Processing math: 80%
Research article

On the metric basis in wheels with consecutive missing spokes

  • Received: 05 April 2020 Accepted: 23 July 2020 Published: 31 July 2020
  • MSC : 05C12

  • If G is a connected graph, the distance d(u,v) between two vertices u,vV(G) is the length of a shortest path between them. Let W={w1,w2,,wk} be an ordered set of vertices of G and let v be a vertex of G. The representation r(v|W) of v with respect to W is the k-tuple (d(v,w1),d(v,w2),,d(v,wk)). W is called a resolving set or a locating set if every vertex of G is uniquely identified by its distances from the vertices of W, or equivalently if distinct vertices of G have distinct representations with respect to W. A resolving set of minimum cardinality is called a metric basis for G and this cardinality is the metric dimension of G, denoted by β(G). The metric dimension of some wheel related graphs is studied recently by Siddiqui and Imran. In this paper, we study the metric dimension of wheels with k consecutive missing spokes denoted by W(n,k). We compute the exact value of the metric dimension of W(n,k) which shows that wheels with consecutive missing spokes have unbounded metric dimensions. It is natural to ask for the characterization of graphs with an unbounded metric dimension. The exchange property for resolving a set of W(n,k) has also been studied in this paper and it is shown that exchange property of the bases in a vector space does not hold for minimal resolving sets of wheels with k-consecutive missing spokes denoted by W(n,k).

    Citation: Syed Ahtsham Ul Haq Bokhary, Zill-e-Shams, Abdul Ghaffar, Kottakkaran Sooppy Nisar. On the metric basis in wheels with consecutive missing spokes[J]. AIMS Mathematics, 2020, 5(6): 6221-6232. doi: 10.3934/math.2020400

    Related Papers:

    [1] Yong-Ki Ma, N. Valliammal, K. Jothimani, V. Vijayakumar . Solvability and controllability of second-order non-autonomous impulsive neutral evolution hemivariational inequalities. AIMS Mathematics, 2024, 9(10): 26462-26482. doi: 10.3934/math.20241288
    [2] Ahmed Salem, Kholoud N. Alharbi . Fractional infinite time-delay evolution equations with non-instantaneous impulsive. AIMS Mathematics, 2023, 8(6): 12943-12963. doi: 10.3934/math.2023652
    [3] Zainab Alsheekhhussain, Ahmed Gamal Ibrahim, Rabie A. Ramadan . Existence of S-asymptotically ω-periodic solutions for non-instantaneous impulsive semilinear differential equations and inclusions of fractional order 1<α<2. AIMS Mathematics, 2023, 8(1): 76-101. doi: 10.3934/math.2023004
    [4] Misbah Iram Bloach, Muhammad Aslam Noor . Perturbed mixed variational-like inequalities. AIMS Mathematics, 2020, 5(3): 2153-2162. doi: 10.3934/math.2020143
    [5] Lu-Chuan Ceng, Li-Jun Zhu, Tzu-Chien Yin . Modified subgradient extragradient algorithms for systems of generalized equilibria with constraints. AIMS Mathematics, 2023, 8(2): 2961-2994. doi: 10.3934/math.2023154
    [6] Ebrahem A. Algehyne, Abdur Raheem, Mohd Adnan, Asma Afreen, Ahmed Alamer . A study of nonlocal fractional delay differential equations with hemivariational inequality. AIMS Mathematics, 2023, 8(6): 13073-13087. doi: 10.3934/math.2023659
    [7] Qiang Li, Jina Zhao . Extremal solutions for fractional evolution equations of order 1<γ<2. AIMS Mathematics, 2023, 8(11): 25487-25510. doi: 10.3934/math.20231301
    [8] Ramkumar Kasinathan, Ravikumar Kasinathan, Dumitru Baleanu, Anguraj Annamalai . Well posedness of second-order impulsive fractional neutral stochastic differential equations. AIMS Mathematics, 2021, 6(9): 9222-9235. doi: 10.3934/math.2021536
    [9] Chunli You, Linxin Shu, Xiao-bao Shu . Approximate controllability of second-order neutral stochastic differential evolution systems with random impulsive effect and state-dependent delay. AIMS Mathematics, 2024, 9(10): 28906-28930. doi: 10.3934/math.20241403
    [10] Zhi Guang Li . Global regularity and blowup for a class of non-Newtonian polytropic variation-inequality problem from investment-consumption problems. AIMS Mathematics, 2023, 8(8): 18174-18184. doi: 10.3934/math.2023923
  • If G is a connected graph, the distance d(u,v) between two vertices u,vV(G) is the length of a shortest path between them. Let W={w1,w2,,wk} be an ordered set of vertices of G and let v be a vertex of G. The representation r(v|W) of v with respect to W is the k-tuple (d(v,w1),d(v,w2),,d(v,wk)). W is called a resolving set or a locating set if every vertex of G is uniquely identified by its distances from the vertices of W, or equivalently if distinct vertices of G have distinct representations with respect to W. A resolving set of minimum cardinality is called a metric basis for G and this cardinality is the metric dimension of G, denoted by β(G). The metric dimension of some wheel related graphs is studied recently by Siddiqui and Imran. In this paper, we study the metric dimension of wheels with k consecutive missing spokes denoted by W(n,k). We compute the exact value of the metric dimension of W(n,k) which shows that wheels with consecutive missing spokes have unbounded metric dimensions. It is natural to ask for the characterization of graphs with an unbounded metric dimension. The exchange property for resolving a set of W(n,k) has also been studied in this paper and it is shown that exchange property of the bases in a vector space does not hold for minimal resolving sets of wheels with k-consecutive missing spokes denoted by W(n,k).


    Differential variational inequality is a dynamical system that includes variational inequalities and ordinary differential equations. Differential variational inequalities plays an important role for formulating models involving both dynamics and inequality constraints. Aubin and Cellina [3] introduced the concept of differential variational inequality and after that it was studied by Pang and Stewart [25]. The partial differential variational inequalities was studied by Liu, Zeng and Motreanu [15] and shown that the solution set is compact and continuous. There are some obstacles in their work that constraint set necessarily be compact and only local boundary conditions are satisfied. Liu, Migórskii and Zeng [14] relaxed the conditions of [15] and proved the existence of partial differential variational inequality in non-compact setting. Properties of solution set like strong-weak upper semicontinuity and measurability was proved by them.

    Differential variational inequalities are application oriented and have several applications in engineering and physical sciences, operation research, etc. In particular, they are applicable in electrical circuits with ideal diodes, economical dynamics, dynamic traffic network, functional problems, differential Nash games, control systems, etc., see for example [1,2,16,17,18,19,20,23,26,27,31].

    Evolution equation can be explained as the differential law of the development (evolution) in time of a system. The evolution character of the equation make easier its numerical solution. Variational-like inequality is a generalized form of a variational inequalities and has many applications in operations research, optimization, convex mathematical programming, etc. On the other hand, many problems of engineering and applied sciences can be solved by using second order evolution equation, see for example [5,6,9,10,12,13,22,28,30,32,33].

    Throughout the paper, we assume ~B1 and ~B2 denote separable reflexive Banach spaces and ˆK(ϕ) be convex and closed subset of ~B1. We define some mapping below, that is,

    ˜F:[0,T]×~B2×~B2L(~B1,~B2),˜f:[0,T]×~B2×~B2~B2,˜g:[0,T]×~B2×~B2~B2,˜A:ˆK~B1,η:ˆK׈K~B1,ψ:˜KR{+}, where T>0.

    Inspired by the above discussed work, in this paper, we introduce and study a second order evolutionary partial differential variational-like inequality in Banach spaces. We mention our problem below:

    {y(x)=˜Ay(x)+˜F(x,y(x),y(x))ˆu(x)+˜f(x,y(x),y(x)), a.e. x[0,T],ˆu(x)Sol(˜K,˜g(x,y(x),y(x))+˜A(),ψ), a.e. x[0,T],y(0)=y0,y(0)=y0. (2.1)

    We also consider a variational-like inequality problem of finding ˆu:[0,T]ˆK such that

    ˜g(x,y(x),y(x))+˜A(ˆu(x)),η(ˆv,ˆu(x))+ψ(ˆv)ψ(ˆu(x))0,ˆvˆK, a.e. x[0,T]. (2.2)

    The solution set of problem (2.2) is denoted by Sol[(2.1)].

    The mild solution of problem (2.1) is described by the following definition.

    Definition 2.1. A pair of function (y,ˆu) such that yC1([0,T],~B2) and ˆu:[0,T]ˆK(~B1) measurable, called mild solution of problem (2.1) if

    y(x)=Q(x)y0+R(x)y0+x0R(xp)[˜F(p,y(p),y(p))ˆu(p)+˜f(p,y(p),y(p))]dp,

    where x[0,T] and ˆu(p)Sol(ˆK,˜g(p,y(p),y(p))+A(,ψ). R(x) will be defined in continuation. Here, Sol(ˆK,ˆw+A(.),ψ) denotes the solution set of mixed variational-like inequality (3.1). If (y,ˆu) is a mild solution of above assumed problem, then y is said to be the mild trajectory and ˆu is called the variational control trajectory. Here C1([0,T],~B2) denotes the Banach space of all continuous differentiable mappings y:[0,T]~B2 with norm

    yC1=max{maxx[0,T]y(x),maxx[0,T]y(x)},

    and L(~B2) denotes the Banach space of bounded linear operators from ~B2 into ~B2.

    The subsequent part of this paper is organised in this way. In the next section, some definitions and results are defined, which will be used to achieve our goal. In Section 3, an existence result for variational-like inequalities is proved. Also, we have proved that Sol(ˆK,ˆw+A(.),ψ) is nonempty, closed and convex. The upper semicontinuity of the multi-valued mapping F:[0,T]×~B2×~B2Πbv(^B1) is discussed. In the last section, we have proved that the existence result for the mild solution of second order evolutionary partial differerntial variational-like inequalities under some appropriate conditions.

    Let ^X1 and ^X2 are topological spaces. We shall use Π(^X2) to denote the family of all nonempty subsets of X2, and

    Πc(^X2):={ˆDΠ(^X2):ˆD is closed};

    Πb(^X2):={ˆDΠ(^X2):ˆD is bounded};

    Πbc(^X2):={ˆDΠ(^X2):ˆD is bounded and closed};

    Πcv(^X2):={ˆDΠ(^X2):ˆD is closed and convex};

    Πbv(^X2):={ˆDΠ(^X2):ˆD is bounded and convex};

    Πkv(^X2):={ˆDΠ(^X2):ˆD is compact and convex}.

    One parameter family Q(x), where x is real number, of bounded linear operators from a Banach space ^B2 into itself is called a strongly continuous cosine family if and only if

    (1) Q(x+p)+Q(xp)=2C(x)C(p),x,pR,

    (2) Q(0)=I,(I is the identity operator in ^B2),

    (3) Q(x)w is continuous in x on R for every fixed w^B2.

    We associate with the strongly continuous cosine family Q(x) in ^B2 the strongly continuous sine family R(x), such that

    R(x)W=x0Q(p)wdp,w^B2,xR,

    and the two sets

    E1={w^B2:Q(x)uis one time continuously differentiable in  x  on R},E2={w^B2:Q(x)wis two times continuously differentiable in  x  onR}.

    The operator A:D(A)^B2^B2 is the infinitesimal generator of a strongly continuous cosine family Q(x), xR defined by A(y)=d2/dx2Q(0)ywith D(A)=E2.

    Proposition 2.1. [29] Let Q(x),xR be a strongly continuous cosine family in ^B1. Then the following hold:

    (i) Q(x)=Q(x), xR,

    (ii) Q(p),R(p),Q(x),andR(x)commute x,pR,

    (iii) R(x+p)+Q(xp)=2R(x)Q(p), x,pR,

    (iv) R(x+p)=R(x)Q(p)+R(p)C(x), x,pR,

    (v) R(x)=R(x), xR.

    For furthure information related to the properties of the sine and cosine families, see [12,23,27] and references therein.

    Definition 2.2. [21] Let ^X1,^X2 are topological spaces. Then the multi-valued mapping ˆF:^X1Π(^X2) is said to be:

    (i) Upper semicontinuous (u.s.c., in short) at x^X1, if for each open set U^X2 with ˆF(x)U, a neighbourhood N(x) of x such that

    ˆF(N(x)):=ˆF(y)yN(x)U.

    If ˆF is u.s.c. x^X1, then ˆF is said to be upper semicontinuous on ^X1.

    (ii) Lower semicontinuous (l.s.c., in short) at x^X1 if, for each open set U^X2 satisfying ˆFUϕ, a neighbourhood N(x) of x such that ˆFUϕ yN(x). If ˆF is l.s.c. x^X1, then ˆF is called lower semicontinuous on ^X1.

    Proposition 2.2. [21] Let ˆF:^X1Π(^X2) be a multi-valued mapping, where ^X1,and^X2 denote topological vector spaces. Then the following are equivalent:

    (i) ˆF is upper semicontinuous,

    (ii) the set

    ˆF(C)={x^X1:ˆF(x)Cϕ},

    is closed in ^X1, for each closed set C^X2,

    (iii) the set

    ˆF+(C)={x^X1:ˆF(x)U},

    is open in ^X1, for each open set U^X2.

    Proposition 2.3. [4] Let Ω(ϕ) subset of Banach space ˆX. Assume that the multi-valued mapping ˆF:ΩΠ(ˆX) is weakly compact and convex. Then, ˆF is strongly-weakly u.s.c. if and only if {xn}Ω with xnx0Ω and ynˆF(xn) implies yny0ˆF(x0) up to a subsequence.

    Lemma 2.1. [7] Let {xn} be a sequence such that xnˉx in a normed space V. Then there is a sequence of combinations {yn} such that

    yn=i=nλixi,i=nλi=1andλi0,1i,

    which converges to ˉx in norm.

    Now we define the measurability of a multi-valued mapping, which is needed in the proof of existence of solution of second order evolutionary partial differential variational-like inequality problem (2.1).

    Definition 2.3. [11,21]

    (i) A multi-valued mapping ˆF:IΠ(ˆX) is called measurable if for each open subset UˆX the set ˆF+(U) is measurable in R.

    And

    (ii) the multi-valued mapping ˆF:IΠbc(ˆX) is called strongly measurable if a sequence {ˆFn}n=1 of step set-valued mappings such that

    ˆH(ˆF(t),ˆFn(t))0,asn,tI a.e.,

    here ˆX denotes Banach space, I be an interval of real numbers and ˆH(.,.) denotes the Hausdorff metric on Πbc(ˆX).

    Definition 2.4. [11,34] Let ˆX be Banach space and (F,) be a partial ordered set. A function β:Πb(ˆX)F is called a measure of non compactness (MNC, for short) in ˆX if

    β(¯convO)=β(O)foreveryOΠb(ˆX),

    here ¯convO showing the closure of convex hull of O.

    Definition 2.5. [34] A measure of non compactness β is called

    (i) monotone, if O0,O1Πb(ˆX) and O0O1 implies β(O0)β(O1),

    (ii) nonsingular, if β(aO)=β(O) aˆX and OΠb(ˆX),

    (iii) invariant with respect to union of compact set, if β(KO)=β(O) for each relatively compact set KˆX and OΠb(ˆX),

    (iv) algebraically semiadditive, if β(O0+O1)β(O0)+β(O1) for every O0,O1Πb(ˆX),

    (v) regular, if β(O)=0 is equivalent to the relative compactness of O.

    A very famous example of measure of non compactness is the following Hausdorff measure of non compactness on C([0,T],ˆX) with 0<T< calculated by the following formula:

    χT(O)=12limδ0supxOmax|t1t2|δx(t1)x(t2)ˆX. (2.3)

    Here, χT(O) is said to be the modulus of equicontinuity of OC([0,T],ˆX). Definition (2.4) is applicable on (2.3).

    Definition 2.6. [11] A multi-valued mapping ˆF:ˆKˆXΠ(ˆX) is said to be condensing relative to measure of non compactness β (or β-condensing) if for each OˆK, we have

    β(ˆF(O))β(O).

    That is not relatively compact.

    Definition 2.7. [8] A single valued mapping T:ˆKˆX is called relaxed η-α monotone if a mapping η:ˆK׈KˆX and a real-valued mapping α:ˆXR, with α(tz)=tpα(z), t>0, and zˆX, such that

    TxTy,η(x,y)α(xy),x,yˆK, (2.4)

    where p>1 is a constant.

    Definition 2.8. [8] A mapping T:ˆKˆX is called η-coercive with respect to ψ if x0ˆK such that

    liminfxK,xT(x)T(y),η(x,x0)+ψ(x)ψ(x0)η(x,x0)+. (2.5)

    Where η:ˆK׈KˆX be a mapping and ψ:ˆXR{+} is proper convex lower semicontinuous function.

    Theorem 2.1. [11] Let ˆX be a Banach space and M its closed convex subset, then the fixed point set of β-condensing multi-valued mapping ˆF:MΠkv(M) is nonempty. That is FixˆF:={xM:xˆF(x)}ϕ. Where β is a nonsingular measure of non compactness defined on subsets of M.

    Let ^B1 and ^B2 are real reflexive Banach spaces and ^B1 be the dual of ^B1 and ˆK be a nonempty closed, convex subset of ^B1.

    We consider the following problem of finding ˆuˆK such that

    ˆw+A(ˆu),η(ˆv,ˆu)+ψ(ˆv)ψ(ˆu)0,ˆvˆK, (3.1)

    where ˆw^B1, A:ˆK^B1 and η:ˆK׈K^B1. Problem (3.1) is called generalized mixed variational-like inequality. We prove the following lemma.

    Lemma 3.1. Suppose that the following conditions are satisfied:

    (I1) A:^B1^B1 is an η-hemicontinuous and η-α monotone mapping;

    (I2) ψ:^B1R{+} be a proper convex and lower semicontinuous;

    (I3) the mapping ˆuAˆz,η(ˆu,ˆv) is convex, lower semicontinuous for fixed ˆv,ˆzˆK and η(ˆu,ˆu)=0,ˆuˆK.

    Then ˆuSol(ˆK,ˆw+A(.),ψ), if and only if ˆu is the solution of following inequality:

    ˆw+A(ˆv),η(ˆv,ˆu)+ψ(ˆv)ψ(ˆu)α(ˆvˆu),ˆvˆK. (3.2)

    Proof. Let ˆu is a solution of problem (3.1), then

    ˆw+A(ˆu),η(ˆv,ˆu)+ψ(ˆv)ψ(ˆu)0.

    Since A is relaxed η-α monotone, we have

    ˆw+A(ˆv),η(ˆv,ˆu)+ψ(ˆv)ψ(ˆu)=ˆw+A(ˆu),η(ˆv,ˆu)+A(ˆv)A(ˆu),η(ˆv,ˆu)+ψ(ˆv)ψ(ˆu)A(ˆv)A(ˆu),η(ˆv,ˆu)α(ˆvˆu),ˆvˆK.

    Hence, ˆu is the solution of inequality (3.2).

    Conversely, let ˆuˆK be a solution of problem (3.2) and let ˆvˆK be any point ψ(ˆv)<. We define ˆvs=(1s)ˆu+sˆv,s(0,1), then due to convexity of ˆK ˆvsK. Since ˆvsˆK is the solution of inequality (3.2), it follows from (I1)(I3)

    ˆw+A(ˆvs),η(ˆvs,ˆu)+ψ(ˆvs)ψ(ˆu)α(ˆvsˆu)ˆw+A(ˆvs),η((1s)ˆu+sˆv,ˆu)+ψ((1s)ˆu+sˆv)ψ(ˆu)α((1s)ˆu+sˆvˆu)ˆw+A(ˆvs),(1s)η(ˆu,ˆu)+sη(ˆv,ˆu)+(1s)ψ(ˆu)+sψ(ˆv)ψ(ˆu)α(s(ˆvˆu)).

    Using (I3), we have

    ˆw+A(ˆvs),sη(ˆv,ˆu)+s(ψ(ˆv)ψ(ˆu))spα(ˆvˆu)ˆw+A((1s)ˆu+sˆv),η(ˆv,ˆu)+(ψ(ˆv)ψ(ˆu))sp1α(ˆvˆu),

    letting s0+, we get

    ˆw+A(ˆu),η(ˆv,ˆu)+ψ(ˆv)ψ(ˆu)0,ˆvK.

    Theorem 3.1. Suppose that the conditions (I1)(I3) are satisfied. Additionally, if the following conditions hold.

    (I4) η(ˆu,ˆv)+η(ˆv,ˆu)=0,

    (I5) ˆv0ˆKD(ψ) such that

    liminfˆuˆK,ˆuA(ˆu)A(ˆv0),η(ˆu,ˆv0)+ψ(ˆu)ψ(ˆv0)η(ˆu,ˆv0)+. (3.3)

    Then, Sol(K,ˆw+A(.),ψ)={ˆuˆK:ˆw+A(ˆu),η(ˆv,ˆu)+ψ(ˆv)ψ(ˆu)0,ˆvK}ϕ, bounded, closed and convex, for ˆw^B1.

    Proof. Clearly, Sol(ˆK,ˆw+A(.),ψ)ϕ, as ˆvSol(ˆK,ˆw+A(.),ψ), for each ˆvˆK.

    Now, we have to show that Sol(ˆK,ˆw+A(.),ψ) is bounded. Suppose to contrary that Sol(ˆK,ˆw+A(.),ψ) is not bounded, then there exists a sequence {ˆun}Sol(ˆK,ˆw+A(.),ψ) such that ˆun^B1 as n. We can consider, nN, ˆun>n. By η-coercive condition (3.3), a constant M>0 and a mapping κ:[0,)[0,) with κ(k) such that for every ˆu^B1M,

    A(ˆu)A(ˆv0),η(ˆu,ˆv0)+ψ(ˆu)ψ(ˆv0)κ(η(ˆu,ˆv0)^B1)η(ˆu,ˆv0)^B1.

    Thus, if n is sufficiently large as κ(n)>(A(ˆv0)+ˆw),

    0A(ˆun)+ˆw,η(ˆv0,ˆun)+ψ(ˆv0)ψ(ˆun)=A(ˆun),η(ˆv0,ˆun)+ˆw,η(ˆv0,ˆun)+ψ(ˆv0)ψ(ˆun)=A(ˆun)A(ˆv0),η(ˆun,ˆv0)+ψ(ˆv0)ψ(ˆun)+A(ˆv0),η(ˆv0,ˆun)+ˆw,η(ˆv0,ˆun)κ(η(ˆu,ˆv0))η(ˆu,ˆv0)^B1+A(ˆv0).η(ˆun,ˆv0)^B1+ˆw.η(ˆun,ˆv0)^B1=η(ˆun,ˆv0)^B1[κ(η(ˆun,ˆv0)^B1)+A(ˆv0)+ˆw]<0.

    Which is not possible. Thus, Sol(ˆK,ˆw+A(.),ψ) is bounded.

    Now it remains to prove that Sol(ˆK,ˆw+A(.),ψ) is closed.

    Let {ˆun} be a sequence in Sol(ˆK,ˆw+A(.),ψ) such that ˆunˆuˆK. Then, nN

    ˆw+A(ˆun),η(ˆv,ˆun)+ψ(ˆv)ψ(ˆun)0, ˆvˆK. (3.4)

    From Lemmas (3.1) and (3.4) same as

    ˆw+A(ˆv),η(ˆun,ˆv)+ψ(ˆun)ψ(ˆv)α(ˆvˆun), ˆvˆK. (3.5)

    By using (I4), we have

    ˆw+A(ˆv),η(ˆv,ˆun)+ψ(ˆv)ψ(ˆun)+α(ˆvˆun)0,  ˆvˆK. (3.6)

    Which implies that

    limsupn0+{ˆw+A(ˆv),η(ˆv,ˆun)+ψ(ˆv)ψ(ˆun)+α(ˆvˆun)}0,ˆvˆK, (3.7)

    as ˆuA(ˆv),η(ˆv,ˆu), ψ and α are lower semicontinuous functions. From (3.7), we have

    ˆw+A(ˆv),η(ˆv,ˆu)+ψ(ˆv)ψ(ˆu)+α(ˆvˆu)0, ˆvˆK, (3.8)

    that is,

    ˆw+A(ˆv),η(ˆu,ˆv)+ψ(ˆu)ψ(ˆv)α(ˆvˆu), ˆvˆK. (3.9)

    By Lemma 3.1, we get ˆuSol(ˆK,ˆw+A(.),ψ), that is Sol(ˆK,ˆw+A(.),ψ) is closed.

    Lastly, we show that Sol(ˆK,ˆw+G(.),ψ) is convex. For any ˆu,ˆvSol(ˆK,ˆw+A(.),ψ) and s[0,1], let ˆvs=(1s)ˆv+sˆu. Since ˆK is convex, so that ˆusˆK. Using (I3) and letting s0+, we obtain

    ˆw+A(ˆvs),η(ˆvs,ˆv)+ψ(ˆvs)ψ(ˆv)=ˆw+A(ˆvs),η((1s)ˆv+sˆu,ˆv)+ψ((1s)ˆv+sˆu)ψ(ˆv)(1s)ˆw+A(ˆvs),η(ˆv,ˆv)+sˆw+A(ˆvs),η(ˆv,ˆu)+s(ψ(ˆu)ψ(ˆv))s[ˆw+A(ˆvs),η(ˆv,ˆu)+(ψ(ˆu)ψ(ˆv))]0,

    that is,

    ˆw+A(ˆvs),η(ˆv,ˆvs)+ψ(ˆv)ψ(ˆvs)0.

    Hence, Sol(ˆK,ˆw+A(.),ψ) is convex.

    Boundedness of ˆw implies that Sol(ˆK,ˆw+A(.),ψ) is bounded.

    Theorem 3.2. Suppose that all the conditions and mappings are same as considered in Theorem 3.1. Additionally, ˆw¯B(n,^B1), a constant Mn>0, depending on n, such that

    ˆu^B1Mn,ˆuSol(ˆK,ˆw+A(.),ψ), (3.10)

    where ¯B(n,^B1)={ˆw^B1:ˆw^B1n}.

    Proof. On contrary let us suppose that N0>0 and

    Supˆw¯B(N0,^B1){ˆu^B1:ˆuSol(ˆK,ˆw+A(.),ψ)}=+.

    Therefore, ˆwˆk¯B(N0,^B1) and ˆuˆkSol(ˆK,ˆw+A(.),ψ) with η(ˆuˆk,ˆv0)>ˆk (ˆk=1,2,3,). By η-coercivity assumption, a constant M>0 such that η(ˆu,ˆv0)M and a function κ:[0,)[0,) with κ(ˆk) as ˆk, we have

    A(ˆu),η(ˆu,ˆv0)+ψ(ˆu)ψ(ˆv0)κ(η(ˆu,ˆv0))η(ˆu,ˆv0)^B1.

    Thus, for ˆk>M sufficiently large such that κ(ˆk)>N0+A(ˆv0)ˆk, one has

    0ˆwˆk+A(ˆuˆk),η(ˆv0,ˆuˆk)+ψ(ˆv0)ψ(ˆuˆk)=ˆwˆk,η(ˆv0,uˆk)A(ˆuˆk)A(ˆv0),η(ˆuˆk,ˆv0)+A(ˆv0),η(ˆuˆk,ˆv0)+ψ(ˆv0)ψ(ˆuˆk)=ˆwˆk,η(ˆv0,ˆuˆk)[A(ˆuˆk)A(ˆv0),η(ˆuˆk,ˆv0)+ψ(ˆuˆk)ψ(ˆv0)]+A(ˆv0),η(ˆuˆk,ˆv0)=ˆwˆk^B1η(ˆv0,ˆuˆk)r(η(ˆv0,ˆuˆk))η(ˆv0,ˆuˆk)+A(ˆv0)η(ˆv0,ˆuˆk)=N0η(ˆv0,ˆuˆk)r(η(ˆv0,ˆuˆk))η(ˆv0,ˆuˆk)+A(ˆv0)η(ˆv0,ˆuˆk)(N0+A(ˆv0))ˆkr(ˆk)<0,

    which is a contradiction. Hence our supposition is wrong.

    Let ˜g:[0,T]×^B2×^B2^B1 be the single valued mapping and a multi-valued mapping F:[0,T]×^B2×^B2Π(ˆK) is defined as follows:

    F(x,y(x),y(x)):={ˆuˆK:ˆuSol(ˆK,˜g(x,y(x),y(x))+A(.),ψ)}.

    It follows from Theorem 3.1 that F(x,y(x),y(x)) is nonempty, bounded, closed and convex that is, F(x,y(x),y(x))Πbcv(^B1) (x,y(x),y(x))[0,T]×^B2×^B2.

    Theorem 3.3. Suppose that all the conditions and mappings are same as considered in Theorem 3.1 and the mapping ˜g:[0,T]×^B2×^B2^B1 is bounded and continuous, then the following assertions hold:

    (i) F is strongly weakly u.s.c.;

    (ii) xF(x,y(x),y(x)) is measurable y,y^B2;

    (iii) for every bounded subset Ω=Ω1×Ω2 of C1([0,T],^B2×^B2), a constant MΩ such that

    F(x,y(x),y(x)):=sup{ˆu^B1:ˆuF(x,y(x),y(x))}MΩ,x[0,T] (3.11)

    and(y,y)Ω.

    Proof. () Let C^B1 be any weakly closed subset of ^B1, suppose that {(xn,yn,yn)}[0,T]×^B2×^B2 such that (xn,yn,yn)(x,y,y) in [0,T]×^B2×^B2 with (xn,yn,yn)F1(C):={(x,y,y)|CF(x,y,y)ϕ}. Therefore, for any nN, there exists ˆunCF(xn,yn,yn) such that

    ˜g(xn,yn,yn)+A(ˆun),η(ˆv,ˆun)+ψ(ˆv)ψ(ˆun)0,ˆvˆK. (3.12)

    By Lemma 3.1, (3.12) is equivalent to

    ˜g(xn,yn,yn)+A(ˆv),η(ˆv,ˆun)+ψ(ˆv)ψ(ˆvn)α(ˆvˆun), ˆvˆK. (3.13)

    Which implies that,

    limsupn0+{˜g(xn,yn,yn)+A(ˆv),η(ˆv,ˆun)+ψ(ˆv)ψ(ˆvn)}limsupn0+{α(ˆvˆun)}, ˆvˆK. (3.14)

    Since ˜g is continuous. Therefore, by Theorem 3.3, it implies that {ˆun} is bounded. Hence, by reflexivity of ^B1, we can suppose that ˆunˆuC in ^B1.

    From (3.14), we get

    ˜g(x,y,y)+A(ˆv),η(ˆv,ˆu)+ψ(ˆv)ψ(ˆu)α(ˆvˆu), ˆvˆK. (3.15)

    Using Lemma 3.1, we have

    ˜g(x,y,y)+A(ˆv),η(ˆv,ˆu)+ψ(ˆv)ψ(ˆu)0, ˆvˆK.

    It follows from weakly closeness of C that

    (x,y,y)F1(C):={(x,y,y):CF(x,y,y)ϕ}.

    Hence, F is strongly weakly u.s.c..

    () Define a set

    Lλ:={x[0,T];d(v,F(x,y(x),y(x)))>λ},(y,y)^B2×^B2,ˆv^B1.

    Now we will show that Lλ is an open set for all λ0. For this let {xn}(Lλ)c=[0,T]Lλ be a sequence with xnx. Then nN, we have d(v,F(xn,y,y))λ. As for every (x,y,y)[0,T]×^B2×^B2, the multi-valued mapping F(x,y,y) is bounded, closed and convex by Theorem 3.1, we get nN, ˆunF(xn,y,y) such that ˆvˆunλ. By Theorem 3.3, {ˆun} is bounded, so we may assume that ˆunˆuˆK. By (i), ˆuF(x,y(x),y(x)). Hence, we obtain

    d(v,F(x,y,y))ˆuˆv^B1=lim infnˆunˆv^B1λ,

    that is x(Lλ)c, thus [0,F]Lλ is closed. Hence, Lλ is open, consequently Lλ is measurable. By [24,Proposition 6.2.4], the mapping xF(x,y,y) is measurable (y,y)^B2×^B2.

    (ⅲ) As ˜g is bounded. Therefore

    ˜gΩ:={˜g(x,y(x),y(x)):x[0,T] and (y,y)Ω},

    is also bounded in ^B1 for every bounded subset Ω of C1([0,T],^B2×^B2). Then, by Theorem 3.3, F(x,y(x),y(x)) is bounded, x[0,T] and (y,y)Ω. Hence, a constant MΩ>0 such that 3.11 holds.

    Before proving our main result, we mention that by Theorem 3.3, F(x,y(x),y(x)) is measurable and ^B1 is a separable Banach space. Hence, by [21,Theorem 3.17] F(x,y(x),y(x)) possess a measurable selection ξ such that ξL([0,T];^B1)L2([0,T],^B1) (y,y)C1([0,T],^B2×^B2). So

    PF(y,y):={ξL2([0,T],^B1)|ξ(t)F(x,y(x),y(x)),a.e.,x[0,T]}, (4.1)

    is well defined (y,y)C1([0,T],^B2×^B2).

    Lemma 4.1. Suppose that (I1)(I4) hold and ˜g:[0,T]×^B2×^B2^B1 is bounded and continuous. Then, multi-valued mapping PF is strongly upper semicontinuous.

    Proof. Let {yn,yn}C1([0,T],^B2×^B2) with (yn,yn)(y0,y0) in C1([0,T],^B2×^B2) and ξnPF(yn,yn) for nN. Now, we need to prove that a subsequence of {ξn}, such that ξnξ0PF(y0,y0).

    Indeed, (I5) confirms that the sequence {ξn} is bounded in L2([0,T],^B1). Therefore, we can suppose ξnξ0 weakly in L2([0,T],^B1). By Lemma 2.1, there is {ξ}, a finite combination of the {ξi:in} with ¯ξnξ0 converges strongly in L2([0,T],^B1).

    Since F is strongly weakly upper semicontinuous and (yn,yn)(y0,y0)C1([0,T],^B2), therefore for every weak neighborhood Yx of F(x,y0(x),y0(x)) there exists a strong neighborhood

    F(x,y,y)Yx,(y,y)Ux.

    Which shows that ξPF(y0,y0). Thus, by Proposition 2.3, PF is strongly upper semi continuous.

    We also need the following assumptions for achieving the goal.

    (I6) ˜g:[0,T]×^B2×^B2^B1 is continuous and bounded;

    (I7) ˜F(.,y,.):[0,T]L(^B1,^B2), ˜F(.,.,y):[0,T]L(^B1,^B2) are measurable for all y,y^B2 and ˜F(x,.,.):^B2L(^B2,^B1) is continuous for a.e. x[0,T], where L(^B1,^B2) denotes the class of bounded linear operators from ^B1 to ^B2, and there exists ρ˜FL2([0,T],R+) and a non-decreasing continuous mapping γ˜F:[0,)[0,) such that

    ˜F(x,y(x),y(x))ρ˜F(x)γ˜F(y(x)^B2+y(x)^B2), (x,y,y)[0,T]×^B2×^B2.

    (I8) ˜f(.,y,.),˜f(.,.,y):[0,T]^B2 are measurable for all y,y^B2 and there exists ρ˜fL2([0,T],R+) such that for x[0,T] ˜f(x,.,.):^B2^B2 satisfies

    {˜f(x,y,y)˜f(x,y,y)ρ˜f(x)yy^B2,˜f(x,y,y)˜f(x,y,y)ρ˜f(x)yy^B2,˜f(x,0,0)ρ˜f(x). (4.2)

    The following result ensures the existence of solution of problem (2.1).

    Theorem 4.1. Under the assumptions (I_1) (I_8) , if the following inequalities hold

    \begin{equation} \underset{\hat{k}\to \infty}{lim\; inf}\Big[\frac{\gamma_{\widetilde{\mathcal{F}}}(\hat{k})}{\hat{k}}\|\rho_{\widetilde{\mathcal{F}}}(x)\|M_{\|\widetilde{\mathfrak{g}}\|}+\|\rho_{\widetilde{\mathfrak{f}}}(x)\|_{L^2}+\frac{\|\mathfrak{y}_0\|+\|y_0\|}{\hat{k}\mathcal{T}^{1/2}}\Big] < \frac{1}{\delta \mathcal{T}^{1/2}}, \end{equation} (4.3)
    \begin{equation} \|Q(x_1)-Q(x_2)\|\leq \|x_1-x_2\|\; \mathit{\mbox{and}}\; \|R(x_1)-R(x_2)\|\leq \|x_1-x_2\|, \end{equation} (4.4)

    where

    \begin{equation*} \delta = max\Big\{\underset{x\in J}{sup}\|Q(x)\|_{L(\widehat{B_2})}, \; \; \underset{x\in J}{sup}\|R(x)\|_{L(\widehat{B_2})}\Big\}, \end{equation*}

    and M_{\|\widetilde{\mathfrak{g}}\|} > 0 is a constant stated in Theorem 3.2, then, the problem (2.1) has at least one mild solution (\mathfrak{y}, \widehat{\mathfrak{u}}).

    Proof. We define the multi-valued mapping \Gamma: C^1([0, \mathcal{T}], \widehat{B_2})\to \Pi(C^1([0, \mathcal{T}], \widehat{B_2})) such that

    \begin{eqnarray} \Gamma(\mathfrak{y}): = \Big\{y\in C^1([0, \mathcal{T}], \widehat{B_2})\Big{|}\; y(x) = Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)\Big[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\\ +\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\Big]dp, \; x\in [0, \mathcal{T}], \; \xi\in P_\mathfrak{F}(x)\Big\}, \\ \end{eqnarray} (4.5)

    where P_\mathfrak{F} is defined in (4.1). Our aim is to show that Fix(\Gamma)\neq \phi .

    Step-Ⅰ. \Gamma(\mathfrak{y})\in \Pi_{cv}\Big(C^1([0, \mathcal{T}], \widehat{B_2})\Big) for each \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}).

    Clearly, \Gamma(\mathfrak{y}) is convex for every \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}) due to the convexity of P_\mathfrak{F}(\mathfrak{y}).

    Since for each y\in \Gamma(\mathfrak{y}), we can choose \xi\in P_\mathfrak{F}(\mathfrak{y}) such that

    \begin{eqnarray*} y(x)& = &Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\\ &&+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp, \end{eqnarray*}

    which implies that,

    \begin{eqnarray*} \|y(x)\|&\leq& \|\mathfrak{y}_0Q(x)\|+\|y_0R(x)\|+\Big\|\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\\ &&+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\Big\|\\ &\leq& \delta \|\mathfrak{y}_0\|+\delta \|y_0\|+\delta \Big[\int_{0}^{x}\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\xi(p)\|dp\\ &&+\int_{0}^{x}\|\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|dp\Big]. \end{eqnarray*}

    Using (I_7) and (I_8) and applying Hölder's inequality,

    \begin{eqnarray*} \|y(x)\|&\leq& \delta \|\mathfrak{y}_0\|+\delta \|y_0\|+\delta \Big[\int_{0}^{x}\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\xi(p)\|dp\\ &&+\int_{0}^{x}\|\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|dt\Big], \\ & = &\delta(\|\mathfrak{y}_0\|+\|y_0\|)+\delta \Big[\int_{0}^{x}\rho_{\widetilde{\mathcal{F}}}(p)\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}\|+\|\mathfrak{y}'\|)M_{\|\widetilde{\mathfrak{g}}\|}dp\\ &&+\int_{0}^{x}\rho_{\widetilde{\mathfrak{f}}}(p)(1+\|\mathfrak{y}\|+\|\mathfrak{y}'\|)dp\Big]\\ & = &\delta(\|\mathfrak{y}_0\|+\|y_0\|)+\delta \gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}\|+\|\mathfrak{y}'\|)M_{\|\widetilde{\mathfrak{g}}\|}\int_{0}^{x}\rho_{\widetilde{\mathcal{F}}}(p)dp\\ &&+\delta(1+\|\mathfrak{y}\|+\|\mathfrak{y}'\|)\int_{0}^{x}\rho_{\widetilde{\mathfrak{f}}}(p)dp, \\ & = &\delta\Big(\|\mathfrak{y}_0\|+\|y_0\|+\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}\|+\|\mathfrak{y}'\|)M_{\|\widetilde{\mathfrak{g}}\|}\|\rho_{\widetilde{\mathcal{F}}}\|\mathcal{T}^{1/2}\\ &&+(1+\|\mathfrak{y}\|+\|\mathfrak{y}'\|)\|\rho_{\widetilde{\mathfrak{f}}}\|\mathcal{T}^{1/2}\Big)\\ & = &\delta \mathcal{T}^{1/2}\Big[\frac{\|\mathfrak{y}_0\|+\|y_0\|}{\mathcal{T}^{1/2}}+\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}\|+\|\mathfrak{y}'\|)M_{\|\widetilde{\mathfrak{g}}\|}\|\rho_{\widetilde{\mathcal{F}}}\|\\ &&+(1+\|\mathfrak{y}\|+\|\mathfrak{y}'\|)\|\rho_{\widetilde{\mathfrak{f}}}\|\Big]. \end{eqnarray*}

    Hence, \Gamma(\mathfrak{y}) is bounded in C^1([0, \mathcal{T}], \widehat{B_2}) for each \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}).

    Next we shall prove that \Gamma(\mathfrak{y}) is a collection of equicontinuous mappings \forall\; \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}).

    \begin{eqnarray} \|y(x_2)-y(x_1)\|_{\widehat{B_2}}& = &\Big\|\mathfrak{y}_0Q(x_2)+y_0R(x_2)+\int_{0}^{x_2}R(x_2-p)\Big[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\nonumber\\ &&+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\Big]dp-\mathfrak{y}_0Q(x_1)-y_0R(x_1)\nonumber\\ &&-\int_{0}^{x_1}R(x_1-t)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\Big\|_{\widehat{B_2}} \\ &\leq&\|\mathfrak{y}_0\|\|Q(x_2)-Q(x_1)\|+\|y_0\|\|R(x_2)-R(x_1)\|\\ &&+\Big\|\int_{0}^{x_2}R(x_2-t)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\\ &&-\int_{0}^{x_1}R(x_1-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\\ &&+\int_{0}^{x_1}R(x_2-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\\ &&-\int_{0}^{x_1}R(x_2-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\Big\|\\ &\leq& \|\mathfrak{y}_0\|\|x_2-x_1\|+\|y_0\|\|x_2-x_1\|+\int_{x_1}^{x_2}\Big\|R(x_2-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \\ &&\mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\Big\|+\int_{0}^{x_1}\Big\|(R(x_2-p) \\ &&-R(x_1-p))[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]\Big\|dp\\ & = &(\|\mathfrak{y}_0\|+\|y_0\|)\|x_2-x_1\|+I_1+I_2, \end{eqnarray} (4.6)
    \begin{eqnarray} \label{eq4.6} \text{where} \quad I_1& = &\int_{x_1}^{x_2}\Big\|R(x_2-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp\Big\|, \\ \text{and}\ \ \ \ \quad I_2& = &\int_{0}^{x_1}\Big\|(R(x_2-p)-R(x_1-p))[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\\ &&+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]\Big\|dp. \end{eqnarray}

    Applying Hölder's inequality, we have

    \begin{eqnarray} I_1&\leq& \int_{x_1}^{x_2}\|R(x_2-p)\|\|[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\|dp\\ &&+\int_{x_1}^{x_2}\|R(x_2-p)\|\|\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]\|dp\\ &\leq& \int_{x_1}^{x_2}\delta M_{\|\widetilde{\mathfrak{g}}\|}\rho_{\widetilde{\mathcal{F}}}(p)\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)dp\\ &&+\int_{x_1}^{x_2}\delta\gamma_{\widetilde{\mathfrak{g}}}(1+\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)dp, \\ & = &\delta M_{\|\widetilde{\mathfrak{g}}\|}\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)\|\rho_{\widetilde{\mathcal{F}}}(p)\|(x_2-x_1)^{1/2}\\ &&+\delta \gamma_{\widetilde{\mathfrak{f}}}(1+\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)(x_2-x_1)^{1/2}\\ & = &\delta (x_2-x_1)^{1/2}\Big[M_{\|\widetilde{\mathfrak{g}}\|}\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p))\|\rho_{\widetilde{\mathcal{F}}}(p)\|\\ &&+\gamma_{\widetilde{\mathfrak{f}}}(1+\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)\Big]\rightarrow 0\text{ as } x_1\to x_2. \end{eqnarray} (4.7)

    Further by Proposition 2.2 and (4.4) and Hölder's inequality, we have

    \begin{eqnarray} I_2& = &\int_{0}^{x_1}\Big\|(R(x_2-p)-R(x_1-p))[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)\\ &&+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]\Big\|dp\\ & = &\Big\|\int_{0}^{x_1}[R(p)(Q(x_2)-Q(x_1))+Q(p)(R(x_1)-R(x_2))]\\ &&\times[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]\Big\|dp\\ &\leq& \int_{0}^{x_1}\|R(p)\|\|Q(x_1)-Q(x_2)\|\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\xi(p)\\ &&+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|dp+\int_{0}^{x_1}\|Q(p)\|\|R(x_1)-R(x_2)\|\\ &&\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\xi(p)+\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|dp\\ &\leq& \int_{0}^{x_1}\delta\|x_1-x_2\|\Big[\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|\|\xi(p)\|\\ &&+\|\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|\Big]dp+\int_{0}^{x_1}\delta \|x_1-x_2\|\\ &&\times[\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|+\|\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}'(p))\|]dp\\ &\leq&2\delta(\|x_1-x_2\|)\int_{0}^{x_1}[M_{\|\widetilde{\mathfrak{g}}\|}\rho_{\widetilde{\mathcal{F}}}(p)\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)\\ &&+\rho_{\widetilde{\mathfrak{f}}}(p)\gamma_{\widetilde{\mathfrak{f}}}(1+\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)]dp, \\ &\leq&2\delta\|x_1-x_2\|\Big[M_{\|\widetilde{\mathfrak{g}}\|}\|\rho_{\widetilde{\mathcal{F}}}(p)\|\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)\\ &&+\gamma_{\widetilde{\mathcal{F}}}(1+\|\mathfrak{y}(p)\|+\|\mathfrak{y}'(p)\|)\Big]x^{1/2}\to0\text{ as } x_1\to x_2. \end{eqnarray} (4.8)

    From (4.6)–(4.8), we have

    \begin{equation*} \|y(x_2)-y(x_1)\|_{\widehat{B_2}}\longrightarrow 0, \; \mbox{as}\; \; x_1\to x_2. \end{equation*}

    Hence, \Gamma(\mathfrak{y}) is equicontinuous, \forall\; \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}). By Arzela-Ascoli theorem [34], we obtained that \Gamma(\mathfrak{y}) is relatively compact \forall\; \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}).

    Now, we have to check that \Gamma(\mathfrak{y}) is closed in C^1([0, \mathcal{T}], \widehat{B_2}) \forall\; \mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}).

    Let \{y_n\}\subset \Gamma(\mathfrak{y}) is a sequence with y_n\to y^* in C^1([0, \mathcal{T}]; \widehat{B_2}) as n\to \infty . Hence, there exist a sequence \{\xi_n\}\subset P_\mathfrak{F}(\mathfrak{y}) such that

    \begin{equation*} y_n(x) = Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi_n(p) +\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp, \end{equation*}

    x\in [0, \mathcal{T}]. By (iii) of Theorem 3.3, it follows that the sequence \{\xi_n\} is weakly relatively compact. Since P_\mathfrak{F}(\mathfrak{y}) is upper semicontinuity (see Lemma 4.1), we may assume \xi_n\to \xi^*\in P_\mathfrak{F}(\mathfrak{y}) in L^2([0, \mathcal{T}], \widehat{B_1}) , where \xi^*\in P_\mathfrak{F}(\mathfrak{y}) . On the other hand, by strongly continuity of Q(x) and R(x) for x > 0 , we have

    \begin{equation*} y^*(x) = Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))\xi^*(p) +\widetilde{\mathfrak{f}}(p, \mathfrak{y}(p), \mathfrak{y}{'}(p))]dp, \end{equation*}

    x\in [0, \mathcal{T}]. Which implies that y^*\in \Gamma(\mathfrak{y}) , that is \Gamma(\mathfrak{y})\in \Pi_{cv}(C^1[0, \mathcal{T}], \widehat{B_2}) .

    Step-Ⅱ. The multi-valued mapping \Gamma is closed.

    For this assume \mathfrak{y}_n\to \mathfrak{y}^* and y_n\to y^* in C^1([0, \mathcal{T}], \widehat{B_2}) with y_n\in \Gamma(\mathfrak{y}_n) \forall \; n\in \mathbb{N}. We need to prove that y^*\in \Gamma(\mathfrak{y}^*). From the definition of multi-valued map \Gamma , we may take \xi_n\in P_\mathfrak{F}(\mathfrak{y}_n) \forall\; n\in \mathbb{N} such that

    \begin{eqnarray} y_n(x) = Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}_n(p), \mathfrak{y}_n{'}(p))\xi_n(p) +\widetilde{\mathfrak{f}}(p, \mathfrak{y}_n(p), \mathfrak{y}_n{'}(p))]dp, \\ x\in [0, \mathcal{T}].\\ \end{eqnarray} (4.9)

    With the help of Theorem 3.3 and Lemma 4.1, we may consider that \xi_n\rightharpoonup \xi^*\in P_\mathfrak{F}(\mathfrak{y}^*) . By using, I_8 we get that \widetilde{\mathfrak{f}}(., \mathfrak{y}_n(.), \mathfrak{y}_n'(.))\to \widetilde{\mathfrak{f}}(., \mathfrak{y}^*, \mathfrak{y}^*{'}) in L^2([0, \mathcal{T}], \widehat{B_2}) .

    By using the continuity of \widetilde{\mathcal{F}}(x, ., .) and strongly continuity of Q(x) , R(x) for x > 0 , we obtain from (4.9) that

    \begin{eqnarray*} y^*(x) = Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}^*(p), \mathfrak{y}^*{'}(p))\xi^*(p) +\widetilde{\mathfrak{f}}(p, \mathfrak{y}^*(p), \mathfrak{y}^*{'}(p))]dp, \\ x\in [0, \mathcal{T}], \end{eqnarray*}

    and \xi^*\in P_\mathfrak{F}(\mathfrak{y}) . Thus \mathfrak{y}^*\in \Gamma(\mathfrak{y}^*).

    Step-Ⅲ. \Gamma is \chi_T condensing.

    Let \mathcal{D}\subset \Pi_b(C^1([0, \mathcal{T}], \widehat{B_2})). Therefore, \mathcal{D} is not relatively compact subset of C^1([0, \mathcal{T}], \widehat{B_2}). For \mathcal{D} , we need to prove that \chi_\mathcal{T}(\mathcal{(D)})\nleq \chi_\mathcal{T}(\Gamma(\mathcal{(D)})). Since \mathcal{D} is bounded subset of C^1([0, \mathcal{T}], \widehat{B_2}) , then by applying the same technique as in Step-I, we may prove that \Gamma(\mathcal{(D)}) is relatively compact, that is, \chi_\mathcal{T}(\mathcal{D}) = 0. Hence, \chi_\mathcal{T}(\mathcal{(D)})\leq \chi_\mathcal{T}(\Gamma(\mathcal{D})) = 0 implies that \mathcal{D} is relatively compact by regularity of \chi_T , we conclude that \Gamma is \chi_\mathcal{T} -condensing.

    Step-Ⅳ. \exists a constant M_\mathfrak{R} > 0 such that

    \begin{equation} \Gamma(\bar{B}_{M_\mathfrak{R}}\subset \bar{B}{M_\mathfrak{R}}): = \{\mathfrak{y}\in C^1([0, \mathcal{T}], \widehat{B_2}):\|\mathfrak{y}\|_C\leq M_\mathfrak{R}\}\subset C^1([0, \mathcal{T}], \widehat{B_2}). \end{equation} (4.10)

    Let us assume that \forall k > 0, \exists two sequences \{\mathfrak{y}_k\} and \{y_k\} such that

    \|\mathfrak{y}_k\|_{C^1([0, \mathcal{T}], \widehat{B_2})}, \; \|\mathfrak{y}_k^{'}\|_{C^1([0, \mathcal{T}], \widehat{B_2})}\leq k/2 and y_k\in \Gamma(\mathfrak{y}_k) such that \|y_k\| > 0 . Hence, there is \xi_k\in P_\mathfrak{F}(\mathfrak{y}_k) such that

    \begin{eqnarray*} y_k(x) = Q(x)\mathfrak{y}_0+R(x)y_0+\int_{0}^{x}R(x-p)[\widetilde{\mathcal{F}}(p, \mathfrak{y}_k(p), \mathfrak{y}_k{'}(p))\xi_k(p) +\widetilde{\mathfrak{f}}(p, \mathfrak{y}_k(p), \mathfrak{y}_k{'}(p))]dp, \\ \; \; x\in [0, \mathcal{T}]. \end{eqnarray*}

    Using Hölder's inequality, for every x\in [0, \mathcal{T}] , we have

    \begin{eqnarray*} \|\mathfrak{y}_k(x)\|&\leq& \|Q(x)\|\|\mathfrak{y}_0\|+\|R(x)\|\|y_0\|\\ && +\int_{0}^{x}\|R(x-p)\|\|[\widetilde{\mathcal{F}}(p, \mathfrak{y}_k(p), \mathfrak{y}_k{'}(p))\xi_k(p) +\widetilde{\mathfrak{f}}(p, \mathfrak{y}_k(p), \mathfrak{y}_k{'}(p))]\|dp, \\ & = &\delta(\|\mathfrak{y}_0\|+\|y_0\|)+\int_{0}^{x}\delta[\gamma_{\widetilde{\mathcal{F}}}(\|\mathfrak{y}_k\|+\|\mathfrak{y}_k{'}\|)\rho_{\widetilde{\mathcal{F}}}(p)M_{\|\widetilde{\mathfrak{f}}\|}]dp\\ &&+\int_{0}^{x}\delta\gamma_{\widetilde{\mathfrak{f}}}(1+\|\mathfrak{y}_k\|+\|\mathfrak{y}_k^{'}\|)\rho_{\widetilde{\mathfrak{f}}}(p)dp\\ &\leq&\delta(\|\mathfrak{y}_0\|+\|y_0\|)+\int_{0}^{x}\delta[\gamma_{\widetilde{\mathcal{F}}}(k)\rho_{\widetilde{\mathcal{F}}}(p)M_{\|\widetilde{\mathfrak{g}}\|}]dp\\ &&+\int_{0}^{x}\delta\gamma_{\widetilde{\mathfrak{f}}}(1+k)\rho_{\widetilde{\mathfrak{f}}}(p)dp\\ &\leq&\delta(\|\mathfrak{y}_0\|+\|y_0\|)+\delta\gamma_{\widetilde{\mathcal{F}}}(k)\|\rho_{\widetilde{\mathcal{F}}}(x)\|M_{\|\widetilde{\mathfrak{g}}\|}\mathcal{T}^{1/2}\\ &&+\delta\gamma_{\widetilde{\mathfrak{f}}}(1+\kappa)\|\rho_{\widetilde{\mathfrak{f}}}(x)\|\mathcal{T}^{1/2}\\ & = &\delta \mathcal{T}^{1/2}\Big[\gamma_{\widetilde{\mathcal{F}}}(k)\|\rho_{\widetilde{\mathcal{F}}}(x)\|M_{\|\widetilde{\mathfrak{g}}\|}+\gamma_{\widetilde{\mathfrak{f}}}(1+k)\|\rho_{\widetilde{\mathfrak{g}}}(x)\|+\frac{\|\mathfrak{y}_0\|+\|y_0\|}{\mathcal{T}^{1/2}}\Big], \end{eqnarray*}

    we obtain by using (4.9),

    \begin{eqnarray*} 1&\leq& \underset{k\to \infty}{lim\; inf}\frac{\|y_k\|_{C^1([0, \mathcal{T}], \widehat{B_2})}}{k}\\ &\leq&\underset{k\to \infty}{lim\; inf}\Big[\gamma_{\widetilde{\mathcal{F}}}(k)\|\rho_{\widetilde{\mathcal{F}}}(x)\|M_{\|\widetilde{\mathfrak{g}}\|}\mathcal{T}^{1/2}+\gamma_{\widetilde{\mathfrak{f}}}(1+k)\|\rho_{\widetilde{\mathfrak{f}}}(x)\|\mathcal{T}^{1/2}+(\|\mathfrak{y}_0\|+\|y_0\|)\Big]\\ & < &1, \end{eqnarray*}

    which is a contradiction. Therefore there exists M_\mathfrak{R} such that (4.10) holds.

    Thus, all requirements of Theorem 2.1 are fulfilled. This implies that Fix\Gamma\neq \phi in \overline{B}_{M_\mathfrak{R}}. Therefore, (SOEPDVLI) has at least one mild solution (\mathfrak{y}, \widehat{\mathfrak{u}}).

    In this paper, a second order evolutionary partial differential variational-like inequality problem is introduced and studied in a Banach space, which is much more general than the considered by Liu-Migórski-Zeng [14], Li-Huang-O'Regan [13] and Wang-Li-Li-Huang [33] etc. We investigate suitable conditions to prove an existence theorem for our problem by using the theory of strongly continuous cosine family of bounded linear operator, fixed point theorem for condensing set-valued mapping and the theory of measure of non-compactness.

    The authors are highly thankful to anonymous referees and the editor for their valuable suggestions and comments which improve the manuscript a lot.

    The authors declare that they have no conflicts of interest.



    [1] G. Abbas, U. Ali, M. Munir, et al. Power graphs and exchange property for resolving sets, Open Math., 17 (2019), 1303-1309. doi: 10.1515/math-2019-0093
    [2] D. L. Boutin, Determining sets, resolving sets and the exchange property, Graphs Combin., 25 (2009), 789-806. doi: 10.1007/s00373-010-0880-6
    [3] P. S. Buczkowski, G. Chartrand, C. Poisson, et al. On k-dimensional graphs and their bases, Periodica Math. Hung., 46 (2003), 9-15. doi: 10.1023/A:1025745406160
    [4] J. Caceres, C. Hernando, M. Mora, et al. On the metric dimension of cartesian product of graphs, SIAM J. Disc. Math., 2 (2007), 423-441.
    [5] P. J. Cameron, J. H. Van Lint, Designs, Graphs, Codes and their Links, London Mathematical Society Student Texts 22, Cambridge University Press, Cambridge, 1991.
    [6] G. Chartrand, L. Eroh, M. A. Johnson, et al. Resolvability in graphs and metric dimension of a graph, Disc. Appl. Math., 105 (2000), 99-113. doi: 10.1016/S0166-218X(00)00198-0
    [7] F. M. Dong, Y. P. Liu, All wheels with two missing consecutive spokes are chromatically unique, Disc. Math., 184 (1998), 71-85. doi: 10.1016/S0012-365X(96)00288-9
    [8] M. R. Garey, D. S. Johnson, Computers and Intractability: A Guide to the Theory of NP- Completeness, Freeman, New York, 1979.
    [9] F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combin., 2 (1976), 191-195.
    [10] M. Imran, A. Q. Baig, M. K. Shafiq, et al. On metric dimension of generlized Petersen graphs P(n, 3), Ars Combin., 117 (2014), 113-130.
    [11] M. Imran, A. Q. Baig, S. A. Bokhary, et al. On the metric dimension of circulant graphs, Appl. Math. Lett., 25 (2012), 320-325. doi: 10.1016/j.aml.2011.09.008
    [12] M. Imran, S. A. Bokhary, A. Q. Baig, On families of convex polytopes with constant metric dimension, Comput. Math. Appl., 60 (2010), 2629-2638. doi: 10.1016/j.camwa.2010.08.090
    [13] M. Imran, A. Ahmad, S. A. Bokhary, et al. On classes of regular graphs with constant metric dimension, Acta Math. Scientia, 33 (2013), 187-206. doi: 10.1016/S0252-9602(12)60204-5
    [14] M. Imran, H. M. A. Siddiqui, Computing the metric dimension of convex polytopes generated by wheel related graphs, Acta Math. Hungar., 149 (2016), 10-30. doi: 10.1007/s10474-016-0606-1
    [15] I. Javaid, M. T. Rahim, K. Ali, Families of regular graphs with constant metric dimension, Utilitas Math., 75 (2008), 21-33.
    [16] S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Disc. Appl. Math., 70 (1996), 217-229. doi: 10.1016/0166-218X(95)00106-2
    [17] S. Khuller, B. Raghavachari, A. Rosenfeld, Localization in graphs, Technical Report CS-TR-3326, University of Maryland at College Park, 1994.
    [18] R. A. Melter, I. Tomescu, Metric bases in digital geometry, Comput. Vision Graphics, Image Processing, 25 (1984), 113-121. doi: 10.1016/0734-189X(84)90051-3
    [19] O. R. Oellermann, J. Peters-Fransen, Metric dimension of Cartesian products of graphs, Utilitas Math., 69 (2006), 33-41.
    [20] M. Salman, I. Javaid, M. A. Chaudhry, Resolvability in circulant graphs, Acta Math. Sin. Engl. Ser., 28 (2012), 1851-1864. doi: 10.1007/s10114-012-0417-4
    [21] A. Sebö, E. Tannier, On metric generators of graphs, Math. Oper. Res., 29(2004),383-393. doi: 10.1287/moor.1030.0070
    [22] H. M. A. Siddiqui, M. Imran, Computing the metric dimension of wheel related graphs, Appl. Math. Comput., 242 (2014), 624-632.
    [23] P. J. Slater, Leaves of trees, Congress. Numer., 14 (1975), 549-559.
    [24] P. J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci., 22 (1988), 445-455.
    [25] I. Tomescu, M. Imran, On metric and partition dimensions of some infinite regular graphs, Bull. Math. Soc. Sci. Math. Roumanie, 52 (2009), 461-472.
    [26] I. Tomescu, I. Javaid, On the metric dimension of the Jahangir graph, Bull. Math. Soc. Sci. Math. Roumanie, 50 (2007), 371-376.
    [27] U. Ali, S. A. Bokhary, K. Wahid, et al. On resolvability of a graph associated to a finite vector space, Journal of Algebra and Its Applications, 18 (2018), 1950028.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4177) PDF downloads(202) Cited by(0)

Figures and Tables

Figures(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog