Research article Topical Sections

A weighted networked eco-epidemiological model with nonlinear $ p\, $-Laplacian

  • Received: 26 January 2025 Revised: 30 March 2025 Accepted: 11 April 2025 Published: 22 April 2025
  • MSC : 35B40, 35K51, 35R35, 92B05

  • This paper investigates a eco-epidemiological model with a graph $ p\, $-Laplacian $ (p\geq 2) $. We first overcome the difficulties caused by the nonlinearity of the $ p\, $-Laplacian and show the existence and uniqueness of the global solution to the system. By the approach of Lyapunov functions and the comparison principle, we show that the trivial equilibrium, the disease-free equilibrium without predators, the coexisting disease-free equilibrium, the prey's endemic equilibrium, and the coexisting endemic equilibrium are asymptotically stable under the given conditions. With numerical simulations, we apply our generalized weighed graph to the Watts-Strogatz network, which illustrates the effect of population mobility.

    Citation: Ling Zhou, Guoqing Ding, Zuhan Liu. A weighted networked eco-epidemiological model with nonlinear $ p\, $-Laplacian[J]. AIMS Mathematics, 2025, 10(4): 9202-9236. doi: 10.3934/math.2025423

    Related Papers:

  • This paper investigates a eco-epidemiological model with a graph $ p\, $-Laplacian $ (p\geq 2) $. We first overcome the difficulties caused by the nonlinearity of the $ p\, $-Laplacian and show the existence and uniqueness of the global solution to the system. By the approach of Lyapunov functions and the comparison principle, we show that the trivial equilibrium, the disease-free equilibrium without predators, the coexisting disease-free equilibrium, the prey's endemic equilibrium, and the coexisting endemic equilibrium are asymptotically stable under the given conditions. With numerical simulations, we apply our generalized weighed graph to the Watts-Strogatz network, which illustrates the effect of population mobility.



    加载中


    [1] R. M. Anderson, R. M. May, The invasion, persistence and spread of infectious diseases within animal and plant communities, Philos. T. R. Soc. B, 314 (1986), 533–570. https://doi.org/10.1098/rstb.1986.0072 doi: 10.1098/rstb.1986.0072
    [2] S. A. Temple, Do predators always capture substandard individuals disproportionately from prey population? Ecology, 68 (1987), 669–674. https://doi.org/10.2307/1938472 doi: 10.2307/1938472
    [3] Y. Xiao, L. Chen, Modeling and analysis of a predator-prey model with disease in the prey, Math. Biosci., 171 (2001), 59–82. https://doi.org/10.1016/S0025-5564(01)00049-9 doi: 10.1016/S0025-5564(01)00049-9
    [4] C. Packer, R. D. Holt, P. J. Hudson, K. D. Lafferty, A. P. Dobson, Keeping the herds healthy and alert:implications of predator control for infectious disease, Ecol. Lett., 6 (2010), 797–802. https://doi.org/10.1046/j.1461-0248.2003.00500.x doi: 10.1046/j.1461-0248.2003.00500.x
    [5] R. D. Holt, M. Roy, Predation can increase the prevalence of infectious disease, Am. Nat., 169 (2007), 690–699. https://doi.org/10.1086/513188 doi: 10.1086/513188
    [6] R. K. Upadhyay, P. Roy, Spread of a disease and its effect on population dynamics in an eco-epidemiological system, Commun. Nonlinear Sci., 19) (2014), 4170–4184. https://doi.org/10.1016/j.cnsns.2014.04.016 doi: 10.1016/j.cnsns.2014.04.016
    [7] X. Liu, S. Liu, Dynamics of a predator-prey system with inducible defense and disease in the prey, Nonlinear Anal. Real, 71 (2023), 103802. https://doi.org/10.1016/j.nonrwa.2022.103802 doi: 10.1016/j.nonrwa.2022.103802
    [8] M. Wang, S. Yao, The dynamics of an eco-epidemiological prey-predator model with infectious diseases in prey, Commun. Nonlinear Sci., 132 (2024), 107902. https://doi.org/10.1016/j.cnsns.2024.107902 doi: 10.1016/j.cnsns.2024.107902
    [9] S. Pandey, D. Das, U. Ghosh, S. Chakraborty, Bifurcation and onset of chaos in an eco-epidemiological system with the influence of time delay, Chaos, 34 (2024), 063122. https://doi.org/10.1063/5.0177410 doi: 10.1063/5.0177410
    [10] S. Dey, D. K. Das, S. Ghorai, M. Banerjee, Spatially heterogeneous eco-epidemic model: Stabilizing role of non-local disease transmission, Commun. Nonlinear Sci., 138 (2024), 108238. https://doi.org/10.1016/j.cnsns.2024.108238 doi: 10.1016/j.cnsns.2024.108238
    [11] F. Brauer, A. C. Soudack, Stability regions and transition phenomena for harvested predator-prey systems, J. Math. Biol., 7 (1979), 319–337. https://doi.org/10.1007/BF00275152 doi: 10.1007/BF00275152
    [12] F. Brauer, A. C. Soudack, Stability regions in predator-prey systems with constant rate prey harvesting, J. Math. Biol., 8 (1979) 55–71. https://doi.org/10.1007/BF00280586 doi: 10.1007/BF00280586
    [13] C. Dai, M. Tang, Coexistence region and global dynamics of a harvested predator-prey system, SIAM J. Appl. Math., 58 (1998), 193–210. https://doi.org/10.1137/S0036139994275799 doi: 10.1137/S0036139994275799
    [14] R. Cristiano, M. M. Henao, D. J. Pagano, Global stability of a Lotka-Volterra piecewise-smooth system with harvesting actions and two predators competing for one prey, J. Math. Anal. Appl., 522 (2023), 126998. https://doi.org/10.1016/j.jmaa.2023.126998 doi: 10.1016/j.jmaa.2023.126998
    [15] N. Bairagi, S. Chaudhuri, J. Chattopadhyay, Harvesting as a disease control measure in an eco-epidemiological system—A theoretical study, Math. Biosci., 217 (2009), 134–144. https://doi.org/10.1016/j.mbs.2008.11.002 doi: 10.1016/j.mbs.2008.11.002
    [16] R. Bhattacharyya, B. Mukhopadhyay, On an eco-epidemiological model with prey harvesting and predator switching: Local and global perspectives, Nonlinear Anal. Real, 11 (2010), 3824–3833. https://doi.org/10.1016/j.nonrwa.2010.02.012 doi: 10.1016/j.nonrwa.2010.02.012
    [17] J. D. Murray, Mathematical biology Ⅱ: Spatial models and biomedical applications, New York: Springer, 2003. https://doi.org/10.1007/b98869
    [18] R. Cantrell, C. Cosner, Spatial ecology via reaction-diffusion equations, John Wiley & Sons, 2004. https://doi.org/10.1002/0470871296
    [19] K. Kuto, H. Matsuzawa, R. Peng, Concentration profile of the endemic equilibria of a reaction-diffusion-advection SIS epidemic model, Calc. Var., 56 (2017), 112. https://doi.org/10.1007/s00526-017-1207-8 doi: 10.1007/s00526-017-1207-8
    [20] J. Cui, X. Tao, H. Zhu, An SIS infection model incorporating media coverage, Rocky Mountain J. Math., 38 (2008), 1323–1334. https://doi.org/10.1216/RMJ-2008-38-5-1323 doi: 10.1216/RMJ-2008-38-5-1323
    [21] L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic disease patch model, SIAM J. Appl. Math., 67 (2007), 1283–1309. https://doi.org/10.1137/060672522 doi: 10.1137/060672522
    [22] L. J. S. Allen, B. M. Bolker, Y. Lou, A. L. Nevai, Asymptotic profiles of the steady states for an SIS epidemic reaction diffusion model, Discrete Cont. Dyn. Syst., 21 (2008), 1–20. https://doi.org/10.3934/dcds.2008.21.1 doi: 10.3934/dcds.2008.21.1
    [23] F. Yang, W. Li, S. Ruan, Dynamics of a nonlocal dispersal SIS epidemic model with Neumann boundary conditions, J. Differ. Equ., 267 (2019), 2011–2051. https://doi.org/10.1016/j.jde.2019.03.001 doi: 10.1016/j.jde.2019.03.001
    [24] Z. Lin, H. Zhu, Spatial spreading model and dynamics of West Nile virus in birds and mosquitoes with free boundary, J. Math. Biol., 75 (2017), 1381–1409. https://doi.org/10.1007/s00285-017-1124-7 doi: 10.1007/s00285-017-1124-7
    [25] H. Li, R. Peng, Z. Wang, On a diffusive susceptible-infected-susceptible epidemic model with mass action mechanism and birth-death effect: Analysis, simulations, and comparison with other mechanisms, SIAM J. Appl. Math., 78 (2018), 2129–2153. https://doi.org/10.1137/18M1167863 doi: 10.1137/18M1167863
    [26] C. Lei, F. Li, J. Liu, Theoretical analysis on a diffusive SIR epidemic model with nonlinear incidence in a heterogeneous environment, Discrete Cont. Dyn. B, 23 (2018), 4499–4517. https://doi.org/10.3934/dcdsb.2018173 doi: 10.3934/dcdsb.2018173
    [27] S. Oruganti, J. Shi, R. Shivaji, Logistic equation wtih the $p $-Laplacian and constant yield harvesting, Abstr. Appl. Anal., 9 (2004), 723–727. http://dx.doi.org/10.1155/S1085337504311097 doi: 10.1155/S1085337504311097
    [28] C. Liu, P. Li, Global existence for a chemotaxis-haptotaxis model with $p $-Laplacian, Commun. Pure Appl. Anal., 19 (2020), 1399–1419. https://doi.org/10.3934/cpaa.2020070 doi: 10.3934/cpaa.2020070
    [29] H. Yang, S. Qiu, L. Xu, Global weak solution in a fully parabolic two-species chemotaxis system with slow $p $-Laplacian diffusion, Z. Angew. Math. Phys., 73 (2022), 256. https://doi.org/10.1007/s00033-022-01892-9 doi: 10.1007/s00033-022-01892-9
    [30] S. Li, C. Liu, Y. Zhao, Global existence for a three-species predator-prey model with slow $p $-Laplacian diffusion, J. Math. Anal. Appl., 548 (2025), 129426. https://doi.org/10.1016/j.jmaa.2025.129426 doi: 10.1016/j.jmaa.2025.129426
    [31] R. Pastor-Satorras, C. Castellano, P. V. Mieghem, A. Vespignani, Epidemic processes in complex networks, Rev. Mod. Phys., 87 (2015), 925–979. https://doi.org/10.1103/RevModPhys.87.925 doi: 10.1103/RevModPhys.87.925
    [32] Y. Du, B. Lou, R. Peng, M. Zhou, The Fisher-KPP equation over simple graphs: Varied persistence states in river networks, J. Math. Biol., 80 (2020), 1559–1616. https://doi.org/10.1007/s00285-020-01474-1 doi: 10.1007/s00285-020-01474-1
    [33] F. Bauer, P. Horn, Y. Lin, G. Lippner, D. Mangoubi, S. T. Yau, Li-Yau inequality on graphs, J. Differential Geom., 99 (2015), 359–405. https://doi.org/10.4310/jdg/1424880980 doi: 10.4310/jdg/1424880980
    [34] S. Y. Chung, M. J. Choi, A new condition for blow-up solutions to discrete semilinear heat equations on networks, Comput. Math. Appl., 74 (2017), 2929–2939. https://doi.org/10.1016/j.camwa.2017.07.030 doi: 10.1016/j.camwa.2017.07.030
    [35] A. Grigoryan, Y. Lin, Y. Yang, Yamabe type equations on graphs, J. Differ. Equ., 261 (2016), 4924–4943. https://doi.org/10.1016/j.jde.2016.07.011 doi: 10.1016/j.jde.2016.07.011
    [36] C. Tian, S. Ruan, Pattern formation and synchronism in an allelopathic plankton model with delay in a network, SIAM J. Appl. Dyn. Syst., 18 (2019), 531–557. https://doi.org/10.1137/18M1204966 doi: 10.1137/18M1204966
    [37] Z. Liu, C. Tian, S. Ruan, On a network model of two competitors with applications to the invasion and competition of Aedes albopictus and Aedes aegypti mosquitoes in the United States, SIAM J. Appl. Math., 80 (2020), 929–950. https://doi.org/10.1137/19M1257950 doi: 10.1137/19M1257950
    [38] C. Tian, Z. Liu, S. Ruan, Asymptotic and transient dynamics of SEIR epidemic models on weighted networks, Eur. J. Appl. Math., 34 (2023), 238–261. https://doi.org/10.1017/S0956792522000109 doi: 10.1017/S0956792522000109
    [39] L. Zhou, Z. Liu, Blow up in a $p$-Laplacian mutualistic model based on graphs, AIMS Math., 8 (2023), 28210–28218. https://doi.org/10.3934/math.20231444 doi: 10.3934/math.20231444
    [40] Z. Liu, C. Tian, A weighted networked SIRS epidemic model, J. Differ. Equ., 269 (2020), 10995–11019. https://doi.org/10.1016/j.jde.2020.07.038 doi: 10.1016/j.jde.2020.07.038
    [41] N. C. Minh, D. T. Quyet, A. T. Duong, Liouville-type theorems for systems of elliptic inequalities involving $p $-Laplace operator on weighted graphs, Commun. Pure Appl. Anal., 24 (2025), 641–660. https://doi.org/10.3934/cpaa.2025008 doi: 10.3934/cpaa.2025008
    [42] L. Brasco, E. Parini, The second eigenvalue of the fractional $p$-Laplacian, Adv. Calc. Var., 9(4) (2016), 323–355. https://doi.org/10.1515/acv-2015-0007 doi: 10.1515/acv-2015-0007
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(846) PDF downloads(64) Cited by(0)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog