Research article

Bayesian and non-Bayesian estimations for a flexible reduced logarithmic-inverse Lomax distribution under progressive hybrid type-Ⅰ censored data with a head and neck cancer application

  • Received: 31 January 2025 Revised: 26 March 2025 Accepted: 08 April 2025 Published: 22 April 2025
  • MSC : 62F15, 62N02

  • This article used classical and Bayesian procedures to discuss the statistical inferences to the unknown parameters of the flexible reduced logarithmic-inverse Lomax distribution based on a progressive hybrid type-Ⅰ censoring (PHT-ICS) approach. The maximum likelihood and Bayesian estimation techniques estimate unknown parameters, reliability, and hazard rate functions. The investigation of Bayes estimators makes use of the gamma priors and symmetric and asymmetric loss functions. Additionally, the classical asymptotic confidence intervals and the credible intervals were explored. A simulation study and a bladder cancer application are presented to illustrate the proposed estimation methods. The flexible reduced logarithmic-inverse Lomax (FRL-IL) distribution's relevance and the given estimators' effectiveness were evaluated using failure data from a sample of 44 patients diagnosed with head and neck cancer. The results show that likelihood based on the Markov chain Monte Carlo (MCMC) method has the smallest mean squared error (MSE) values. In contrast, Bayes estimators with the assumed informative prior outperformed maximum likelihood estimators and Bayes estimators under the squared error loss function in terms of MSEs.

    Citation: Ehab M. Almetwally, Ahlam H. Tolba, Dina A. Ramadan. Bayesian and non-Bayesian estimations for a flexible reduced logarithmic-inverse Lomax distribution under progressive hybrid type-Ⅰ censored data with a head and neck cancer application[J]. AIMS Mathematics, 2025, 10(4): 9171-9201. doi: 10.3934/math.2025422

    Related Papers:

  • This article used classical and Bayesian procedures to discuss the statistical inferences to the unknown parameters of the flexible reduced logarithmic-inverse Lomax distribution based on a progressive hybrid type-Ⅰ censoring (PHT-ICS) approach. The maximum likelihood and Bayesian estimation techniques estimate unknown parameters, reliability, and hazard rate functions. The investigation of Bayes estimators makes use of the gamma priors and symmetric and asymmetric loss functions. Additionally, the classical asymptotic confidence intervals and the credible intervals were explored. A simulation study and a bladder cancer application are presented to illustrate the proposed estimation methods. The flexible reduced logarithmic-inverse Lomax (FRL-IL) distribution's relevance and the given estimators' effectiveness were evaluated using failure data from a sample of 44 patients diagnosed with head and neck cancer. The results show that likelihood based on the Markov chain Monte Carlo (MCMC) method has the smallest mean squared error (MSE) values. In contrast, Bayes estimators with the assumed informative prior outperformed maximum likelihood estimators and Bayes estimators under the squared error loss function in terms of MSEs.



    加载中


    [1] S. Aboul-Fotouh Salem, O. E. Abo-Kasem, A. Abdelgaied Khairy, Inference for generalized progressive Hybrid type-Ⅱ censored Weibull lifetimes under competing risk data, Comput. J. Math. Stat. Sci., 3 (2024), 177–202.
    [2] E. A. Ahmed, Estimation of some lifetime parameters of generalized Gompertz distribution under progressively type-Ⅱ censored data, Appl. Math. Model., 39 (18), 5567–5578. https://doi.org/10.1016/j.apm.2015.01.023
    [3] R. Alotaibi, M. Nassar, Z. A. Khan, W. A. Alajlan, A. Elshahhat, Entropy evaluation in inverse Weibull unified hybrid censored data with application to mechanical components and head-neck cancer patients, AIMS Math., 10 (2025), 1085–1115. https://doi.org/10.3934/math.2025052 doi: 10.3934/math.2025052
    [4] N. Alsadat, D. A. Ramadan, E. M. Almetwally, A. H. Tolba, Estimation of some lifetime parameter of the unit half logistic-geometry distribution under progressively type-Ⅱ censored data, J. Radiation Res. Appl. Sci., 16 (2023), 100674. https://doi.org/10.1016/j.jrras.2023.100674 doi: 10.1016/j.jrras.2023.100674
    [5] A. Azzalini, Statistical inference based on the likelihood, New York: CRC Press, 1996. https://doi.org/10.1201/9780203738627
    [6] N. Balakrishnan, E. Cramer, The art of progressive censoring, New York: Birkhäuser, 2014. https://doi.org/10.1007/978-0-8176-4807-7
    [7] N. Balakrishnan, H. T. Ng, Precedence-type tests and applications, Hoboken: John Wiley & Sons, 2006.
    [8] M. M. Buzaridah, D. A. Ramadan, B. S. El-Desouky, Flexible reduced logarithmic-inverse lomax distribution with application for bladder cancer, Open J. Model. Simul., 9 (2021), 351–369. https://doi.org/10.4236/ojmsi.2021.94023 doi: 10.4236/ojmsi.2021.94023
    [9] A. Childs, B. Chandrasekar, N. Balakrishnan, Exact likelihood inference for an exponential parameter under progressive hybrid censoring schemes, In: Statistical Models and Methods for Biomedical and Technical Systems, 2008. https://doi.org/10.1007/978-0-8176-4619-6_23
    [10] A. Childs, B. Chandrasekar, N. Balakrishnan, D. Kundu, Exact likelihood inference based on Type-Ⅰ and type-Ⅱ hybrid censored samples from the exponential distribution, Ann. Inst. Stat. Math., 55 (2003), 319–330. https://doi.org/10.1007/BF02530502 doi: 10.1007/BF02530502
    [11] A. Childs, N. Balakrishnan, B. Chandrasekar, Exact distribution of the MLEs of the parameters and of the quantiles of two-parameter exponential distribution under hybrid censoring, Statistics, 46 (2012), 441–458. https://doi.org/10.1080/02331888.2010.538476 doi: 10.1080/02331888.2010.538476
    [12] S. Dey, T. Dey, On progressively censored generalized inverted exponential distribution, J. Appl. Stat., 41 (2014), 2557–2576. https://doi.org/10.1080/02664763.2014.922165 doi: 10.1080/02664763.2014.922165
    [13] S. Dey, S. Singh, Y. M. Tripathi, A. Asgharzadeh, Estimation and prediction for a progressively censored generalized inverted exponential distribution, Stat. Methodology, 32 (2016), 185–202. https://doi.org/10.1016/j.stamet.2016.05.007 doi: 10.1016/j.stamet.2016.05.007
    [14] N. Draper, I. Guttman, Bayesian analysis of hybrid life tests with exponential failure times, Ann. Inst. Stat. Math., 39 (1987), 219–225. https://doi.org/10.1007/BF02491461 doi: 10.1007/BF02491461
    [15] B. Efron, Logistic regression, survival analysis, and the Kaplan-Meier curve, J. Amer. Stat. Assoc., 83 (1988), 414–425.
    [16] A. R. El-Saeed, A. D. Abdellatif, Point and interval estimation of reliability and entropy for generalized exponential distribution under generalized type-Ⅱ Hybrid censoring scheme, Comput. J. Math. Stat. Sci., 4 (2025), 96–138.
    [17] A. R. El-Saeed, A. T. Ramadan, N. Alsadat, H. Alohali, A. H. Tolba, Analysis of progressive type-Ⅱ censoring schemes for generalized power unit half–logistic geometric distribution, AIMS Math., 8 (2023), 30846–30874. https://doi.org/10.3934/math.20231577 doi: 10.3934/math.20231577
    [18] A. R. El-Saeed, M. K. Ruidas, A. H. Tolba, Estimation and Bayesian prediction for new version of Xgamma distribution under progressive type-Ⅱ censoring, Symmetry, 17 (2025), 457.
    [19] E. A. Elsherpieny, A. Abdel-Hakim, Statistical analysis of Alpha-Power exponential distribution using unified Hybrid censored data and its applications, Comput. J. Math. Stat. Sci., 4 (2025), 283–315.
    [20] B. Epstein, Estimation from life test data, Technometrics, 2 (1960), 447–454.
    [21] K. Fairbanks, R. Madsen, R. Dykstra, A confidence interval for an exponential parameter from a hybrid life test, J. Amer. Stat. Assoc., 77 (1982), 137–140.
    [22] M. M. Hasaballah, O. S. Balogun, M. E. Bakr, Bayesian inference for the parameters of the generalized logistic distribution under a combined framework of generalized type-Ⅰ and type-Ⅱ hybrid censoring schemes with application to physical data, AIP Adv., 15 (2025), 015330. https://doi.org/10.1063/5.0249742 doi: 10.1063/5.0249742
    [23] W. H. Greene, The behavior of the fixed effects estimator in nonlinear models, NYU Libraries, economics working papers, 2002.
    [24] R. D. Gupta, D. Kundu, Hybrid censoring schemes with exponential failure distribution, Commun. Stat.-Theory Meth., 27 (1998), 3065–3083. https://doi.org/10.1080/03610929808832273 doi: 10.1080/03610929808832273
    [25] H. S. Jeong, J. I. Park, B. J. Yum, Development of $(r, T)$ hybrid sampling plans for exponential lifetime distributions, J. Appl. Stat., 23 (1996), 601–608. https://doi.org/10.1080/02664769623964 doi: 10.1080/02664769623964
    [26] D. Kundu, H. Howlader, Bayesian inference and prediction of the inverse Weibull distribution for type-Ⅱ censored data, Comput. Stat. Data Anal., 54 (2010), 1547–1558. https://doi.org/10.1016/j.csda.2010.01.003 doi: 10.1016/j.csda.2010.01.003
    [27] D. Kundu, A. Joarder, Analysis of type-Ⅱ progressively hybrid censored data, Comput. Stat. Data Anal., 50 (2006), 2509–2528. https://doi.org/10.1016/j.csda.2005.05.002 doi: 10.1016/j.csda.2005.05.002
    [28] J. F. Lawless, Statistical models and methods for lifetime data, New York: John Wiley & Sons, 1982.
    [29] E. T. Lee, J. Wang, Statistical methods for survival data analysis, New York: John Wiley & Sons, 2003.
    [30] M. Mahmoud, M. M. Nassar, M. A. Aefa, Parameter estimation for a mixture of inverse chen and inverse compound Rayleigh distributions based on type-Ⅱ hybrid censoring scheme, J. Stat. Appl. Prob., 10 (2021), 467–485. http://doi.org/10.18576/jsap/100216 doi: 10.18576/jsap/100216
    [31] M. A. W. Mahmoud, D. A. Ramadan, M. M. M. Mansour, Estimation of lifetime parameters of the modified extended exponential distribution with application to a mechanical model, Commun. Stat.-Simul. Comput., 51 (2022), 7005–7018. https://doi.org/10.1080/03610918.2020.1821887 doi: 10.1080/03610918.2020.1821887
    [32] M. Mansour, D. A. Ramadan, Statistical inference to the parameters of the modified extended exponential distribution under the type-Ⅱ hybrid censoring scheme, Basic Science Engineering, 2020.
    [33] B. Modok, S. Chowdhury, A. Kundu, Control charts for monitoring Weibull quantile under generalized hybrid and progressive censoring schemes, Stat. Comput., 35 (2025), 49. https://doi.org/10.1007/s11222-025-10581-2 doi: 10.1007/s11222-025-10581-2
    [34] R. A. Mohamed, A. H. Tolba, E. M. Almetwally, D. A. Ramadan, Inference of reliability analysis for type ii half logistic Weibull distribution with application of bladder cancer, Axioms, 11 (2022), 386. https://doi.org/10.3390/axioms11080386 doi: 10.3390/axioms11080386
    [35] A. T. Ramadan, A. H. Tolba, B. S. El-Desouky, A unit half-logistic geometric distribution and its application in insurance, Axioms, 11 (2022), 676. https://doi.org/10.3390/axioms11120676 doi: 10.3390/axioms11120676
    [36] Royall, Statistical evidence: a likelihood paradigm, New York: CRC press, 1997.
    [37] A. S. Samia, E. Osama, A. K. Amarat, Statistical analysis of the inverse weibull distribution based on a generalized asymptotic mixed i-type census with competing risks, Pakistan J. Stat., 40 (2024), 53–80.
    [38] A. K. Singh, The exponential distribution-theory, methods and applications, Technometrics, 39 (1997), p341. https://doi.org/10.1080/00401706.1997.10485138 doi: 10.1080/00401706.1997.10485138
    [39] M. S. Suprawhardana, S. Prayoto, Total time on test plot analysis for mechanical components of the RSG-GAS reactor, Atom Indones, 25 (1999), 81–90.
    [40] A. H. Tolba, Bayesian and non-Bayesian estimation methods for simulating the parameter of the Akshaya distribution, Comput. J. Math. Stat. Sci., 1 (2022), 13–25.
    [41] A. H. Tolba, E. M. Almetwally, D. A. Ramadan, Bayesian estimation of a one-parameter Akshaya distribution with progressively type Ⅱ censored data, J. Stat. Appl. Prob., 11 (2022), 565–579. http://doi.org/10.18576/jsap/110216 doi: 10.18576/jsap/110216
    [42] F. Valizadeh Gamchi, O. Gürünlü Alma, R. Arabi Belaghi, Classical and Bayesian inference for Burr type-Ⅲ distribution based on progressive type-Ⅱ hybrid censored data, Math. Sci., 13 (2019), 79–95. https://doi.org/10.1007/s40096-019-0281-9 doi: 10.1007/s40096-019-0281-9
    [43] T. Q. Xu, Y. P. Chen, Two-sided M-Bayesian credible limits of reliability parameters in the case of zero-failure data for exponential distribution, Appl. Math. Model., 38 (2014), 2586–2600. https://doi.org/10.1016/j.apm.2013.10.054 doi: 10.1016/j.apm.2013.10.054
    [44] C. P. Yadav, M. S. Panwar, Parametric inference of inverse Maxwell distribution under type-Ⅰ progressively hybrid censoring scheme, Life Cycle Reliab. Saf. Eng., 14 (2024), 19–35. https://doi.org/10.1007/s41872-024-00279-1 doi: 10.1007/s41872-024-00279-1
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(816) PDF downloads(53) Cited by(1)

Article outline

Figures and Tables

Figures(8)  /  Tables(17)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog