Research article

Finite-time stability analysis of singular neutral systems with time delay

  • Received: 17 July 2024 Revised: 30 August 2024 Accepted: 03 September 2024 Published: 14 September 2024
  • MSC : 34A09, 34D20

  • This paper studies the finite-time stability problem for a class of singular neutral systems by using the Lyapunov-Krasovskii function approach and regular neutral system theory. The considered systems involve not only the delayed version of the state, but also the delayed version of the derivative of the state. Some sufficient conditions are presented to ensure that the considered systems are regular, impulse-free, and finite-time stable. Three numerical examples are given to illustrate the effectiveness of the proposed methods.

    Citation: Sheng Wang, Shaohua Long. Finite-time stability analysis of singular neutral systems with time delay[J]. AIMS Mathematics, 2024, 9(10): 26877-26901. doi: 10.3934/math.20241308

    Related Papers:

    [1] Xiaogang Liu, Muhammad Ahsan, Zohaib Zahid, Shuili Ren . Fault-tolerant edge metric dimension of certain families of graphs. AIMS Mathematics, 2021, 6(2): 1140-1152. doi: 10.3934/math.2021069
    [2] Maryam Salem Alatawi, Ali Ahmad, Ali N. A. Koam, Sadia Husain, Muhammad Azeem . Computing vertex resolvability of benzenoid tripod structure. AIMS Mathematics, 2022, 7(4): 6971-6983. doi: 10.3934/math.2022387
    [3] Pradeep Singh, Sahil Sharma, Sunny Kumar Sharma, Vijay Kumar Bhat . Metric dimension and edge metric dimension of windmill graphs. AIMS Mathematics, 2021, 6(9): 9138-9153. doi: 10.3934/math.2021531
    [4] Chenggang Huo, Humera Bashir, Zohaib Zahid, Yu Ming Chu . On the 2-metric resolvability of graphs. AIMS Mathematics, 2020, 5(6): 6609-6619. doi: 10.3934/math.2020425
    [5] Meiqin Wei, Jun Yue, Xiaoyu zhu . On the edge metric dimension of graphs. AIMS Mathematics, 2020, 5(5): 4459-4465. doi: 10.3934/math.2020286
    [6] Lyimo Sygbert Mhagama, Muhammad Faisal Nadeem, Mohamad Nazri Husin . On the edge metric dimension of some classes of cacti. AIMS Mathematics, 2024, 9(6): 16422-16435. doi: 10.3934/math.2024795
    [7] Mohra Zayed, Ali Ahmad, Muhammad Faisal Nadeem, Muhammad Azeem . The comparative study of resolving parameters for a family of ladder networks. AIMS Mathematics, 2022, 7(9): 16569-16589. doi: 10.3934/math.2022908
    [8] Dalal Awadh Alrowaili, Uzma Ahmad, Saira Hameeed, Muhammad Javaid . Graphs with mixed metric dimension three and related algorithms. AIMS Mathematics, 2023, 8(7): 16708-16723. doi: 10.3934/math.2023854
    [9] Syed Ahtsham Ul Haq Bokhary, Zill-e-Shams, Abdul Ghaffar, Kottakkaran Sooppy Nisar . On the metric basis in wheels with consecutive missing spokes. AIMS Mathematics, 2020, 5(6): 6221-6232. doi: 10.3934/math.2020400
    [10] Ahmed Alamer, Hassan Zafar, Muhammad Javaid . Study of modified prism networks via fractional metric dimension. AIMS Mathematics, 2023, 8(5): 10864-10886. doi: 10.3934/math.2023551
  • This paper studies the finite-time stability problem for a class of singular neutral systems by using the Lyapunov-Krasovskii function approach and regular neutral system theory. The considered systems involve not only the delayed version of the state, but also the delayed version of the derivative of the state. Some sufficient conditions are presented to ensure that the considered systems are regular, impulse-free, and finite-time stable. Three numerical examples are given to illustrate the effectiveness of the proposed methods.



    The fractional derivatives with constant or variable order [3,9] are excellent mathematical tools for the description of memory and the hereditary properties of various processes and materials[12,19]. In fractional calculus, these derivatives are defined through fractional integrals. There are several approaches to fractional derivatives including Riemann-Liouville [10,14,15], Caputo, Hadamard derivatives, [4,6,13,17].

    Efforts have been dedicated to generalizations concerning mappings of bounded variation, absolute continuity, various classes of convex functions, and their extension to fractional calculus, involving Riemann-Liouville integrals and their generalizattions as referenced in [1,2,12,15].

    In [8], the author proved some integral inequalities for functions whose kth (kN) derivatives are convex involving Caputo derivatives and obtain the following results for a,ΔI,a<Δ,α,βR, α,β1, and ψ:IR:

    ● If ψ(k)(kN) exists and is positive and convex, then

    Γ(kα+1)CDα1a+ψ(ξ)+(1)kΓ(kβ+1)CDβ1Δψ(ξ)(ξa)kα+1ψ(k)(a)+ψ(k)(ξ)2+(Δξ)kβ+1ψ(k)(Δ)+ψ(k)(ξ)2. (1.1)

    ● If ψ(k) exists and is positive, convex and symmetric about a+Δ2, then

    12(1kα+1+1kβ+1)ψ(k)(a+Δ2)Γ(kβ+1)CDβ1Δψ(α)2(Δa)kβ+1+(1)kΓ(kα+1)CDα1a+ψ(Δ)2(Δa)kα+1ψ(k)(Δ)+ψ(k)(a)2. (1.2)

    In [11], the authors gave a version of Hadamard's inequality using the Caputo derivative. In [7], the authors proved Hadamard inequalities for strongly α,m-convex functions via Caputo fractional derivatives. In this paper, we consider the Caputo derivatives of a real valued function ψ whose derivatives ψ(k)(kN) are genaralized modified h-convex. Some Caputo fractional versions of Hermite-Hadamard inequalities are obtained. From which particular cases are revealed, we have also established a new integral inequality between Caputo derivatives CDα.ψ and the Riemann-Liouville integrals Rkα.(ψ(k))2. By deriving new differential inequalities in this context, we aim to extend the applicability of fractional calculus to problems involving generalized convex functions. These results have significance in various fields, including mathematics, physics, and engineering, where fractional calculus plays a crucial role in modeling complex phenomena with memory and long-range dependence.sts Our results generalize those cited in [8] and unify several classes of functions, like convex and s-convex functions.

    This section deals with some definitions of convexity [2,5,8], generalized h-convexity [20], fractional integrals and derivatives [6,18].

    Let IR be an interval and h:[0,1](0,),ψ:I(0,) be two real valued functions, then

    ψ is said to be h-convex, if

    ψ(ρc+(1ρ)d)h(ρ)ψ(c)+h(1ρ)ψ(d) (2.1)

    holds for all c,dI and ρ(0,1]. If (2.1) is reversed, then ψ is said to be h-concave.

    ● The function ψ is said to be modified h-convex if

    ψ(ρc+(1ρ)d)h(ρ)ψ(c)+(1h(ρ))ψ(d). (2.2)

    ● The function ψ is said to be generalized modified h-convex if

    ψ(ρc+(1ρ)d)ψ(d)+h(ρ)θ(ψ(c),ψ(d)). (2.3)

    Definition 2.1 (Additivity). [20] A continuous bifunction θ is said to be additive, if

    θ(a1,b1)+θ(a2,b2)=θ(a1+a2,b1+b2),a1,a2,b1,b2R.

    Definition 2.2 (Nonnegative homogeneity). [20] A continuous bifunction θ is said to be nonnegatively homogeneous if, for all λ>0,

    θ(λa1,λa2)=λθ(a1,a2),a1,a2R.

    Remark 2.1. For different functions h,θ one can obtain various classes of generalized modified convex functions:

    By taking in (2.1) h(z)=zs(0<s1), we have the definition of modified generalized s-convex functions.

    If, we take θ(r,z)=rz, then we obtain the definition of a modified h-convex function.

    Let [a,Δ](<a<Δ<+) be a finite interval on the real axis R. For any function ψL1([a,Δ]), the Riemann-Liouville fractional integrals Rαa+ and RαΔ of order αR (α>0) of ψ are defined by

    Rαa+ψ(s)=1Γ(α)sa(st)α1ψ(t)dt,s>a(left) (2.4)

    and

    RαΔψ(s)=1Γ(α)Δs(ts)α1ψ(t)dt,s<Δ(right), (2.5)

    respectively. Here Γ(α)=0tα1etdt,α>0 is the gamma function. We set R0a+ψ=R0Δψ=ψ.

    Let [a,Δ] be a finite interval of the real line R. Let α>0,kN, k=[α]+1 and ψACk([a,Δ]) (ACk([a,Δ]) means the space of complex-valued functions ψ(x) which have continuous derivatives up to order k1 on [a,b] such that ψ(k1)(x)AC([a,Δ]): i.e., absolutely continuous) see Lemma 2.4 [18]. The left and right Caputo fractional derivatives of order α(α0) of ψ are given by the following formulas (see [1,4,10,13])

    CDαa+ψ(ξ)=1Γ(kα)ξaψ(k)(t)(ξt)kα1dt,ξ>a

    and

    CDαΔψ(ξ)=(1)kΓ(kα)Δξψ(k)(t)(tξ)kα1dt,ξ<Δ,

    respectively.

    If α=kN, then

    CDαa+ψ(ξ)=ψ(k)(ξ)andCDαΔψ(ξ)=(1)kψ(k)(ξ).

    In particular, if k=1, α=0, then

    CD0a+ψ(ξ)=CD0Δψ(ξ)=ψ(ξ).

    Lemma 2.1. [16] The following formulas for Caputo fractional derivatives of order α>0,k1<α<k(kN) of a power function at t=a and t=b hold

    CDαa+(ta)p=Γ(p+1)Γ(pα+1)(ta)pα,t>a (2.6)

    and

    CDαb(bt)p=Γ(p+1)Γ(pα+1)(bt)pα,t<b. (2.7)

    Our objective in this work, is to prove some fractional integral inequalities for functions whose kth (kN) derivatives are generalized modified h-convex functions involving the Caputo derivative operator.

    Theorem 3.1. Let I be an interval of R, a,ΔI,a<Δ and α,β>0, such that k1<α,β<k,kN. Let ψ:IR be differentiable function. If, ψ(k)(kN) exists and is a positive generalized modified h-convex function and θ is a continuous bifunction, then the following integral inequality

    Γ(kα+1)(CDα1a+ψ)(ξ)+(1)kΓ(kβ+1)(CDβ1Δψ)(ξ)(Δξ)kβ+1[ψ(k)(ξ)+θ(ψ(k)(Δ),ψ(k)(ξ))10h(z)dz]+(ξa)kα+1[ψ(k)(ξ)+θ(ψ(k)(a),ψ(k)(ξ))10h(z)dz] (3.1)

    holds.

    Proof. For all ξ[a,Δ] and for all t[a,ξ], we have

    (ξt)kα(ξa)kα, (3.2)

    and

    t=ξtξaa+taξaξ.

    Since ψ(k) is generalized modified h-convex, (2.3) implies that

    ψ(k)(t)ψ(k)(ξ)+h(ξtξa)θ(ψ(k)(a),ψ(k)(ξ)). (3.3)

    Multiplying inequalities (3.2) and (3.3) on both side and integrating, we obtain

    ξa(ξt)kαψ(k)(t)dtξa(ξa)kα×[ψ(k)(ξ)+h(ξtξa)θ(ψ(k)(a),ψ(k)(ξ))]dt. (3.4)

    That is

    Γ(kα+1)(CDα1a+ψ)(ξ)(ξa)kα+1×[ψ(k)(ξ)+θ(ψ(k)(a),ψ(k)(ξ))10h(z)dz]. (3.5)

    Let ξ[a,Δ],t[ξ,Δ], thus

    (tξ)kβ(Δξ)kβ. (3.6)

    We have

    t=tξΔξΔ+ΔtΔξξ.

    Since ψ(k) is generalized modified h-convex on [α,Δ], then

    ψ(k)(t)ψ(k)(ξ)+h(tξΔξ)θ(ψ(k)(Δ),ψ(k)(ξ)). (3.7)

    Similarly, we obtain

    (1)kΓ(kβ+1)(CDβ1Δψ)(ξ)(Δξ)kβ+1×[ψ(k)(ξ)+θ(ψ(k)(Δ),ψ(k)(ξ))10h(z)dz]. (3.8)

    Adding (3.5) and (3.8), the claim follows.

    Corollary 3.1. If, we set α=β in (3.1), then we obtain

    Γ(kα+1)[(CDα1a+ψ)(ξ)+(1)k(CDα1Δψ)(ξ)](Δξ)kα+1[ψ(k)(ξ)+θ(ψ(k)(Δ),ψ(k)(ξ))10h(z)dz]+(ξa)kα+1[ψ(k)(ξ)+θ(ψ(k)(a),ψ(k)(ξ))10h(z)dz].

    Corollary 3.2. By setting θ(r,z)=rz,h(t)=ts,s[0,1] in (3.1), we obtain

    Γ(kα+1)(CDα1a+ψ)(ξ)+(1)kΓ(kβ+1)(CDβ1Δψ)(ξ)(Δξ)kβ+1ψ(k)(Δ)+(ξa)kα+1ψ(k)(a)s+1+(ξa)kα+1+(Δξ)kβ+1s+1sψ(k)(ξ). (3.9)

    In particular, if h(z)=z, then we have

    Γ(kα+1)(CDα1α+ψ)(ξ)+(1)kΓ(kβ+1)(CDβ1Δψ)(ξ)(Δξ)kβ+1ψ(k)(Δ)+(ξa)kα+1ψ(k)(a)2+(ξa)kα+1+(Δξ)kβ+12ψ(k)(ξ). (3.10)

    Taking α=β in (3.10), we obtain

    Γ(kα+1)[(CDα1a+ψ)(ξ)+(1)k(CDα1Δψ)(ξ)](Δξ)kα+1ψ(k)(Δ)+(ξa)kα+1ψ(k)(a)2+(ξa)kα+1+(Δξ)kα+12ψ(k)(ξ). (3.11)

    Example 3.1. Let ψ:[a,Δ][0,), ψ(ξ)=2(k+2)!(ξa)k+2, a<ξΔ. Let h:[0,1](0,), h(t)t, θ(x,y)=2x+y. We verify easly that ψ(k)(ξ)=(ξa)2 is generalized modified h-convex on [a,Δ]. From Corollary 3.1 and Lemma 2.1, we obtain

    lhs:=Γ(kα+1)(CDα1a+ψ)(ξ)=2(ξa)kα+3(kα+1)(kα+2)(kα+3), (3.12)

    and

    rhs:=(ξa)kα+1[(ξa)2+(0+(ξa)2)10h(z)dz]=(ξa)kα+3(1+10h(z)dz). (3.13)

    For the right derivative (CDα1Δψ)(ξ), we consider the function ψ(ξ)=2(Δξ)k+2(k+2)!, aξ<Δ.

    (1)kΓ(kα+1)(CDα1Δψ)(ξ)=2(Δξ)kα+3(kα+1)(kα+2)(kα+3) (3.14)

    and

    rhs:=(Δξ)kα+3(1+10h(z)dz). (3.15)

    Now let I be an interval of R, a,ΔI,(a<Δ) and α,β>0, such that k1<α,β<k,(kN). Let ψ:IR. Assume that |ψ(k+1)| is generalized modified h- convex on [a,Δ].

    It is clear that for all ξ[a,Δ],t[a,ξ], we have

    (ξt)kα(ξa)kα,t[a,ξ]. (3.16)

    Since |ψ(k+1)| is generalized modified h-convex, we have for t[a,ξ],

    Lhs = [|ψ(k+1)(ξ)|+θ(|ψ(k+1)(a)|,|ψ(k+1)(ξ)|)h(taξa)]|ψ(k+1)(t)||ψ(k+1)(ξ)|+θ(|ψ(k+1)(a)|,|ψ(k+1)(ξ)|)h(taξa)=Rhs. (3.17)

    Multiplying (3.16) by the Rhs of inequality (3.17) and integrating the resulting inequality over [a,ξ], we obtain

    ξa(ξt)kαψ(k+1)(t)dt(ξa)kα(|ψ(k+1)(ξ)|+θ(|ψ(k+1)(a)|,|ψ(k+1)(ξ)|)10h(z)dz), (3.18)

    by integration by parts, we have

    ξa(ξt)kαψ(k+1)(t)dt=ψ(k)(t)(ξt)kα|ξa+(kα)ξa(ξt)kα1ψ(k)(t)dt=Γ(kα+1)(CDαa+ψ)(ξ)ψ(k)(a)(ξa)kα.

    Hence

    Γ(kα+1)(CDαa+ψ)(ξ)ψ(k)(a)(ξa)kα(ψ(k+1)(ξ)+θ(|ψ(k+1)(a)|,|ψ(k+1)(ξ)|)10h(z)dz)(ξa)kα. (3.19)

    In a similar way, if we proceed with the Lhs of (3.17) as we did for the Rhs, it follows that

    ψ(k)(a)(ξa)kαΓ(kα+1)(CDαa+ψ)(ξ)(|ψ(k+1)(ξ)|+θ(|ψ(k+1)(a)|,|ψ(k+1)(ξ)|)10h(z)dz)(ξa)kα. (3.20)

    From (3.19) and (3.20), we obtain

    |Γ(kα+1)(CDαa+ψ)(ξ)ψ(k)(a)(ξa)kα|(|ψ(k+1)(ξ)|+θ(|ψ(k+1)(a)|,|ψ(k+1)(ξ)|)10h(z)dz)(ξa)kα. (3.21)

    Doing the same for t[ξ,Δ] and β>0,k1<β<k, and taking into acount that |ψ(k+1)| is generalized modified h-convex, we have

    Lhs = [|ψ(k+1)(ξ)|+θ(|ψ(k+1)(Δ)|,|ψ(k+1)(ξ)|)h(tξΔξ)]                ψ(k+1)(t)ψ(k+1)(ξ)+θ(|ψ(k+1)(Δ)|,|ψ(k+1)(ξ)|)h(tξΔξ)=Rhs. (3.22)

    Hence

    |Γ(kβ+1)(CDβΔψ)(ξ)ψ(k)(Δ)(Δξ)kβ|(Δξ)kβ×[|ψ(k+1)(ξ)|+θ(|ψ(k+1)(Δ)|,|ψ(k+1)(ξ)|)10h(z)dz]. (3.23)

    Combine (3.21) and (3.23) via triangular inequality, and we obtain the double inequality

    |Γ(kα+1)(CDαa+ψ)(ξ)+Γ(kβ+1)(CDβΔψ)(ξ)(ψ(k)(a)(ξa)kα+ψ(k)(Δ)(Δξ)kβ)|(Δξ)kβ[|ψ(k+1)(ξ)|+θ(|ψ(k+1)(Δ)|,|ψ(k+1)(ξ)|)10h(z)dz]+(ξa)kα[|ψ(k+1)(ξ)|+θ(|ψ(k+1)(a)|,|ψ(k+1)(ξ)|)10h(z)dz]. (3.24)

    Which leads to the following result:

    Theorem 3.2. Let I be an interval of R, a,ΔI(a<Δ) and α,β>0, such that k1<α,β<k, (kN). Let ψ:IR be a function such that ψACk+1. Assume that |ψ(k+1)| is a generalized modified h-convex function and θ a continuous bifunction, then

    |Γ(kα+1)(CDαa+ψ)(ξ)+Γ(kβ+1)(CDβΔψ)(ξ)(ψ(k)(a)(ξa)kα+ψ(k)(Δ)(Δξ)kβ)|(Δξ)kβ[|ψ(k+1)(ξ)|+θ(|ψ(k+1)(Δ)|,|ψ(k+1)(ξ)|)10h(z)dz]+(ξa)kα[|ψ(k+1)(ξ)|+θ(|ψ(k+1)(a)|,|ψ(k+1)(ξ)|)10h(z)dz] (3.25)

    holds.

    As a consequences, we have

    Corollary 3.3. If in (3.25), we set α=β, then

    |Γ(kα+1)(CDαa+ψ(ξ)+CDαΔψ(ξ))(ψ(k)(a)(ξa)kα+ψ(k)(Δ)(Δξ)kα)|(Δξ)kα[|ψ(k+1)(ξ)|+θ(|ψ(k+1)(Δ)|,|ψ(k+1)(ξ)|)10h(z)dz]+(ξa)kα[|ψ(k+1)(ξ)|+θ(|ψ(k+1)(a)|,|ψ(k+1)(ξ)|)10h(z)dz] (3.26)

    holds.

    Corollary 3.4. By taking θ(z,r)=zr,h(t)=ts,s[0,1] in (3.26), we obtain

    |Γ(kα+1)[(CDαa+ψ)(ξ)+(CDαΔψ)(ξ)](ψ(k)(a)(ξa)kα+ψ(k)(Δ)(Δξ)kα)|s((ξa)kα+(Δξ)kα)|ψ(k+1)(ξ)|s+1+(ξa)kα|ψ(k+1)(a)|+(Δξ)kα|ψ(k+1)(Δ)|s+1. (3.27)

    In particular for s=1, we have

    |Γ(kα+1)[(CDαa+ψ)(ξ)+(CDαΔψ)(ξ)](ψ(k)(a)(ξa)kα+ψ(k)(Δ)(Δξ)kα)|((ξa)kα+(Δξ)kα)|ψ(k+1)(ξ)|2+(ξa)kα|ψ(k+1)(a)|+(Δξ)kα|ψ(k+1)(Δ)|2. (3.28)

    Example 3.2. Let ψ,h,θ as in the Example 3.1. We verify easily that ψ(k+1)(ξ)=2(ξa) is generalized modified h-convex on [a,Δ]. From Corollary 3.3 and Lemma 2.1, we obtain

    lhs:=Γ(kα+1)CDαa+ψ(ξ)=2(ξa)kα+2(kα+1)(kα+2), (3.29)

    and

    rhs:=(ξa)kα[2(ξa)+(0+2(ξa))10h(z)dz]=2(ξa)kα+1(1+10h(z)dz).

    For the right derivative CDαΔψ(ξ), we have

    lhs:=(1)kΓ(kα+1)CDαΔψ(ξ)=2(Δξ)kα+2(kα+1)(kα+2) (3.30)

    and

    rhs:=2(Δξ)kα+1(1+10h(z)dz). (3.31)

    Now suppose that ψ:[a,Δ](0,) is a generalized modified h-convex function and symmetric about a+Δ2, then for all ξ[a,Δ] the inequality

    ψ(a+Δ2)ψ(ξ)(1+h(12)θ(1,1)) (3.32)

    is valid. Here θ is assumed to be nonnegatively homogeneous. Indeed, set

    r=aξaΔa+ΔΔξΔa,z=ΔξaΔa+αΔξΔa.

    Hence

    a+Δ2=r2+z2.

    Since ψ is generalized modified h-convex, symmetric about a+Δ2, and the bifunction θ is assumed to be nonnegatively homogeneous, it results in

    ψ(a+Δ2)=ψ(r2+z2)ψ(z)+h(12)θ(ψ(r),ψ(z))=ψ(ξ)+h(12)θ(ψ(ξ),ψ(ξ))=ψ(ξ)(1+h(12)θ(1,1)).

    Theorem 3.3. Let I be an interval of R, a,ΔI (a<Δ) and α,β1, k1<α,β<k,kN. Let ψ:IR be a real valued function such that ψACk. If ψ(k) is a positive, generalized modified h-convex and symmetric about a+Δ2 and furthermore the bifunction θ is nonnegatively homogeneous, then the following inequality holds

    N1θ{ψ(k)(a+Δ2)kβ+1+ψ(k)(a+Δ2)kα+1}Γ(kβ+1)(CDβ1Δψ)(a)(Δa)kβ+1+Γ(kα+1)(CDα1a+ψ)(Δ)(Δa)kα+1ψ(k)(Δ)+ψ(k)(a)+[θ(ψ(k)(Δ),ψ(k)(a))+θ(ψ(k)(a),ψ(k)(Δ))]10h(z)dz. (3.33)

    If, furthermore, θ is additive, then

    N1θ{ψ(k)(a+Δ2)kβ+1+ψ(k)(a+Δ2)kα+1}Γ(kβ+1)(CDβ1Δψ)(α)(Δa)kβ+1+Γ(kα+1)(CDα1a+ψ)(Δ)(Δa)kα+1Mθ(ψ(k)(Δ)+ψ(k)(a)) (3.34)

    holds. Here

    Nθ=1+h(12)θ(1,1),Mθ=1+θ(1,1)10h(z)dz.

    Proof. For all ξ[a,Δ],k1<α<k, we have ξ=ΔξΔaa+ξaΔaΔ and

    (ξα)kα(Δa)kα (3.35)

    and ψ(k) satisfies

    ψ(k)(ξ)ψ(k)(a)+h(ξaΔa)θ(ψ(k)(Δ),ψ(k)(a)). (3.36)

    Multiplying (3.35) and (3.36) and proceeding as above, we obtain

    Γ(kα+1)(CDα1Δψ)(a)[ψ(k)(a)+θ(ψ(k)(Δ),ψ(k)(a))10h(z)dz]×(Δα)kα+1. (3.37)

    Also, we have for ξ[a,Δ],k1<β<k,

    (Δξ)kβ(Δa)kβ (3.38)

    and

    ψ(k)(ξ)ψ(k)(Δ)+h(ΔξΔa)θ(ψ(k)(a),ψ(k)(Δ)). (3.39)

    Multiplying (3.39) and (3.38) and integrating over [a,Δ], we get

    Γ(kβ+1)(CDβ1Δψ)(a)[ψ(k)(Δ)+θ(ψ(k)(a),ψ(k)(Δ))10h(z)dz](Δa)kβ+1. (3.40)

    Adding (3.37) and (3.40), we obtain

    Γ(kβ+1)(CDβ1Δψ)(α)(Δa)kβ+1+Γ(kα+1)(CDα1a+ψ)(Δ)(Δa)kα+1 (3.41)
    ψ(k)(Δ)+ψ(k)(a)+[θ(ψ(k)(Δ),ψ(k)(a))+θ(ψ(k)(a),ψ(k)(Δ))]10h(z)dz. (3.42)

    Set Nθ=1+h(12)θ(1,1), thus (3.32) is written as

    ψ(k)(a+Δ2)Nθψ(k)(ξ),ξ[a,Δ]. (3.43)

    Multiplying by (ξa)kα on both sides of (3.43) and integrating the result over [a,Δ], it results that

    N1θψ(k)(a+Δ2)kα+1Γ(kα+1)(CDα1Δψ)(a)(Δa)kα+1. (3.44)

    Multiplying (3.43) by (Δξ)kβ, and integrating over [a,Δ], we obtain

    N1θψ(k)(a+Δ2)kβ+1Γ(kβ+1)(CDβ1a+ψ)(Δ)(Δa)kβ+1. (3.45)

    Adding (3.44) and (3.45), we obtain the first inequality. By combining the resulting inequality with (3.41), we obtain (3.33). Using the fact that θ is additive and nonnegatively homogeneous (3.34) results. That proves the claim.

    Corollary 3.5. By taking α=β in (3.33), then

    N1θ2ψ(k)(a+Δ2)kα+1Γ(kα+1)(CDα1a+ψ(Δ)+CDα1Δψ(a))(Δa)kα+1ψ(k)(Δ)+ψ(k)(a)+[θ(ψ(k)(Δ),ψ(k)(a))+θ(ψ(k)(a),ψ(k)(Δ))]10h(z)dz (3.46)

    holds.

    If, θ is additive, then

    2N1θψ(k)(a+Δ2)kα+1Γ(kα+1)(CDα1a+ψ(Δ)+CDα1Δψ(a))(Δa)kα+1Mθ(ψ(k)(Δ)+ψ(k)(a)). (3.47)

    Corollary 3.6. By setting h(t)=ts,s[0,1] in (3.47), it results that

    2sψ(k)(a+Δ2)(2s+θ(1,1))(kα+1)Γ(kα+1)[(CDα+1Δψ)(a)+(CDα+1a+ψ)(Δ)](Δa)kα+1ψ(k)(a)+ψ(k)(Δ)s+1(s+1+θ(1,1)).

    In particular, if h(t)=t, then

    2ψ(k)(a+Δ2)(2+θ(1,1))(kα+1)Γ(kα+1)[(CDα+1Δψ)(a)+(CDα+1a+ψ)(Δ)](Δa)kα+1ψ(k)(a)+ψ(k)(Δ)2(2+θ(1,1)).

    Theorem 3.4. Let ψACk(a,Δ), kN;k1<α<k. Assume that ψ(k) is positive, generalized modified h-convex on [a,Δ] and symmetric to a+Δ2. Assume that θ is nonnegatively homogeneous. Then

    ψ(k)(a+Δ2)1+h(12)θ(1,1)[(CDαΔψ)(a)+(CDαa+ψ)(Δ)]RkαΔ(ψ(k))2(a)+Rkαa+(ψ(k))2(Δ) (3.48)

    holds. Where Rkα. is the Riemann-Liouville integral operator of order kα.

    Proof. Since ψ(k) is generalized modified h-convex and θ is nonnegatively homogeneous, then we have for μ[0,1]

    ψ(k)(a+Δ2)=ψ(k)(μΔ+(1μ)a+μa+(1μ)Δ2)ψ(k)(μΔ+(1μ)a)+h(12)θ(ψ(k)(μa+(1μ)Δ),ψ(k)(μΔ+(1μ)a))=(ψ(k))2(μΔ+(1μ)a)[1+h(12)θ(1,1)]. (3.49)

    Multiplying (3.49) by μkα1ψ(k)(μΔ+(1μ)a) and integrating over [0,1], with respect to μ, we obtain

    ψ(k)(a+Δ2)10μkα1ψ(k)(μΔ+(1μ)a)dμ=ψ(k)(a+Δ2)(Δa)kαΓ(kα)(CDαa+ψ)(Δ),

    and

    [1+h(12)θ(1,1)]10μkα1(ψ(k))2(μΔ+(1μ)a)dμ=1+h(12)θ(1,1)(Δa)kαΔa(xa)kα1(ψ(k))2(x)dx=[1+h(12)θ(1,1)]Γ(kα)(Δa)kαRkαa+(ψ(k))2(Δ).

    Hence

    ψ(k)(a+Δ2)1+h(12)θ(1,1)(CDαa+f)(Δ)Rkαa+(ψ(k))2(Δ). (3.50)

    And similarly

    ψ(k)(a+Δ2)ψ(k)(μa+(1μ)Δ)[1+h(12)θ(1,1)] (3.51)

    by multiplying (3.51) by μkα1ψ(k)(μa+(1μ)Δ), integration yields to

    ψ(k)(a+Δ2)10μkα1ψ(k)(μa+(1μ)Δ)dμ=ψ(k)(a+Δ2)(Δa)kαΓ(kα)(CDαΔψ)(a)

    and

    [1+h(12)θ(1,1)]10μkα1(ψ(k))2(μa+(1μ)Δ)dμ=[1+h(12)θ(1,1)]Γ(kα)(Δa)kαRkαΔ(ψ(k))2(a), (3.52)

    it results that

    ψ(k)(a+Δ2)1+h(12)θ(1,1)(CDαΔψ)(a)RkαΔ(ψ(k))2(a). (3.53)

    By adding (3.50) and (3.53), we get (3.48). That proves the claim.

    Corollary 3.7. Under the same assumptions as Theorem 3.4, if h(t)=ts,s[0,1], then

    2sψ(k)(a+Δ2)2s+θ(1,1)[(CDαΔψ)(a)+(CDαa+ψ)(Δ)]RkαΔ(ψ(k))2(a)+Rkαa+(ψ(k))2(Δ).

    If θ(u,v)=θ(v,u), then

    ψ(k)(a+Δ2)(CDαΔψ(a)+CDαa+ψ(Δ))RkαΔ(ψ(k))2(α)+Rkαa+(ψ(k))2(Δ) (3.54)

    is valid.

    In this work, we have established some estimates including once the derivatives of Caputo and another time the integrals of Riemann-Liouville and the derivatives of Caputo for a function whose derivative order kth (kN) is generalized modified h-convex and symmetrical in the middle. Estimates of consequences for special classes of convex functions and s-convex functions in [0,1] were obtained. The estimates we have just made are compared to those presented in the results [8].

    Future research could focus on extending these results to variable order or other types of convex functions or exploring inequalities for functions that do not necessarily have symmetry. Furthermore, the application of derived inequalities to concrete problems in applied mathematics, physics, or engineering could still validate the practical significance of our theoretical contributions. Taking these limitations into account could lead to a more complete understanding and wider applicability of fractional inequalities.

    HB: conceptualization, writing original draft preparation, writing review and editing, supervision; MSS: conceptualization, writing original draft preparation, writing review and editing, supervision; HG: conceptualization, writing review and editing, supervision; UFG: funding, writing review and editing. All authors have read and approved the final version of the manuscript for publication.

    The work of U.F.-G. was supported by the government of the Basque Country for the ELKARTEK24/78 and ELKARTEK24/26 research programs, respectively.

    The authors declare no competing interests.



    [1] L. Dai, Singular control systems, Berlin: Springer, 1989. https://doi.org/10.1007/BFb0002477
    [2] E. Boukas, Control of singular systems with random abrupt changes, In: Communications and control engineering, Berlin: Springer, 2008. https://doi.org/10.1007/978-3-540-74345-3
    [3] X. Chang, X. Wang, L. Hou, New LMI approach to H control of discrete-time singular systems, Appl. Math. Comput., 474 (2024), 128703. https://doi.org/10.1016/j.amc.2024.128703 doi: 10.1016/j.amc.2024.128703
    [4] Y. Kao, Y. Han, Y. Zhu, Z. Shu, Stability analysis of delayed discrete singular piecewise homogeneous Markovian jump systems with unknown transition probabilities via sliding-mode approach, IEEE Trans. Automat. Control, 69 (2023), 315–322. https://doi.org/10.1109/TAC.2023.3262444 doi: 10.1109/TAC.2023.3262444
    [5] S. Xu, P. Dooren, R. Stefan, J. Lam, Robust stability and stabilization for singular systems with state delay and parameter uncertainty, IEEE Trans. Automat. Control, 47 (2002), 1122–1128. https://doi.org/10.1109/TAC.2002.800651 doi: 10.1109/TAC.2002.800651
    [6] Z. Feng, X. Zhang, J. Lam, C. Fan, Estimation of reachable set for switched singular systems with time-varying delay and state jump, Appl. Math. Comput., 456 (2023), 128132. https://doi.org/10.1016/j.amc.2023.128132 doi: 10.1016/j.amc.2023.128132
    [7] Z. Feng, H. Zhang, R. Li, State and static output feedback control of singular Takagi-Sugeno fuzzy systems with time-varying delay via proportional plus derivative feedback, Inform. Sci., 608 (2022), 1334–1351. https://doi.org/10.1016/j.ins.2022.07.005 doi: 10.1016/j.ins.2022.07.005
    [8] H. Zhou, S. Li, J. H. Park, W. Li, Intermittent sampled-data stabilization of highly nonlinear delayed stochastic networks via periodic self-triggered strategy, IEEE Trans. Automat. Control, 2024, 1–8. https://doi.org/10.1109/TAC.2024.3393839 doi: 10.1109/TAC.2024.3393839
    [9] T. Li, J. Zhao, Y. Qi, Switching design of stabilising switched neutral systems with application to lossless transmission lines, IET Control Theory Appl., 8 (2014), 2082–2091. https://doi.org/10.1049/iet-cta.2014.0276 doi: 10.1049/iet-cta.2014.0276
    [10] J. Wang, Q. Zhang, D. Xiao, Output strictly passive control of uncertain singular neutral systems, Math. Probl. Eng., 2015 (2015), 591854. https://doi.org/10.1155/2015/591854 doi: 10.1155/2015/591854
    [11] K. P. Hadeler, Neutral delay equations from and for population dynamics, Electron. J. Qual. Theory Differ. Equ., 11 (2008), 1–18.
    [12] J. Cullum, A. Ruehli, T. Zhang, A method for reduced-order modeling and simulation of large interconnect circuits and its application to PEEC models with retardation, IEEE Trans. Circuits Syst. II. Analog Digit. Signal Process., 47 (2000), 261–273. https://doi.org/10.1109/82.839662 doi: 10.1109/82.839662
    [13] S. Li, X. Wang, H. Qin, S. Zhong, Synchronization criteria for neutral-type quaternion-valued neural networks with mixed delays, AIMS Mathematics, 6 (2021), 8044–8063. https://doi.org/10.3934/math.2021467 doi: 10.3934/math.2021467
    [14] B. Meesuptong, P. Singkibud, P. Srisilp, K. Mukdasai, New delay-range dependent exponential stability criterion and H performance for neutral-type nonlinear system with mixed time-varying delays, AIMS Mathematics, 8 (2023), 691–712. https://doi.org/10.3934/math.2023033 doi: 10.3934/math.2023033
    [15] L. Zhang, X. Zhao, N. Zhao, Real-time reachable set control for neutral singular Markov jump systems with mixed delays, IEEE Trans. Circuits Syst. II. Exp. Briefs, 69 (2021), 1367–1371. https://doi.org/10.1109/TCSII.2021.3118075 doi: 10.1109/TCSII.2021.3118075
    [16] H. Chen, P. Shi, C. Lim, Stability analysis of time-varying neutral stochastic hybrid delay system, IEEE Trans. Automat. Control, 68 (2022), 5576–5583. https://doi.org/10.1109/TAC.2022.3220517 doi: 10.1109/TAC.2022.3220517
    [17] K. Hoshino, Application of finite-time stabilization to position control of quadcopters, In: 2018 15th International conference on control, automation, robotics and vision (ICARCV), Singapore, 2018, 60–65. https://doi.org/10.1109/ICARCV.2018.8581351
    [18] G. Chen, Y. Yang, Finite-time stability of switched positive linear systems, Internat. J. Robust Nonlinear Control, 24 (2014), 179–190. https://doi.org/10.1002/rnc.2870 doi: 10.1002/rnc.2870
    [19] F. Amato, M. Ariola, P. Dorato, Finite-time control of linear systems subject to parametric uncertainties and disturbances, Automatica, 37 (2001), 1459–1463. https://doi.org/10.1016/S0005-1098(01)00087-5 doi: 10.1016/S0005-1098(01)00087-5
    [20] Y. Wang, L. Xiao, Y. Guo, Finite-time stability of singular switched systems with a time-varying delay based on an event-triggered mechanism, AIMS Mathematics, 8 (2023), 1901–1924. https://doi.org/10.3934/math.2023098 doi: 10.3934/math.2023098
    [21] C. Ren, S. He, Finite-time stabilization for positive Markovian jumping neural networks, Appl. Math. Comput., 365 (2020), 124631. https://doi.org/10.1016/j.amc.2019.124631 doi: 10.1016/j.amc.2019.124631
    [22] X. Zhang, S. He, V. Stojanovic, X. Luan, F. Liu, Finite-time asynchronous dissipative filtering of conic-type nonlinear Markov jump systems, Sci. China Inf. Sci., 64 (2021), 152206. https://doi.org/10.1007/s11432-020-2913-x doi: 10.1007/s11432-020-2913-x
    [23] L. Wang, Z. Wu, T. Huang, P. Chakrabarti, W. Che, Finite-time observability of Boolean networks with Markov jump parameters under mode-dependent pinning control, IEEE Trans. Syst. Man Cybernet. Syst., 54 (2024), 245–254. https://doi.org/10.1109/TSMC.2023.3304843 doi: 10.1109/TSMC.2023.3304843
    [24] S. Rathinasamy, S. Murugesan, F. Alzahrani, Y. Ren, Quantized finite-time non-fragile filtering for singular Markovian jump systems with intermittent measurements, Circuits Syst. Signal Process., 38 (2019), 3971–3995. https://doi.org/10.1007/s00034-019-01046-9 doi: 10.1007/s00034-019-01046-9
    [25] S. Long, Y. Zhang, S. Zhong, New results on the stability and stabilization for singular neutral systems with time delay, Appl. Math. Comput., 473 (2024), 128643. https://doi.org/10.1016/j.amc.2024.128643 doi: 10.1016/j.amc.2024.128643
    [26] W. Chen, F. Gao, J. She, W. Xia, Further results on delay-dependent stability for neutral singular systems via state decomposition method, Chaos Solitons Fract., 141 (2020), 110408. https://doi.org/10.1016/j.chaos.2020.110408 doi: 10.1016/j.chaos.2020.110408
    [27] S. Long, Y. Wu, S. Zhong, D. Zhang, Stability analysis for a class of neutral type singular systems with time-varying delay, Appl. Math. Comput., 339 (2018), 113–131. https://doi.org/10.1016/j.amc.2018.06.058 doi: 10.1016/j.amc.2018.06.058
    [28] J. Wang, Q. Zhang, D. Xiao, F. Bai, Robust stability analysis and stabilisation of uncertain neutral singular systems, Internat. J. Systems Sci., 47 (2016), 3762–3771. https://doi.org/10.1080/00207721.2015.1120905 doi: 10.1080/00207721.2015.1120905
    [29] J. Wang, Q. Zhang, D. Xiao, PD feedback H control for uncertain singular neutral systems, Adv. Differ. Equ., 2016 (2016), 26. https://doi.org/10.1186/s13662-016-0749-y doi: 10.1186/s13662-016-0749-y
    [30] W. Chen, J. Lu, G. Zhuang, F. Gao, Z. Zhang, S. Xu, Further results on stabilization for neutral singular Markovian jump systems with mixed interval time-varying delays, Appl. Math. Comput., 420 (2022), 126884. https://doi.org/10.1016/j.amc.2021.126884 doi: 10.1016/j.amc.2021.126884
    [31] W. Chen, G. Zhuang, S. Xu, G. Liu, Y. Li, Z. Zhang, New results on stabilization for neutral type descriptor hybrid systems with time-varying delays, Nonlinear Anal. Hybrid Syst., 45 (2022), 101172. https://doi.org/10.1016/j.nahs.2022.101172 doi: 10.1016/j.nahs.2022.101172
    [32] G. Zhuang, J. Xia, J. Feng, B. Zhang, J. Lu, Z. Wang, Admissibility analysis and stabilization for neutral descriptor hybrid systems with time-varying delays, Nonlinear Anal. Hybrid Syst., 33 (2019), 311–321. https://doi.org/10.1016/j.nahs.2019.03.009 doi: 10.1016/j.nahs.2019.03.009
    [33] S. Long, S. Zhong, H. Guan, D. Zhang, Exponential stability analysis for a class of neutral singular Markovian jump systems with time-varying delays, J. Franklin Inst., 356 (2019), 6015–6040. https://doi.org/10.1016/j.jfranklin.2019.04.036 doi: 10.1016/j.jfranklin.2019.04.036
    [34] H. Wang, Y. Wang, G. Zhuang, Asynchronous H controller design for neutral singular Markov jump systems under dynamic event-triggered schemes, J. Franklin Inst., 358 (2021), 494–515. https://doi.org/10.1016/j.jfranklin.2020.10.034 doi: 10.1016/j.jfranklin.2020.10.034
    [35] P. Niamsup, V. N. Phat, A new result on finite-time control of singular linear time-delay systems, Appl. Math. Lett., 60 (2016), 1–7. https://doi.org/10.1016/j.aml.2016.03.015 doi: 10.1016/j.aml.2016.03.015
    [36] S. Long, L. Zhou, S. Zhong, D. Liao, An improved result for the finite-time stability of the singular system with time delay, J. Franklin Inst., 359 (2022), 9006–9021. https://doi.org/10.1016/j.jfranklin.2022.09.018 doi: 10.1016/j.jfranklin.2022.09.018
    [37] N. T. Thanh, P. Niamsup, V. N. Phat, Finite-time stability of singular nonlinear switched time-delay systems: A singular value decomposition approach, J. Franklin Inst., 354 (2017), 3502–3518. https://doi.org/10.1016/j.jfranklin.2017.02.036 doi: 10.1016/j.jfranklin.2017.02.036
    [38] N. H. Thanh, V. N. Phat, P. Niamsup, Criteria for robust finite-time stabilisation of linear singular systems with interval time-varying delay, IET Control Theory Appl., 11 (2017), 1968–1975. https://doi.org/10.1049/iet-cta.2017.0048 doi: 10.1049/iet-cta.2017.0048
    [39] X. Yang, X. Li, J. Cao, Robust finite-time stability of singular nonlinear systems with interval time-varying delay, J. Franklin Inst., 355 (2018), 1241–1258. https://doi.org/10.1016/j.jfranklin.2017.12.018 doi: 10.1016/j.jfranklin.2017.12.018
    [40] L. Li, Q. Zhang, Finite-time H control for singular Markovian jump systems with partly unknown transition rates, Appl. Math. Model., 40 (2016), 302–314. https://doi.org/10.1016/j.apm.2015.04.044 doi: 10.1016/j.apm.2015.04.044
    [41] S. Li, Y. Ma, Finite-time dissipative control for singular Markovian jump systems via quantizing approach, Nonlinear Anal. Hybrid Syst., 27 (2018), 323–340. https://doi.org/10.1016/j.nahs.2017.10.007 doi: 10.1016/j.nahs.2017.10.007
    [42] Y. Ma, X. Jia, D. Liu, Finite-time dissipative control for singular discrete-time Markovian jump systems with actuator saturation and partly unknown transition rates, Appl. Math. Model., 53 (2018), 49–70. https://doi.org/10.1016/j.apm.2017.07.035 doi: 10.1016/j.apm.2017.07.035
    [43] Y. Li, Y. He, W. Lin, M. Wu, Reachable set estimation for singular systems via state decomposition method, J. Franklin Inst., 357 (2020), 7327–7342. https://doi.org/10.1016/j.jfranklin.2020.04.031 doi: 10.1016/j.jfranklin.2020.04.031
    [44] Y. Zhao, Y. Ma, Asynchronous H control for hidden singular Markov jump systems with incomplete transition probabilities via state decomposition approach, Appl. Math. Comput., 407 (2021), 126304. https://doi.org/10.1016/j.amc.2021.126304 doi: 10.1016/j.amc.2021.126304
    [45] Y. Li, Y. He, Dissipativity analysis for singular Markovian jump systems with time-varying delays via improved state decomposition technique, Inform. Sci., 580 (2021), 643–654. https://doi.org/10.1016/j.ins.2021.08.092 doi: 10.1016/j.ins.2021.08.092
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(958) PDF downloads(85) Cited by(0)

Figures and Tables

Figures(2)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog