We propose a normalized Caputo–Fabrizio (CF) fractional diffusion equation. The CF fractional derivative replaces the power-law kernel in the Caputo derivative with an exponential kernel, which avoids singularities. Compared to the Caputo derivative, the CF derivative is better suited for systems where memory effects decay smoothly rather than following a power law. However, the kernel is not normalized in the sense that its weighting function does not integrate to unity. To resolve this limitation, we develop a modified formulation that ensures proper normalization. To investigate the fractional order's effect on evolution dynamics, we perform computational tests that highlight memory effects.
Citation: Junseok Kim. A normalized Caputo–Fabrizio fractional diffusion equation[J]. AIMS Mathematics, 2025, 10(3): 6195-6208. doi: 10.3934/math.2025282
We propose a normalized Caputo–Fabrizio (CF) fractional diffusion equation. The CF fractional derivative replaces the power-law kernel in the Caputo derivative with an exponential kernel, which avoids singularities. Compared to the Caputo derivative, the CF derivative is better suited for systems where memory effects decay smoothly rather than following a power law. However, the kernel is not normalized in the sense that its weighting function does not integrate to unity. To resolve this limitation, we develop a modified formulation that ensures proper normalization. To investigate the fractional order's effect on evolution dynamics, we perform computational tests that highlight memory effects.
| [1] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85. |
| [2] |
R. B. Albadarneh, I. Batiha, A. K. Alomari, N. Tahat, Numerical approach for approximating the Caputo fractional-order derivative operator, AIMS Math., 6 (2021), 12743–12756. https://doi.org/10.3934/math.2021735. doi: 10.3934/math.2021735
|
| [3] |
A. Atangana, J. R. Gómez-Aguilar, Numerical approximation of Riemann-Liouville definition of fractional derivative: from Riemann-Liouville to Atangana-Baleanu, Numer. Methods Partial Differ. Equ., 34 (2018), 1502–1523. https://doi.org/10.1002/num.22195. doi: 10.1002/num.22195
|
| [4] |
M. ur Rahman, S. Ahmad, R. T. Matoog, N. A. Alshehri, T. Khan, Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator, Chaos Soliton. Fract., 150 (2021), 111121. https://doi.org/10.1016/j.chaos.2021.111121. doi: 10.1016/j.chaos.2021.111121
|
| [5] |
R. P. Chauhan, S. Kumar, B. S. T. Alkahtani, S. S. Alzaid, A study on fractional order financial model by using Caputo–Fabrizio derivative, Results Phys., 57 (2024), 107335. https://doi.org/10.1016/j.rinp.2024.107335. doi: 10.1016/j.rinp.2024.107335
|
| [6] |
M. Sivashankar, S. Sabarinathan, V. Govindan, U. Fernandez-Gamiz, S. Noeiaghdam, Stability analysis of COVID-19 outbreak using Caputo-Fabrizio fractional differential equation, AIMS Math., 8 (2023), 2720–2735. https://doi.org/10.3934/math.2023143. doi: 10.3934/math.2023143
|
| [7] |
S. Arshad, I. Saleem, A. Akgül, J. Huang, Y. Tang, S. M. Eldin, A novel numerical method for solving the Caputo–Fabrizio fractional differential equation, AIMS Math., 8 (2023), 9535–9556. https://doi.org/10.3934/math.2023481. doi: 10.3934/math.2023481
|
| [8] |
K. Dehingia, S. Boulaaras, S. Gogoi, On the dynamics of a nutrient–plankton system with Caputo and Caputo–Fabrizio fractional operators, J. Comput. Sci., 76 (2024), 102232. https://doi.org/10.1016/j.jocs.2024.102232. doi: 10.1016/j.jocs.2024.102232
|
| [9] |
P. Kumar, S. Kumar, B. S. T. Alkahtani, S. S. Alzaid, A mathematical model for simulating the spread of infectious disease using the Caputo-Fabrizio fractional-order operator, AIMS Math., 9 (2024), 30864–30897. https://doi.org/10.3934/math.20241490. doi: 10.3934/math.20241490
|
| [10] |
F. Alsidrani, A. Kılıçman, N. Senu, A comprehensive review of the recent numerical methods for solving FPDEs, Open Math., 22 (2024), 20240036. https://doi.org/10.1515/math-2024-0036 doi: 10.1515/math-2024-0036
|
| [11] |
C. Lee, Y. Nam, M. Bang, S. Ham, J. Kim, Numerical investigation of the dynamics for a normalized time-fractional diffusion equation, AIMS Math., 9 (2024), 26671–26687. https://doi.org/10.3934/math.20241297 doi: 10.3934/math.20241297
|
| [12] |
M. Jornet, J. J. Nieto, Power-series solution of the L-fractional logistic equation, Appl. Math. Lett., 154 (2024), 109085. https://doi.org/10.1016/j.aml.2024.109085 doi: 10.1016/j.aml.2024.109085
|
| [13] | K. A. Lazopoulos, A. K. Lazopoulos, Fractional vector calculus and fractional continuum mechanics, Progr. Fract. Differ. Appl., 2 (2016), 67–86. |
| [14] |
J. L. Suzuki, M. Gulian, M. Zayernouri, M. D'Elia, Fractional modeling in action: a survey of nonlocal models for subsurface transport, turbulent flows, and anomalous materials, J. Peridyn. Nonlocal Model., 5 (2023), 392–459. https://doi.org/10.1007/s42102-022-00085-2 doi: 10.1007/s42102-022-00085-2
|
| [15] |
C. Li, Z. Zhao, Y. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl., 62 (2011), 855–875. https://doi.org/10.1016/j.camwa.2011.02.045 doi: 10.1016/j.camwa.2011.02.045
|
| [16] | E. W. Cheney, D. R. Kincaid, Numerical mathematics and computing, 7 Eds., Thomson Brooks/Cole, 2012. |
| [17] | J. W. Thomas, Numerical partial differential equations: finite difference methods, Springer, New York, 1995. https://doi.org/10.1007/978-1-4899-7278-1 |
| [18] |
H. Kim, C. Lee, S. Yoon, Y. Choi, J. Kim, A fast shape transformation using a phase-field model, Extreme Mech. Lett., 52 (2022), 101633. https://doi.org/10.1016/j.eml.2022.101633 doi: 10.1016/j.eml.2022.101633
|
| [19] |
S. Ham, Y. Li, D. Jeong, C. Lee, S. Kwak, Y. Hwang, et al., An explicit adaptive finite difference method for the Cahn–Hilliard equation, J. Nonlinear Sci., 32 (2022), 80. https://doi.org/10.1007/s00332-022-09844-3 doi: 10.1007/s00332-022-09844-3
|