02.003
![]() |
[19] |
S. R. Jena, G. S. Gebremedhin, Numerical treatment of Kuramoto-Sivashinsky equation on B-spline collocation, Arab J. Basic Appl. Sci., 28 (2021), 283–291. https://doi.org/10.1080/25765299.2021.1949846 doi: 10.1080/25765299.2021.1949846
![]() |
[20] |
W. S. Yin, F. Xu, W. P. Zhang, Y. X. Gao, Asymptotic expansion of the solutions to time-space fractional Kuramoto-Sivashinsky equations, Adv. Math. Phy., 2016 (2016), 4632163. https://doi.org/10.1155/2016/4632163 doi: 10.1155/2016/4632163
![]() |
[21] |
P. Veeresha, D. G. Prakasha, Solution for fractional Kuramoto-Sivashinsky equation using novel computational technique, Int. J. Appl. Comput. Math., 7 (2021), 33. https://doi.org/10.1007/s40819-021-00956-0 doi: 10.1007/s40819-021-00956-0
![]() |
[22] |
J. W. Wang, X. X. Jiang, X. H. Yang, H. X. Zhang, A new robust compact difference scheme on graded meshes for the time-fractional nonlinear Kuramoto-Sivashinsky equation, Comp. Appl. Math., 43 (2024), 381. https://doi.org/10.1007/s40314-024-02883-4 doi: 10.1007/s40314-024-02883-4
![]() |
[23] |
R. Choudhary, S. Singh, P. Das, D. Kumar, A higher order stable numerical approximation for time-fractional non-linear Kuramoto-Sivashinsky equation based on quintic B-spline, Math. Method. Appl. Sci., 47 (2024), 11953–11975. https://doi.org/10.1002/mma.9778 doi: 10.1002/mma.9778
![]() |
[24] |
R. Shah, H. Khan, D. Baleanu, P. Kumam, M. Arif, A semi-analytical method to solve family of Kuramoto-Sivashinsky equations, J. Taibah Univ. Sci., 14 (2020), 402–411. https://doi.org/10.1080/16583655.2020.1741920 doi: 10.1080/16583655.2020.1741920
![]() |
[25] | M. Ali, M. Alquran, I. Jaradat, N. A. Afouna, D. Baleanu, Dynamics of integer-fractional time-derivative for the new two-mode Kuramoto-Sivashinsky model, Rom. Rep. Phys, 72 (2020), 103. |
[26] |
A. Burqan, R. Saadeh, A. Qazza, S. Momani, ARA-residual power series method for solving partial fractional differential equations, Alex. Eng. J., 62 (2023), 47–62. https://doi.org/10.1016/j.aej.2022.07.022 doi: 10.1016/j.aej.2022.07.022
![]() |
[27] |
A. Qazza, A. Burqan, R. Saadeh, Application of ARA-Residual power series method in solving systems of fractional differential equations, Math. Probl. Eng., 2022 (2022), 6939045. https://doi.org/10.1155/2022/6939045 doi: 10.1155/2022/6939045
![]() |
[28] |
J. K. Zhang, X. D. Tian, Laplace-residual power series method for solving fractional generalized long wave equations, Ocean Eng., 310 (2024), 118693. https://doi.org/10.1016/j.oceaneng.2024.118693 doi: 10.1016/j.oceaneng.2024.118693
![]() |
[29] |
A. Shafee, Y. Alkhezi, R. Shah, Efficient solution of fractional system partial differential equations using Laplace residual power series method, Fractal Fract., 7 (2023), 429. https://doi.org/10.3390/fractalfract7060429 doi: 10.3390/fractalfract7060429
![]() |
[30] |
M. A. N. Oqielat, T. Eriqat, O. Ogilat, A. El-Ajou, S. E. Alhazmi, S. Al-Omari, Laplace-residual power series method for solving time-fractional reaction-diffusion model, Fractal Fract., 7 (2023), 309. https://doi.org/10.3390/fractalfract7040309 doi: 10.3390/fractalfract7040309
![]() |
[31] |
R. Pant, G. Arora, H. Emadifar, Elzaki residual power series method to solve fractional diffusion equation, Plos One, 19 (2024), e0298064. https://doi.org/10.1371/journal.pone.0298064 doi: 10.1371/journal.pone.0298064
![]() |
[32] | G. A. Anastassiou, On right fractional calculus, Chaos Solition. Fract., 42 (2009), 365–376. https://doi.org/10.1016/j.chaos.2008.12.013 |
[33] |
S. Kumar, A. Yildirim. Y. Khan, L. Wei, A fractional model of the diffusion equation and its analytical solution using Laplace transform, Sci. Iran., 19 (2012), 1117–1123. https://doi.org/10.1016/j.scient.2012.06.016 doi: 10.1016/j.scient.2012.06.016
![]() |
[34] |
K. Shah, H. Khalil, R. A. Khan, Analytical solutions of fractional order diffusion equations by natural transform method, Iran. J. Sci. Technol. Trans. Sci., 42 (2018), 1479–1490. https://doi.org/10.1007/s40995-016-0136-2 doi: 10.1007/s40995-016-0136-2
![]() |
[35] |
A. S. Alshehry, M. Imran, A. Khan, R. Shan, W. Weera, Fractional view analysis of Kuramoto-Sivashinsky equations with non-singular kernel operators, Symmetry, 14 (2022), 1463. https://doi.org/10.3390/sym14071463 doi: 10.3390/sym14071463
![]() |
1. | Amandine Aftalion, Emmanuel Trélat, Pace and motor control optimization for a runner, 2021, 83, 0303-6812, 10.1007/s00285-021-01632-z | |
2. | Benedetto Piccoli, Multiscale approaches to crowd dynamics and the reliability of data from experiments, 2016, 18, 15710645, 46, 10.1016/j.plrev.2016.08.003 |