Loading [Contrib]/a11y/accessibility-menu.js
Research article

Solving functional integrodifferential equations with Liouville-Caputo fractional derivatives by fixed point techniques

  • Received: 13 January 2025 Revised: 21 February 2025 Accepted: 25 February 2025 Published: 19 March 2025
  • MSC : 26A33, 34B10, 34B15, 74H10

  • The existence and uniqueness of solutions to fractional-order functional and neutral functional integrodifferential equations with infinite delay and multi-term fractional integral boundary conditions are investigated in this paper. Rigorous mathematical frameworks for analyzing these hybrid equations are established utilizing fixed point theorems. Notably, the fractional derivative is defined in the Liouville-Caputo sense, allowing for a comprehensive examination of nonlocal dynamics. Illustrative examples are provided to complement the theoretical results and demonstrate the applicability and practicality of the main results.

    Citation: Manal Elzain Mohamed Abdalla, Hasanen A. Hammad. Solving functional integrodifferential equations with Liouville-Caputo fractional derivatives by fixed point techniques[J]. AIMS Mathematics, 2025, 10(3): 6168-6194. doi: 10.3934/math.2025281

    Related Papers:

    [1] Ming Wei, Congxin Yang, Bo Sun, Binbin Jing . A multi-objective optimization model for green demand responsive airport shuttle scheduling with a stop location problem. Electronic Research Archive, 2023, 31(10): 6363-6383. doi: 10.3934/era.2023322
    [2] Gang Cheng, Changliang He . Analysis of bus travel characteristics and predictions of elderly passenger flow based on smart card data. Electronic Research Archive, 2022, 30(12): 4256-4276. doi: 10.3934/era.2022217
    [3] Ming Wei, Shaopeng Zhang, Bo Sun . Comprehensive operating efficiency measurement of 28 Chinese airports using a two-stage DEA-Tobit method. Electronic Research Archive, 2023, 31(3): 1543-1555. doi: 10.3934/era.2023078
    [4] Xiaojie Huang, Gaoke Liao . Identifying driving factors of urban digital financial network—based on machine learning methods. Electronic Research Archive, 2022, 30(12): 4716-4739. doi: 10.3934/era.2022239
    [5] Jiaqi Chang, Xuhan Xu . Network structure of urban digital financial technology and its impact on the risk of commercial banks. Electronic Research Archive, 2022, 30(12): 4740-4762. doi: 10.3934/era.2022240
    [6] Jian Wan, Peiyun Yang, Wenbo Zhang, Yaxing Cheng, Runlin Cai, Zhiyuan Liu . A taxi detour trajectory detection model based on iBAT and DTW algorithm. Electronic Research Archive, 2022, 30(12): 4507-4529. doi: 10.3934/era.2022229
    [7] Gang Cheng, Yijie He . Enhancing passenger comfort and operator efficiency through multi-objective bus timetable optimization. Electronic Research Archive, 2024, 32(1): 565-583. doi: 10.3934/era.2024028
    [8] Zhenghui Li, Jinhui Zhu, Jiajia He . The effects of digital financial inclusion on innovation and entrepreneurship: A network perspective. Electronic Research Archive, 2022, 30(12): 4697-4715. doi: 10.3934/era.2022238
    [9] Jie Ren, Shiru Qu, Lili Wang, Yu Wang, Tingting Lu, Lijing Ma . Research on en route capacity evaluation model based on aircraft trajectory data. Electronic Research Archive, 2023, 31(3): 1673-1690. doi: 10.3934/era.2023087
    [10] Yaxi Xu, Yi Liu, Ke Shi, Xin Wang, Yi Li, Jizong Chen . An airport apron ground service surveillance algorithm based on improved YOLO network. Electronic Research Archive, 2024, 32(5): 3569-3587. doi: 10.3934/era.2024164
  • The existence and uniqueness of solutions to fractional-order functional and neutral functional integrodifferential equations with infinite delay and multi-term fractional integral boundary conditions are investigated in this paper. Rigorous mathematical frameworks for analyzing these hybrid equations are established utilizing fixed point theorems. Notably, the fractional derivative is defined in the Liouville-Caputo sense, allowing for a comprehensive examination of nonlocal dynamics. Illustrative examples are provided to complement the theoretical results and demonstrate the applicability and practicality of the main results.





    [1] I. Podlubny, Fractional differential equations, New York: Academic Press, 1999.
    [2] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier, 2006.
    [3] K. Diethelm, The analysis of fractional differential equations, Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2
    [4] F. Mainardi, Fractional calculus and waves in linear viscoelasticity, World Scientific, 2022. https://doi.org/10.1142/p926
    [5] X. Gao, J. Yu, Chaos in the fractional order periodically forced complex Duffing's oscillators, Chaos Soliton Fract., 24 (2005), 1097–1104. https://doi.org/10.1016/j.chaos.2004.09.090 doi: 10.1016/j.chaos.2004.09.090
    [6] J. Che, Q. Guan, X. Wang, Image denoising based on adaptive fractional partial differential equations, In: 2013 6th International congress on image and signal processing, 2013,288–292. https://doi.org/10.1109/CISP.2013.6744004
    [7] E. Scalas, R. Gorenflo, F. Mainardi, Fractional calculus and continuous-time finance, Physica A, 284 (2000), 376–384. https://doi.org/10.1016/S0378-4371(00)00255-7 doi: 10.1016/S0378-4371(00)00255-7
    [8] H. Jafari, R. M. Ganji, N. S. Nkomo, Y. P. Lv, A numerical study of fractional order population dynamics model, Results Phys., 27 (2021), 104456. https://doi.org/10.1016/j.rinp.2021.104456 doi: 10.1016/j.rinp.2021.104456
    [9] B. Zhang, X. Shu, Fractional-order electrical circuit theory, Singapore: Springer, 2022. https://doi.org/10.1007/978-981-16-2822-1
    [10] M. Kaur, S. Sondhi, V. K. Yanumula, Design of fractional order PDD controller for robotic arm using partial cancellation of non minimum phase zero, Alex. Eng. J., 110 (2025), 203–214. https://doi.org/10.1016/j.aej.2024.09.121 doi: 10.1016/j.aej.2024.09.121
    [11] Y. Ferdi, Some applications of fractional order calculus to design filters for biomedical signal processing, J. Mech. Med. Bio., 12 (2012), 1240008. https://doi.org/10.1142/S0219519412400088 doi: 10.1142/S0219519412400088
    [12] H. W. Engl, M. Hanke, A. Neubauer, Regularization of inverse problems, Dordrecht: Springer, 2000.
    [13] B. Ross, Fractional calculus and its applications, Berlin, Heidelberg: Springer, 1975. https://doi.org/10.1007/BFb0067095
    [14] Y. Zhang, B. Hofmann, On fractional asymptotical regularization of linear ill-posed problems in Hilbert spaces, Fract. Calc. Appl. Anal., 22 (2019), 699–721. https://doi.org/10.1515/fca-2019-0039 doi: 10.1515/fca-2019-0039
    [15] D. H. Chen, J. Li, Y. Zhang, A posterior contraction for Bayesian inverse problems in Banach spaces, Inverse Prob., 40 (2024), 045011. https://doi.org/10.1088/1361-6420/ad2a03 doi: 10.1088/1361-6420/ad2a03
    [16] A. Shcheglov, J. Li, C. Wang, A. llin, Y. Zhang, Reconstructing the Absorption function in a quasi-linear sorption dynamic model via an iterative regularizing algorithm, Adv. Appl. Math. Mech., 16 (2023), 237–252. https://doi.org/10.4208/aamm.OA-2023-0020 doi: 10.4208/aamm.OA-2023-0020
    [17] T. Abdeljawad, P. O. Mohammed, H. M. Srivastava, E. Al-Sarairah, A. Kashuri, K. Nonlaopon, Some novel existence and uniqueness results for the Hilfer fractional integro-differential equations with non-instantaneous impulsive multi-point boundary conditions and their application, AIMS Mathematics, 8 (2023), 3469–3483. https://doi.org/10.3934/math.2023177 doi: 10.3934/math.2023177
    [18] B. Ahmad, R. P. Agarwal, Some new versions of fractional boundary value problems with slit-strips conditions, Bound. Value Prob., 2014 (2014), 175. https://doi.org/10.1186/s13661-014-0175-6 doi: 10.1186/s13661-014-0175-6
    [19] A. Alsaedi, M. Alsulami, H. M. Srivastava, B. Ahmad, S. K. Ntouyas, Existence theory for nonlinear third-order ordinary differential equations with nonlocal multi-point and multi-strip boundary conditions, Symmetry, 11 (2019), 281. https://doi.org/10.3390/sym11020281 doi: 10.3390/sym11020281
    [20] A. Chauhan, J. Dabas, M. Kumar, Integral boundary-value problem for impulsive fractional functional differential equations with infinite delay, Electron. J. Differ. Equ., 2012 (2012), 229.
    [21] Y. Chen, D. Chen, Z. Lv, The existence results for a coupled system of nonlinear fractional differential equations with multi-point boundary conditions, Bull. Iran. Math. Soc., 38 (2012), 607–624.
    [22] S. Choudhary, V. Daftardar-Gejji, Nonlinear multi-order fractional differential equations with periodic/anti-periodic boundary conditions, Fract. Calc. Appl. Anal., 17 (2014), 333–347. https://doi.org/10.2478/s13540-014-0172-6 doi: 10.2478/s13540-014-0172-6
    [23] H. A. Hammad, M. De la Sen, Stability and controllability study for mixed integral fractional delay dynamic systems endowed with impulsive effects on time scales, Fractal Frac., 7 (2023), 92. https://doi.org/10.3390/fractalfract7010092 doi: 10.3390/fractalfract7010092
    [24] H. A. Hammad, R. A. Rashwan, A. Nafea, M. E. Samei, S. Noeiaghdam, Stability analysis for a tripled system of fractional pantograph differential equations with nonlocal conditions, J. Vib. Control, 30 (2024), 632–647. https://doi.org/10.1177/10775463221149232 doi: 10.1177/10775463221149232
    [25] K. Balachandran, S. Kiruthika, Existence results for fractional integrodifferential equations with nonlocal condition via resolvent operators, Comput. Math. Appl., 62 (2011), 1350–1358. https://doi.org/10.1016/j.camwa.2011.05.001 doi: 10.1016/j.camwa.2011.05.001
    [26] M. Benchohra, J. Henderson, S. K. Ntouyas, A. Ouahab, Existence results for fractional order functional differential equations with infinite delay, J. Math. Anal. Appl., 338 (2008), 1340–1350. https://doi.org/10.1016/j.jmaa.2007.06.021 doi: 10.1016/j.jmaa.2007.06.021
    [27] Y. Jalilian, R. Jalilian, Existence of solution for delay fractional differential equations, Mediterr. J. Math., 10 (2013), 1731–1747. https://doi.org/10.1007/s00009-013-0281-1 doi: 10.1007/s00009-013-0281-1
    [28] T. Jankowski, Initial value problems for neutral fractional differential equations involving a Riemann-Liouville derivative, Appl. Math. Comput., 219 (2013), 7772–7776. https://doi.org/10.1016/j.amc.2013.02.001 doi: 10.1016/j.amc.2013.02.001
    [29] T. Jankowski, Existence results to delay fractional differential equations with nonlinear boundary conditions, Appl. Math. Comput., 219 (2013), 9155–9164. https://doi.org/10.1016/j.amc.2013.03.045 doi: 10.1016/j.amc.2013.03.045
    [30] H. Wang, Existence results for fractional functional differential equations with impulses, J. Appl. Math. Comput., 38 (2012), 85–101. https://doi.org/10.1007/s12190-010-0465-9 doi: 10.1007/s12190-010-0465-9
    [31] V. Obukhovskii, G. Petrosyan, M. Soroka, J. C. Yao, On topological properties of solution sets of semilinear fractional differential inclusions with non-convex right-hand side, J. Nonlinear Var. Anal., 8 (2024), 95–108. https://doi.org/10.23952/jnva.8.2024.1.05 doi: 10.23952/jnva.8.2024.1.05
    [32] C. Zhai, L. Bai, Positive solutions for a new system of Hadamard fractional integro-differential equations on an infinite interval, J. Nonlinear Funct. Anal., 2024 (2024), 27. https://doi.org/10.23952/jnfa.2024.27 doi: 10.23952/jnfa.2024.27
    [33] H. A. Hammad, H. Aydi, M. Zayed, Involvement of the topological degree theory for solving a tripled system of multi-point boundary value problems, AIMS Mathematics, 8 (2023), 2257–2271. https://doi.org/10.3934/math.2023117 doi: 10.3934/math.2023117
    [34] H. A. Hammad, R. A. Rashwan, A. Nafea, M. E. Samei, M. De la Sen, Stability and existence of solutions for a tripled problem of fractional hybrid delay differential equations, Symmetry, 14 (2022), 2579. https://doi.org/10.3390/sym14122579 doi: 10.3390/sym14122579
    [35] H. A. Hammad, M. Zayed, Solving systems of coupled nonlinear Atangana-Baleanu-type fractional differential equations, Bound. Value Probl., 2022 (2022), 101. https://doi.org/10.1186/s13661-022-01684-0 doi: 10.1186/s13661-022-01684-0
    [36] G. Wang, W. Liu, C. Ren, Existence of solutions for multi-point nonlinear differential equations of fractional orders with integral boundary conditions, Electron. J. Differ. Equ., 2012 (2012), 54.
    [37] Z. Yang, J. Cao, Initial value problems for arbitrary order fractional differential equations with delay, Commun. Nonlinear Sci. Numer. Simul., 18 (2013), 2993–3005. https://doi.org/10.1016/j.cnsns.2013.03.006 doi: 10.1016/j.cnsns.2013.03.006
    [38] X. Zhang, X. Huang, Z. Liu, The existence and uniqueness of mild solutions for impulsive fractional equations with nonlocal conditions and infinite delay, Nonlinear Anal. Hybri., 4 (2010), 775–781. https://doi.org/10.1016/j.nahs.2010.05.007 doi: 10.1016/j.nahs.2010.05.007
    [39] J. Dabas, G. Ram, Impulsive neutral fractional integro-differential equations with state dependent delays and integral condition, Electron. J. Differ. Equ., 2013 (2013), 273.
    [40] A. Granas, J. Dugundji, Fixed point theory, New York: Springer, 2003. https://doi.org/10.1007/978-0-387-21593-8
    [41] J. Hale, J. Kato, Phase space for retarded equations with infinite delay, Funkc. Ekvacioj, 21 (1978), 11–41.
  • This article has been cited by:

    1. Ming Wei, Shaopeng Zhang, Tao Liu, Bo Sun, The adjusted passenger transportation efficiency of nine airports in China with consideration of the impact of high-speed rail network development: A two-step DEA-OLS method, 2023, 109, 09696997, 102395, 10.1016/j.jairtraman.2023.102395
    2. Zhen Wu, Po-Lin Lai, Fei Ma, Keun-Sik Park, Suthep Nimsai, Determining Spatial Relationships between Airports and Local Economy from Competitiveness Perspective: A Case Study of Airports in China, 2023, 10, 2226-4310, 138, 10.3390/aerospace10020138
    3. Luigi dell’Olio, Andrés Rodríguez, Silvia Sipone, Modeling Airport Choice Using a Latent Class Logit Model, 2023, 10, 2226-4310, 703, 10.3390/aerospace10080703
    4. Ming Wei, Yu Xiong, Bo Sun, Spatial effects of urban economic activities on airports’ passenger throughputs: A case study of thirteen cities and nine airports in the Beijing-Tianjin-Hebei region, China, 2025, 125, 09696997, 102765, 10.1016/j.jairtraman.2025.102765
    5. Wolfgang Dupeyrat Luque, Chunyan Yu, Evolution of the Airport Industry and Regional Growth in the Pacific Alliance Member Countries, 2025, 127, 09696997, 102811, 10.1016/j.jairtraman.2025.102811
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(401) PDF downloads(34) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog