Research article

Mathematical modeling of the parasitism and hyperparasitism increase on Halyomorpha halys eggs in a five-year survey in Northern Italy

  • The invasive stink bug Halyomorpha halys has become an important pest of many crops, causing severe economic losses to farmers. Control of the pest mainly relies on multiple applications of broad-spectrum insecticides, undermining the integrated pest management programs and causing secondary pest outbreaks. In the native area, egg parasitoids are the main natural enemies of H. halys, among which Trissolcus japonicus is considered the predominant species. In Italy, adventive populations of T. japonicus and Trissolcus mitsukurii, another egg parasitoid of H. halys in Japan, have established themselves. These two species, together with the indigenous Anastatus bifasciatus, are capable of attacking the eggs of the exotic host. Focusing on the situation in Northern Italy, where also the hyperparasitoid Acroclisoides sinicus is present, a discrete-time model is developed for the simulation of the pest evolution. It is based on actual field data collected over a timespan of five years. The simulations indicate that egg parasitoid by themselves do not suppress populations to non-pest levels, but can play an important role in reducing their impact. Both the data from the five-year surveys and those available in the literature are used in the model. It has some limitations in the fact that climatic conditions were not considered, while more accurate simulations could be performed with additional collection of field data, which at the moment are based on partial field observations not sampled at the same sites.

    Citation: Ezio Venturino, Francesco Cantaloni, Luciana Tavella, Silvia Moraglio, Francesco Tortorici. Mathematical modeling of the parasitism and hyperparasitism increase on Halyomorpha halys eggs in a five-year survey in Northern Italy[J]. Mathematical Biosciences and Engineering, 2024, 21(11): 7501-7529. doi: 10.3934/mbe.2024330

    Related Papers:

    [1] Ardak Kashkynbayev, Yerlan Amanbek, Bibinur Shupeyeva, Yang Kuang . Existence of traveling wave solutions to data-driven glioblastoma multiforme growth models with density-dependent diffusion. Mathematical Biosciences and Engineering, 2020, 17(6): 7234-7247. doi: 10.3934/mbe.2020371
    [2] M. B. A. Mansour . Computation of traveling wave fronts for a nonlinear diffusion-advection model. Mathematical Biosciences and Engineering, 2009, 6(1): 83-91. doi: 10.3934/mbe.2009.6.83
    [3] Blessing O. Emerenini, Stefanie Sonner, Hermann J. Eberl . Mathematical analysis of a quorum sensing induced biofilm dispersal model and numerical simulation of hollowing effects. Mathematical Biosciences and Engineering, 2017, 14(3): 625-653. doi: 10.3934/mbe.2017036
    [4] Maryam Basiri, Frithjof Lutscher, Abbas Moameni . Traveling waves in a free boundary problem for the spread of ecosystem engineers. Mathematical Biosciences and Engineering, 2025, 22(1): 152-184. doi: 10.3934/mbe.2025008
    [5] Tracy L. Stepien, Erica M. Rutter, Yang Kuang . A data-motivated density-dependent diffusion model of in vitro glioblastoma growth. Mathematical Biosciences and Engineering, 2015, 12(6): 1157-1172. doi: 10.3934/mbe.2015.12.1157
    [6] Nicolas Ratto, Martine Marion, Vitaly Volpert . Existence of pulses for a reaction-diffusion system of blood coagulation in flow. Mathematical Biosciences and Engineering, 2019, 16(5): 4196-4212. doi: 10.3934/mbe.2019209
    [7] Dong Liang, Jianhong Wu, Fan Zhang . Modelling Population Growth with Delayed Nonlocal Reaction in 2-Dimensions. Mathematical Biosciences and Engineering, 2005, 2(1): 111-132. doi: 10.3934/mbe.2005.2.111
    [8] Christopher DuBois, Jesse Farnham, Eric Aaron, Ami Radunskaya . A multiple time-scale computational model of a tumor and its micro environment. Mathematical Biosciences and Engineering, 2013, 10(1): 121-150. doi: 10.3934/mbe.2013.10.121
    [9] Xixia Ma, Rongsong Liu, Liming Cai . Stability of traveling wave solutions for a nonlocal Lotka-Volterra model. Mathematical Biosciences and Engineering, 2024, 21(1): 444-473. doi: 10.3934/mbe.2024020
    [10] Zhilan Feng, Wenzhang Huang, Donald L. DeAngelis . Spatially heterogeneous invasion of toxic plant mediated by herbivory. Mathematical Biosciences and Engineering, 2013, 10(5&6): 1519-1538. doi: 10.3934/mbe.2013.10.1519
  • The invasive stink bug Halyomorpha halys has become an important pest of many crops, causing severe economic losses to farmers. Control of the pest mainly relies on multiple applications of broad-spectrum insecticides, undermining the integrated pest management programs and causing secondary pest outbreaks. In the native area, egg parasitoids are the main natural enemies of H. halys, among which Trissolcus japonicus is considered the predominant species. In Italy, adventive populations of T. japonicus and Trissolcus mitsukurii, another egg parasitoid of H. halys in Japan, have established themselves. These two species, together with the indigenous Anastatus bifasciatus, are capable of attacking the eggs of the exotic host. Focusing on the situation in Northern Italy, where also the hyperparasitoid Acroclisoides sinicus is present, a discrete-time model is developed for the simulation of the pest evolution. It is based on actual field data collected over a timespan of five years. The simulations indicate that egg parasitoid by themselves do not suppress populations to non-pest levels, but can play an important role in reducing their impact. Both the data from the five-year surveys and those available in the literature are used in the model. It has some limitations in the fact that climatic conditions were not considered, while more accurate simulations could be performed with additional collection of field data, which at the moment are based on partial field observations not sampled at the same sites.





    [1] T. C. Leskey, A. L. Nielsen, Impact of the invasive brown marmorated stink bug in North America and Europe: history, biology, ecology, and management, Annu. Rev. Entomol., 63 (2018), 599–618. https://doi.org/10.1146/annurev-ento-020117-043226 doi: 10.1146/annurev-ento-020117-043226
    [2] F. Cianferoni, F. Graziani, P. Dioli, F. Ceccolini, Review of the occurrence of Halyomorpha halys (Hemiptera: Heteroptera: Pentatomidae) in Italy, with an update of its European and World distribution, Biologia, 73 (2018), 599–607. https://doi.org/10.2478/s11756-018-0067-9 doi: 10.2478/s11756-018-0067-9
    [3] F. Cianferoni, F. Graziani, F. Ceccolini, The unstoppable march of Halyomorpha halys: new first country records (Hemiptera, Pentatomidae), Spixiana, 42 (2019), 60.
    [4] M. Cesari, L. Maistrello, F. Ganzerli, P. Dioli, L. Rebecchi, R. Guidetti, A pest alien invasion in progress: potential pathways of origin of the brown marmorated stink bug Halyomorpha halys populations in Italy, J. Pest Sci., 88 (2015), 1–7. https://doi.org/10.1007/s10340-014-0634-y doi: 10.1007/s10340-014-0634-y
    [5] L. Bosco, S. T. Moraglio, L. Tavella, Halyomorpha halys, a serious threat for hazelnut in newly invaded areas, J. Pest Sci., 91 (2018), 661–670. https://doi.org/10.3390/insects11120866 doi: 10.3390/insects11120866
    [6] E. Costi, T. Haye, L. Maistrello, . Biological parameters of the invasive brown marmorated stink bug, Halyomorpha halys, in southern Europe, J. Pest Sci., 90 (2017), 1059–1067. https://doi.org/10.1007/s10340-017-0899-z doi: 10.1007/s10340-017-0899-z
    [7] N. Mills, Parasitoids, in Encyclopedia of insects, Academic Press, (2009), 748–751.
    [8] J. M. Stahl, D. Babendreier, C. Marazzi, S. Caruso, E. Costi, L. Maistrello, et al., Can Anastatus bifasciatus be used for augmentative biological control of the brown marmorated stink bug in fruit orchards?, Insects, 10 (2019), 108. https://doi.org/10.3390/insects10040108 doi: 10.3390/insects10040108
    [9] S. T. Moraglio, F. Tortorici, M. G. Pansa, G. Castelli, M. Pontini, S. Scovero, et al., A 3-year survey on parasitism of Halyomorpha halys by egg parasitoids in Northern Italy, J. Pest Sci., 93 (2020), 183–194. https://doi.org/10.1007/s10340-019-01136-2 doi: 10.1007/s10340-019-01136-2
    [10] J. Zhang, F. Zhang, T. Gariepy, P. Mason, D. Gillespie, E. Talamas, et al., Seasonal parasitism and host specificity of Trissolcus japonicus in Northern China, J. Pest Sci., 90 (2017), 1127–1141. https://doi.org/10.1007/s10340-017-0863-y doi: 10.1007/s10340-017-0863-y
    [11] M. T. Kamiyama, K. Matsuura, T. Hata, T. Yoshimura, C. C. S. Yang, Seasonal parasitism of native egg parasitoids of brown marmorated stink bug (Halyomorpha halys) in Japan, J. Pest Sci., 95 (2022), 1067–1079. https://doi.org/10.1007/s10340-021-01455-3 doi: 10.1007/s10340-021-01455-3
    [12] J. R. Lara, C. H. Pickett, M. T. Kamiyama, S. Figueroa, M. Romo, C. Cabanas, et al., Physiological host range of Trissolcus japonicus in relation to Halyomorpha halys and other pentatomids from California, BioControl, 64 (2019), 513–528. https://doi.org/10.1007/s10526-019-09950-4 doi: 10.1007/s10526-019-09950-4
    [13] T. Haye, S. T. Moraglio, J. Stahl, S. Visentin, T. Gregorio, L. Tavella, Fundamental host range of Trissolcus japonicus in Europe, J. Pest Sci., 93 (2020), 171–182. https://doi.org/10.1007/s10340-019-01127-3 doi: 10.1007/s10340-019-01127-3
    [14] G. Sabbatini-Peverieri, L. Boncompagni, G. Mazza, F. Paoli, L. Dapporto, L. Giovannini, et al., Combining physiological host range, behavior and host characteristics for predictive risk analysis of Trissolcus japonicus, J. Pest Sci., 94 (2021), 1003–1016. https://doi.org/10.1007/s10340-020-01311-w doi: 10.1007/s10340-020-01311-w
    [15] G. Sabbatini Peverieri, E. Talamas, M. C. Bon, L. Marianelli, I. Bernardinelli, G. Malossini, et al., Two asian egg parasitoids of Halyomorpha halys (Stål) (Hemiptera, Pentatomidae) emerge in Northern Italy: Trissolcus mitsukurii (Ashmead) and Trissolcus japonicus (Ashmead) (Hymenoptera, Scelionidae), J. Hymen. Res., 67 (2018), 37–53. https://doi.org/10.3897/jhr.67.30883 doi: 10.3897/jhr.67.30883
    [16] D. Scaccini, M. Falagiarda, F. Tortorici, I. Martinez-Sañudo, P. Tirello, Y. Reyes-Domínguez, et al., An insight into the role of Trissolcus mitsukurii as biological control agent of Halyomorpha halys in Northeastern Italy, Insects, 11 (2020), 306. https://doi.org/10.3390/insects11050306 doi: 10.3390/insects11050306
    [17] L. Giovannini, G. Sabbatini-Peverieri, L. Marianelli, G. Rondoni, E. Conti, P. F. Roversi, Physiological host range of Trissolcus mitsukurii, a candidate biological control agent of Halyomorpha halys in Europe, J. Pest Sci., 95 (2022), 605-618. https://doi.org/10.1007/s10340-021-01415-x doi: 10.1007/s10340-021-01415-x
    [18] L. Zapponi, F. Tortorici, G. Anfora, S. Bardella, M. Bariselli, L. Benvenuto, et al., Assessing the distribution of exotic egg parasitoids of Halyomorpha halys in Europe with a large-scale monitoring program, Insects, 12 (2021), 316. https://doi.org/10.3390/insects12040316 doi: 10.3390/insects12040316
    [19] J. K. Konopka, T. Haye, T. D. Gariepy, J. N. McNeil, Possible coexistence of native and exotic parasitoids and their impact on control of Halyomorpha halys, J. Pest Sci., 90 (2017), 1119–1125. https://doi.org/10.1007/s10340-017-0851-2 doi: 10.1007/s10340-017-0851-2
    [20] G. Sabbatini-Peverieri, M. D. Mitroiu, M. C. Bon, R. Balusu, L. Benvenuto, I. Bernardinelli, et al., Surveys of stink bug egg parasitism in Asia, Europe and North America, morphological taxonomy, and molecular analysis reveal the Holarctic distribution of Acroclisoides sinicus (Huang and Liao) (Hymenoptera, Pteromalidae), J. Hymen. Res., 74 (2019), 123–151. https://doi.org/10.3897/jhr.74.46701 doi: 10.3897/jhr.74.46701
    [21] A. Mele, D. Scaccini, A. Pozzebon, Hyperparasitism of Acroclisoides sinicus (Huang and Liao) (Hymenoptera: Pteromalidae) on two biological control agents of Halyomorpha halys, Insects, 12 (2021), 617. https://doi.org/10.3390/insects12070617 doi: 10.3390/insects12070617
    [22] D. J. Sullivan, Hyperparasitism, in Encyclopedia of insects, Academic Press, (2009), 486–488.
    [23] G. Sabbatini-Peverieri, C. Dieckhoff, L. Giovannini, L. Marianelli, P. F. Roversi, K. Hoelmer, Rearing Trissolcus japonicus and Trissolcus mitsukurii for biological control of Halyomorpha halys, Insects, 11 (2020), 787. https://doi.org/10.3390/insects11110787 doi: 10.3390/insects11110787
    [24] B. N. Govindan, W. D. Hutchison, Influence of temperature on age-stage, two-sex life tables for a Minnesota-acclimated population of the brown marmorated stink bug (Halyomorpha halys), Insects, 11 (2020), 108. https://doi.org/10.3390/insects11020108 doi: 10.3390/insects11020108
    [25] J. M. Stahl, D. Babendreier, T. Haye, Using the egg parasitoid Anastatus bifasciatus against the invasive brown marmorated stink bug in Europe: can non-target effects be ruled out?, J. Pest Sci., 91 (2018), 1005–1017. https://doi.org/10.1007/s10340-018-0969-x doi: 10.1007/s10340-018-0969-x
    [26] D. M. Lowenstein, H. Andrews, R. J. Hilton, C. Kaiser, N. G. Wiman, Establishment in an introduced range: dispersal capacity and winter survival of Trissolcus japonicus, an adventive egg parasitoid, Insects, 10 (2019), 443. https://doi.org/10.3390/insects10120443 doi: 10.3390/insects10120443
    [27] L. Giovannini, G. Sabbatini-Peverieri, P. G. Tillman, K. A. Hoelmer, P. F. Roversi, Reproductive and developmental biology of Acroclisoides sinicus, a hyperparasitoid of scelionid parasitoids, Biology, 10 (2021), 229. https://doi.org/10.3390/biology10030229 doi: 10.3390/biology10030229
    [28] J. M. Stahl, D. Babendreier, T. Haye, Life history of Anastatus bifasciatus, a potential biological control agent of the brown marmorated stink bug in Europe, Biol. Control, 129 (2019), 178–186. https://doi.org/10.1016/j.biocontrol.2018.10.016 doi: 10.1016/j.biocontrol.2018.10.016
    [29] R. Arakawa, M. Miura, M. Fujita, Effects of host species on the body size, fecundity, and longevity of Trissolcus mitsukurii (Hymenoptera: Scelionidae), a solitary egg parasitoid of stink bugs, Appl. Entomol. Zool., 39 (2004), 177–181. https://doi.org/10.1303/aez.2004.177 doi: 10.1303/aez.2004.177
    [30] H. R. McIntosh, V. P. Skillman, G. Galindo, J. C. Lee, Floral Resources for Trissolcus japonicus, a Parasitoid of Halyomorpha halys. Insects, 11 (2020), 413. https://doi.org/10.3390/insects11070413
    [31] M. Rot, L. Maistrello, E. Costi, S. Trdan, Biological parameters, phenology and temperature requirements of Halyomorpha halys (Hemiptera: Pentatomidae) in the Sub-Mediterranean climate of Western Slovenia, Insects, 13 (2022), 956. https://doi.org/10.3390/insects13100956 doi: 10.3390/insects13100956
    [32] T. Haye, S. Abdallah, T. Gariepy, D. Wyniger, Phenology, life table analysis and temperature requirements of the invasive brown marmorated stink bug, Halyomorpha halys, in Europe, J. Pest Sci., 87 (2014), 407–418. https://doi.org/10.1007/s10340-014-0560-z doi: 10.1007/s10340-014-0560-z
    [33] E. Costi, T. Haye, L. Maistrello, Surveying native egg parasitoids and predators of the invasive Halyomorpha halys in Northern Italy, J. Appl. Entomol., 143 (2019), 299–307. https://doi.org/10.1111/jen.12590 doi: 10.1111/jen.12590
    [34] D. J. Sullivan, Insect hyperparasitism, Ann. Rev. Entomol., 32 (1987), 49–70.
    [35] M. R. Nematollahi, Y. Fathipour, A. A. Talebi, J. Karimzadeh, M. P. Zalucki, Parasitoid- and Hyperparasitoid-Mediated seasonal dynamics of the cabbage aphid (Hemiptera: Aphididae), Environ. Entomol., 43 (2014), 1542–1551. https://doi.org/10.1603/EN14155 doi: 10.1603/EN14155
    [36] A. P. Gutierrez, G. Sabbatini Peverieri, L. Ponti, L. Giovannini, P. F. Roversi, A. Mele, et al., Tritrophic analysis of the prospective biological control of brown marmorated stink bug, Halyomorpha halys, under extant weather and climate change, J. Pest Sci., 96 (2023), 921–942. https://doi.org/10.1007/s10340-023-01610-y doi: 10.1007/s10340-023-01610-y
    [37] W. R. Morrison III, B. R. Blaauw, A. L. Nielsen, E. Talamas, T. C. Leskey, Predation and parasitism by native and exotic natural enemies of Halyomorpha halys (Stål) (Hemiptera: Pentatomidae) eggs augmented with semiochemicals and differing host stimuli. Biol. Control, 121 (2018), 140–150. https://doi.org/10.1016/j.biocontrol.2018.02.016
    [38] G. Bulgarini, Z. Badra, S. Leonardi, L. Maistrello, Predatory ability of generalist predators on eggs, young nymphs and adults of the invasive Halyomorpha halys in southern Europe, BioControl, 66 (2021), 355–366. https://doi.org/10.1007/s10526-020-10066-3 doi: 10.1007/s10526-020-10066-3
    [39] D. H. Lee, B. D. Short, S. V. Joseph, J. C. Bergh, T. C. Leskey, Review of the biology, ecology, and management of Halyomorpha halys (Hemiptera: Pentatomidae) in China, Japan, and the Republic of Korea, Environ. Entomol., 42 (2013), 627–641. https://doi.org/10.1603/EN13006 doi: 10.1603/EN13006
    [40] G. A. Avila, J. G. Charles, Modelling the potential geographic distribution of Trissolcus japonicus: a biological control agent of the brown marmorated stink bug, Halyomorpha halys, BioControl, 63 (2018), 505–518. https://doi.org/10.1007/s10526-018-9866-8 doi: 10.1007/s10526-018-9866-8
    [41] D. J. Kriticos, J. M. Kean, C. B. Phillips, S. D. Senay, H. Acosta, T. Haye, The potential global distribution of the brown marmorated stink bug, Halyomorpha halys, a critical threat to plant biosecurity, J. Pest Sci., 90 (2017), 1033–1043. https://doi.org/10.1007/s10340-017-0869-5 doi: 10.1007/s10340-017-0869-5
    [42] S. Stoeckli, R. Felber, T. Haye, Current distribution and voltinism of the brown marmorated stink bug, Halyomorpha halys, in Switzerland and its response to climate change using a high-resolution CLIMEX model, International Journal of Biometeorology, 64 (2020), 2019–2032. https://doi.org/10.1007/s00484-020-01992-z
    [43] T. Yonow, D. J. Kriticos, N. Ota, G. A. Avila, K. A. Hoelmer, H. Chen, et al., Modelling the potential geographic distribution of two Trissolcus species for the brown marmorated stink bug, Halyomorpha halys, Insects, 12 (2021), 491. https://doi.org/10.3390/insects12060491 doi: 10.3390/insects12060491
    [44] F. Tortorici, P. Bombi, L. Loru, A. Mele, S. T. Moraglio, D. Scaccini, et al., Halyomorpha halys and its egg parasitoids Trissolcus japonicus and T. mitsukurii: the geographic dimension of the interaction, NeoBiota, 85 (2023), 197–221. https://doi.org/10.3897/neobiota.85.102501 doi: 10.3897/neobiota.85.102501
    [45] A. Mele, D. S. Avanigadda, E. Ceccato, G. B. Olawuyi, F. Simoni, C. Duso, et al., Comparative life tables of Trissolcus japonicus and Trissolcus mitsukurii, egg parasitoids of Halyomorpha halys, Biol. Control, 195 (2024), 105548.
  • This article has been cited by:

    1. Yang Kuang, Erica M. Rutter, Tracy L. Stepien, A data-motivated density-dependent diffusion model of in vitro glioblastoma growth, 2015, 12, 1551-0018, 1157, 10.3934/mbe.2015.12.1157
    2. Tiberiu Harko, Shi-Dong Liang, Exact solutions of the Liénard- and generalized Liénard-type ordinary nonlinear differential equations obtained by deforming the phase space coordinates of the linear harmonic oscillator, 2016, 98, 0022-0833, 93, 10.1007/s10665-015-9812-z
    3. Ayansola D. Ogundele, Andrew J. Sinclair, Subhash C. Sinha, Closed form parametric solutions of nonlinear Abel-type and Riccati-type spacecraft relative motion, 2021, 178, 00945765, 733, 10.1016/j.actaastro.2020.10.009
    4. Faezeh Iranmanesh, Mohammad Ali Nazari, Finite Element Modeling of Avascular Tumor Growth Using a Stress-Driven Model, 2017, 139, 0148-0731, 10.1115/1.4037038
    5. Waipot Ngamsaad, Suthep Suantai, Mechanically-driven spreading of bacterial populations, 2016, 35, 10075704, 88, 10.1016/j.cnsns.2015.10.026
    6. Rebecca L Klank, Steven S Rosenfeld, David J Odde, A Brownian dynamics tumor progression simulator with application to glioblastoma, 2018, 4, 2057-1739, 015001, 10.1088/2057-1739/aa9e6e
    7. Brian Wesley Williams, Exact traveling wave solutions of fast reaction–diffusion–convectionequations based on the Lambert function W, 2020, 2, 26668181, 100013, 10.1016/j.padiff.2020.100013
    8. Man Kwong Mak, Tiberiu Harko, On the Integrability of the Abel and of the Extended Liénard Equations, 2019, 35, 0168-9673, 722, 10.1007/s10255-019-0847-1
    9. Giovanni Borasi, Alan Nahum, Modelling the radiotherapy effect in the reaction-diffusion equation, 2016, 32, 11201797, 1175, 10.1016/j.ejmp.2016.08.020
    10. Prakash Kumar Das, Supriya Mandal, Madan M. Panja, Piecewise smooth localized solutions of Liénard‐type equations with application to NLSE, 2018, 41, 0170-4214, 7869, 10.1002/mma.5249
    11. Georgios S Stamatakos, Stavroula G Giatili, A Numerical Handling of the Boundary Conditions Imposed by the Skull on an Inhomogeneous Diffusion-Reaction Model of Glioblastoma Invasion Into the Brain: Clinical Validation Aspects, 2017, 16, 1176-9351, 117693511668482, 10.1177/1176935116684824
    12. Jianfeng Huang, Joan Torregrosa, Jordi Villadelprat, On the Number of Limit Cycles in Generalized Abel Equations, 2020, 19, 1536-0040, 2343, 10.1137/20M1340083
    13. T. Harko, M. K. Mak, Exact travelling wave solutions of non-linear reaction-convection-diffusion equations—An Abel equation based approach, 2015, 56, 0022-2488, 111501, 10.1063/1.4935299
    14. Jianfeng Huang, Jie Li, On the number of limit cycles in piecewise smooth generalized Abel equations with two asymmetric zones, 2022, 66, 14681218, 103551, 10.1016/j.nonrwa.2022.103551
    15. Valipuram Manoranjan, Lewa’ Alzaleq, Analysis of a population model with advection and an autocatalytic-type growth, 2023, 16, 1793-5245, 10.1142/S1793524522500784
    16. Qianqian Zhao, Jiang Yu, Cheng Wang, Nontrivial Limit Cycles in a Kind of Piecewise Smooth Generalized Abel Equation, 2022, 32, 0218-1274, 10.1142/S0218127422502169
    17. Mohammad F.M. Naser, Mohammad Abdel Aal, Ghaleb Gumah, Stability analysis of Abel's equation of the first kind, 2023, 8, 2473-6988, 30574, 10.3934/math.20231563
    18. Xiangqin Yu, Hebai Chen, Changjian Liu, The number of limit cycles of Josephson equation, 2023, 0, 1531-3492, 0, 10.3934/dcdsb.2023208
    19. Elsa Moggia, Predictive potentialities of the Quasi-Random Lattice model for electrolyte solutions, discussion and improvement strategies, 2025, 588, 03783812, 114243, 10.1016/j.fluid.2024.114243
    20. Xiangqin Yu, Jianfeng Huang, Changjian Liu, Maximum number of limit cycles for Abel equation having coefficients with linear trigonometric functions, 2024, 410, 00220396, 301, 10.1016/j.jde.2024.07.030
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(868) PDF downloads(52) Cited by(0)

Article outline

Figures and Tables

Figures(7)  /  Tables(13)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog