Research article Special Issues

A normalized Caputo–Fabrizio fractional diffusion equation

  • Published: 19 March 2025
  • MSC : 35R11, 80M20, 39A14

  • We propose a normalized Caputo–Fabrizio (CF) fractional diffusion equation. The CF fractional derivative replaces the power-law kernel in the Caputo derivative with an exponential kernel, which avoids singularities. Compared to the Caputo derivative, the CF derivative is better suited for systems where memory effects decay smoothly rather than following a power law. However, the kernel is not normalized in the sense that its weighting function does not integrate to unity. To resolve this limitation, we develop a modified formulation that ensures proper normalization. To investigate the fractional order's effect on evolution dynamics, we perform computational tests that highlight memory effects.

    Citation: Junseok Kim. A normalized Caputo–Fabrizio fractional diffusion equation[J]. AIMS Mathematics, 2025, 10(3): 6195-6208. doi: 10.3934/math.2025282

    Related Papers:

  • We propose a normalized Caputo–Fabrizio (CF) fractional diffusion equation. The CF fractional derivative replaces the power-law kernel in the Caputo derivative with an exponential kernel, which avoids singularities. Compared to the Caputo derivative, the CF derivative is better suited for systems where memory effects decay smoothly rather than following a power law. However, the kernel is not normalized in the sense that its weighting function does not integrate to unity. To resolve this limitation, we develop a modified formulation that ensures proper normalization. To investigate the fractional order's effect on evolution dynamics, we perform computational tests that highlight memory effects.



    加载中


    [1] M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Progr. Fract. Differ. Appl., 1 (2015), 73–85.
    [2] R. B. Albadarneh, I. Batiha, A. K. Alomari, N. Tahat, Numerical approach for approximating the Caputo fractional-order derivative operator, AIMS Math., 6 (2021), 12743–12756. https://doi.org/10.3934/math.2021735. doi: 10.3934/math.2021735
    [3] A. Atangana, J. R. Gómez-Aguilar, Numerical approximation of Riemann-Liouville definition of fractional derivative: from Riemann-Liouville to Atangana-Baleanu, Numer. Methods Partial Differ. Equ., 34 (2018), 1502–1523. https://doi.org/10.1002/num.22195. doi: 10.1002/num.22195
    [4] M. ur Rahman, S. Ahmad, R. T. Matoog, N. A. Alshehri, T. Khan, Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator, Chaos Soliton. Fract., 150 (2021), 111121. https://doi.org/10.1016/j.chaos.2021.111121. doi: 10.1016/j.chaos.2021.111121
    [5] R. P. Chauhan, S. Kumar, B. S. T. Alkahtani, S. S. Alzaid, A study on fractional order financial model by using Caputo–Fabrizio derivative, Results Phys., 57 (2024), 107335. https://doi.org/10.1016/j.rinp.2024.107335. doi: 10.1016/j.rinp.2024.107335
    [6] M. Sivashankar, S. Sabarinathan, V. Govindan, U. Fernandez-Gamiz, S. Noeiaghdam, Stability analysis of COVID-19 outbreak using Caputo-Fabrizio fractional differential equation, AIMS Math., 8 (2023), 2720–2735. https://doi.org/10.3934/math.2023143. doi: 10.3934/math.2023143
    [7] S. Arshad, I. Saleem, A. Akgül, J. Huang, Y. Tang, S. M. Eldin, A novel numerical method for solving the Caputo–Fabrizio fractional differential equation, AIMS Math., 8 (2023), 9535–9556. https://doi.org/10.3934/math.2023481. doi: 10.3934/math.2023481
    [8] K. Dehingia, S. Boulaaras, S. Gogoi, On the dynamics of a nutrient–plankton system with Caputo and Caputo–Fabrizio fractional operators, J. Comput. Sci., 76 (2024), 102232. https://doi.org/10.1016/j.jocs.2024.102232. doi: 10.1016/j.jocs.2024.102232
    [9] P. Kumar, S. Kumar, B. S. T. Alkahtani, S. S. Alzaid, A mathematical model for simulating the spread of infectious disease using the Caputo-Fabrizio fractional-order operator, AIMS Math., 9 (2024), 30864–30897. https://doi.org/10.3934/math.20241490. doi: 10.3934/math.20241490
    [10] F. Alsidrani, A. Kılıçman, N. Senu, A comprehensive review of the recent numerical methods for solving FPDEs, Open Math., 22 (2024), 20240036. https://doi.org/10.1515/math-2024-0036 doi: 10.1515/math-2024-0036
    [11] C. Lee, Y. Nam, M. Bang, S. Ham, J. Kim, Numerical investigation of the dynamics for a normalized time-fractional diffusion equation, AIMS Math., 9 (2024), 26671–26687. https://doi.org/10.3934/math.20241297 doi: 10.3934/math.20241297
    [12] M. Jornet, J. J. Nieto, Power-series solution of the L-fractional logistic equation, Appl. Math. Lett., 154 (2024), 109085. https://doi.org/10.1016/j.aml.2024.109085 doi: 10.1016/j.aml.2024.109085
    [13] K. A. Lazopoulos, A. K. Lazopoulos, Fractional vector calculus and fractional continuum mechanics, Progr. Fract. Differ. Appl., 2 (2016), 67–86.
    [14] J. L. Suzuki, M. Gulian, M. Zayernouri, M. D'Elia, Fractional modeling in action: a survey of nonlocal models for subsurface transport, turbulent flows, and anomalous materials, J. Peridyn. Nonlocal Model., 5 (2023), 392–459. https://doi.org/10.1007/s42102-022-00085-2 doi: 10.1007/s42102-022-00085-2
    [15] C. Li, Z. Zhao, Y. Chen, Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion, Comput. Math. Appl., 62 (2011), 855–875. https://doi.org/10.1016/j.camwa.2011.02.045 doi: 10.1016/j.camwa.2011.02.045
    [16] E. W. Cheney, D. R. Kincaid, Numerical mathematics and computing, 7 Eds., Thomson Brooks/Cole, 2012.
    [17] J. W. Thomas, Numerical partial differential equations: finite difference methods, Springer, New York, 1995. https://doi.org/10.1007/978-1-4899-7278-1
    [18] H. Kim, C. Lee, S. Yoon, Y. Choi, J. Kim, A fast shape transformation using a phase-field model, Extreme Mech. Lett., 52 (2022), 101633. https://doi.org/10.1016/j.eml.2022.101633 doi: 10.1016/j.eml.2022.101633
    [19] S. Ham, Y. Li, D. Jeong, C. Lee, S. Kwak, Y. Hwang, et al., An explicit adaptive finite difference method for the Cahn–Hilliard equation, J. Nonlinear Sci., 32 (2022), 80. https://doi.org/10.1007/s00332-022-09844-3 doi: 10.1007/s00332-022-09844-3
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1493) PDF downloads(65) Cited by(3)

Article outline

Figures and Tables

Figures(5)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog